Connectivity and Security in Directional Sensor Networks

Deepa Kundur

(joint work with Dr. Unoma Okorafor)

Department of Electrical & Computer Engineering Texas A&M University

Multimedia Sensor Systems

densely distributed, ad hoc, collaborative, autonomous, resource-constrained

diverse specialized sensing

sensors are multimodal

<u>focus</u>: subset of data is visual

Multimedia Sensor Systems

Applications

healthcare monitoring
disaster exploration
unmanned vehicle control ...

Need widespread adoption

societal trust

AM

Multimedia Sensor Systems

Significant technical challenges
 communications bandwidth

security and privacy

Physical layer perspective: <u>directional</u> communications

Transceiver configurations:

omni-omni direc-omni direc-direc omni-direc

Omnidirectional Communications

RANDOM GEOMETRIC GRAPH (RGG) MODEL

Network Connectivity

Definition: for every node pair there exists at least one path connecting them.

RGG connectivity: How do physical layer communication parameters affect probability of network connectivity?

asymptotic methods

probabilistic approaches

Omnidirectional Communications

OUT OF RANGE, r

Omnidirectional Communications

STEERED BEAM RF SWITCHED BEAM RF FSO (SPHERICAL/HONEYCOMB PHOTODETECTOR)

Transceiver configurations:

omni-omni direc-omni direc-direc omni-direc

omni-omni direc-omni direc-direc omni-direc

Directional Links

S_a

NODE INVISIBILITY

STATIC RF FSO (Smart Dust)

© 2009 Deepa Kundur

direc-omni

15

Single Hop vs. Large Scale

Directional links aid in <u>connectivity</u> (range extension) and <u>security</u> (low probability of detection) for a single hop

Can we exploit directional links for networking?

What are the implications to network connectivity?

What are the network security implications?

Directional Link Networks

FIGURE COURTESY OF DR. TAKIS ZOURNTOS

Directional Link Networks

directional-omni

RANDOMLY DEPLOYED NODES:

RANDOM LOCATION RANDOM ORIENTATION STATIC ORIENTATION

PARAMETERS n = number of nodes r = communication range $\alpha = beam width$

Directional Link Networks

Random Sector Graph

Iinks device parameters to large-scale network behavior

models Smart Dust FSO sensor networks

 beam width α controls proportion of unidirectional and bidirectional links

 $\alpha \rightarrow 2\pi$ approaches RGG model

Connectivity

RANDOM DIRECTIONAL LINK NETWORK

 Definition: for every node pair (s_a, s_b), paths from s_a to s_b and from s_b to s_a exist

 connectivity is probabilistic

Connectivity

Second exact expression relating (n,r, α) to connectivity likelihood is an open problem

Tractable approach: bound probability of connectivity with probability of no isolated node

Node Isolation

TRADITIONAL ISOLATION

FORWARD ISOLATION BACKWARD ISOLATION

Connectivity vs. No Isolated Node

probability of connectivity < probability of no node isolation

Pc **≤** Pd

Probability of No Isolated Node

NEIGHBORS

FORWARD NEIGHBORS BACKWARD NEIGHBORS

A M

$$p_{\text{not isol}}^{i} = p_{f\cap b}^{i} = p_{f}^{i} \cdot p_{b|f}^{i}$$

$$p_{d} = \left[1 - e^{\frac{-n\alpha r^{2}}{2}}\right]^{n} \left[1 - \frac{e^{\frac{-n\alpha r^{2}}{2}}}{1 - e^{\frac{-n\alpha r^{2}}{2}}} \left(1 - \frac{\alpha r^{2}}{2}\right)^{n-1} \cdot \left(e^{\left[\frac{n\alpha r^{2}(2\pi - \alpha)}{2\pi(2 - \alpha r^{2})}\right]} - 1\right)\right]^{n}$$

AM

Parameter Assignment Problem

TABLE 1

Minimum communication range r for corresponding parameters (n, α) that achieves $p_d \ge 0.99$ in $G_n(S_n, \mathcal{E})$.

r_{max}=0.2

© 2009 Deepa Kundur

28

AM

Connectivity Insights

analytically, an increase in n, r and/or α all improve likelihood of no isolated node

empirically, for $\alpha \rightarrow 2\pi$ p_c ≤ p_d bound is tighter

o r has most influence on the p_d-bound

 $\circ \alpha$ has more influence on the actual p_c

What are the implications for security?

Sensor Network Security

Threat:

In high likelihood insider attack for sensor networks

high degree of cooperation increases possible degree of damage

Routing in Directional Link Networks

existing sensor network research does not apply

REVERSE ROUTES NOROVAINOBLE IN DIRECTIONBASEINK NETWORKS

Routing Attacks

CORRUPT NODE MAY INFLUENCE TWO-WAY COMMUNICATION TO MAINTAIN COVERTNESS

Routing Attacks

IN DIRECTIONAL LINK NETWORKS, ATTACKER MUST INFLUENCE BOTH UP-LINK AND DOWN-LINK

Probability of Both Uplink & Downlink Corruption

n=100

n=500

Connectivity vs. Security

Inidirectional links raise the required effort for an attacker

 \odot decreasing (n,r, α):

Increases required attacker effort

decreases likelihood of connectivity

How do you improve connectivity without sacrificing security?

X

Improving Connectivity

HIERARCHY CAN IMPROVE CONNECTIVITY

Final Remarks

Ø Directional links must be leveraged in largescale networks.

Asymmetrical networking increases effort required for insider attacks.

Hierarchy can mitigate compromises between connectivity and security.

