Biometric Security BIRS-09

Ton Kalker

An interpretation of work by: Tanya Ignatenko (TUE), Frans Willems (TUE)

First slide

- Topic:
 - new direction in secure biometry
 - Interesting mixture of signal processing, cryptography and information theory
- Overview
 - Biometry: strength and weaknesses
 - Cancelable biometrics
 - Secrets from common randomness
 - Biometric encryption
 - Fuzzy commitment
 - Optimal biometric encryption
 - Open questions

Biometry

Authorization

- Passwords: what you know
- Biometry: who you are
- Interaction
 - Touch interfaces
 - Finger recognition
 - Personalization
 - Face recognition

Authorization by password

Control mechanism

• Database (DB) of (username, **hash**(password)) pairs

• PRO

- DB entries do not leak PW
- DB entries can be modified
- CON
 - PWs are hard to remember

Ignatenko, 2009

Biometric security

- Control mechanism
 - Database (DB) of (username, **hash**(T)) pairs?
- But
 - Biometrics are fuzzy
 - Hash-functions cannot be used
- So
 - Store biometrics in unprotected form?
 - Renew biometrics when compromised?

Cancelable Biometrics

[Ratha et al., Generating Cancelable Fingerprint Templates, 2007, [2]]

Performance parameters

- Secrecy rate: R_s = log (# secrets)/ biometric symbol
- Security: I(S;M) measuring leakage between helper M and secret S. Should always be zero!
- Privacy rate: R_b = I(X;M) measuring leakage between helper M and biometrics X

Common randomness (1)

- Theorem [Ahlswede & Cziszar, 1993, [1]]:
 - The maximum secrete key rate R_s that can be extracted securely from common randomness is given by R_s = I(X;Y);
 - At maximum secrecy rate the entropy of the helper data M is given by H(M) = H(X|Y)
 - At maximum secrecy rate, **privacy leakage** is equal to H(M) = H(X|Y)

Common randomness (2)

• PRO

- DB does not leak information on S
 - In information theoretic sense for M
 - In computational sense from h(S)
- CON
 - DB admits privacy leakage
 - In information theoretic sense
 - Can protection by computational cryptography be added?
 - DB entries cannot be changed!

Biometric encryption

• Binding a secret key to a biometric template

• PRO

- No security leakage
- Renewability
- CON
 - Privacy leakage

Chavoukian et al., White Paper on Biometric Encrytpion, 2007, [4]

Biometric encryption

• Binding a secret key to a biometric template

• PRO

- No security leakage
- Renewability
- CON
 - Privacy leakage

Chavoukian et al., White Paper on Biometric Encrytpion, 2007, [4]

BE: Fuzzy Commitment

- Key rate R_k : $o \le R_k \le 1 h(q)$
- No security leakage: I(K;Z) = o
- Privacy leakage: $R_b \ge 1 R_k$

Optimal Biometric Encryption

- Theorem (Ignatenko, 2009 [3]) The optimal relation between secret key rate and privacy leakage is given by
 - $R_k = I(U;Y)$
 - $R_b = I(U;X) I(U;Y)$
 - H(M) = I(U;X)

for some auxiliary random variable U \rightarrow X \rightarrow Y

Proof: random binning argument

Open questions

- Theory
 - Integration of computational and information theoretic security
 - Correlation in biometric data
- Theory to practice
 - Real biometric signals are not i.i.d.
 - Real biometric signals have finite length
 - Measuring entropy
 - Constructing codes

Bibliography

- 1. R. Ahlswede and I. Csiszár, "Common randomness in information theory and cryptography part I: Secret sharing," *IEEE Transactions on Information Theory*, vol. 39, pp. 1121–1132, July 1993.
- 2. N. Ratha, S. Chikkerur, J. Connell, and R. Bolle, "Generating cancelable fingerprint templates," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 29, no. 4, pp. 561–572, April 2007
- 3. T. Ignatenko, Secret-Key Rates and Privacy Leakage in Biometric Systems, "Secret-Key Rates and Privacy Leakage in Biometric Systems", Thesis, TUE, June 2009.
- 4. Ann Chavoukian and Alex Stoianov, "Biometric Encryption: A Positive-Sum Technology that Achieves Strong Authentication, Security AND Privacy", White Paper IPC, <u>http://www.ipc.ca</u>, March 2007.