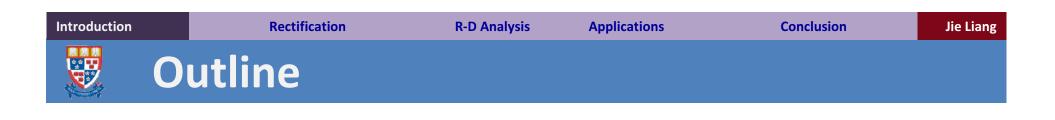
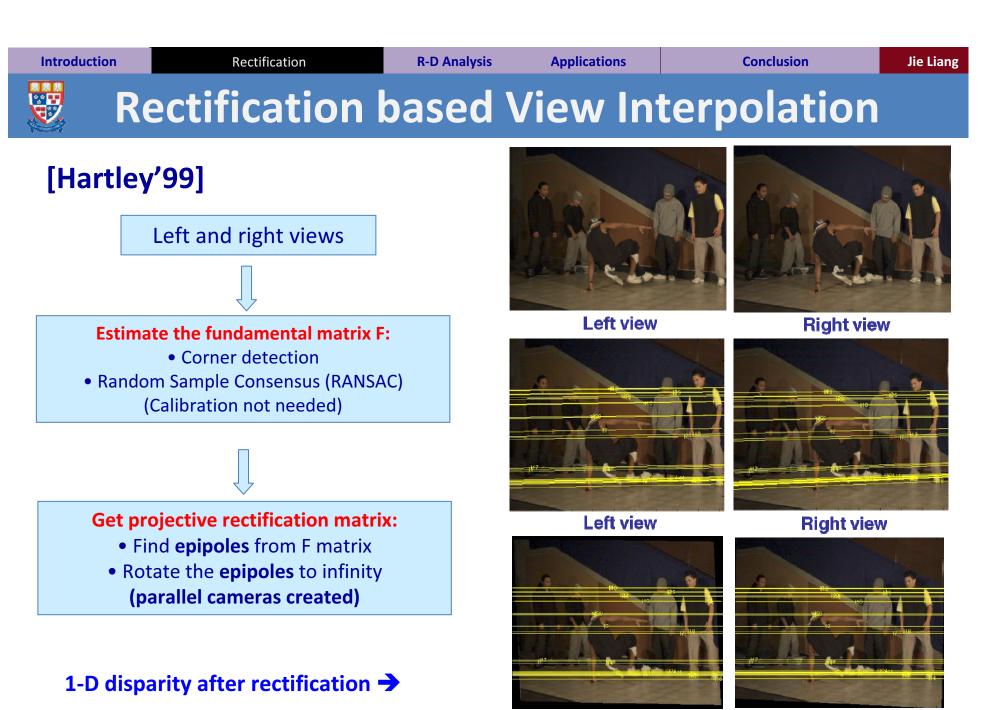
Rectification-based View Interpolation and Extrapolation: R-D Analysis and Applications in Multiview Video/Image Coding



Jie Liang (jiel@sfu.ca)

School of Engineering Science, Simon Fraser University, Vancouver, BC, Canada Workshop on Multimedia, Mathematics & Machine Learning II Banff, Alberta, Canada, July 5-10, 2009

- Introduction
- R-D analysis
- Applications
- Summary

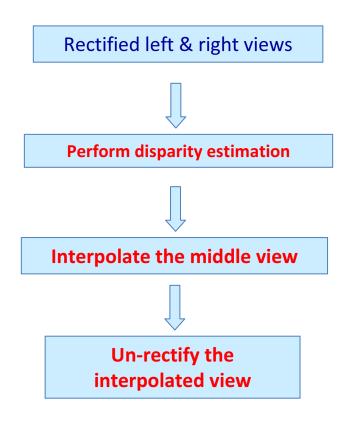

- Multiview video coding (MVC) is an important component of 3DAV applications
- Disparity-compensated prediction:
 - Used by H.264 MVC
 - Not always efficient [Schwarz'06]
- View interpolation/synthesis-based prediction:
 - Exploits geometric redundancy
 - Also useful for free viewpoint TV

Introduction		Rectification	R-D Analysis	Applications	Conclusion	Jie Liang
	Int	roduction				

- Existing view interpolation-based MVC methods:
 - Require parallel cameras [Yamamoto'07]
 - Or need camera parameters or depth map [Martinian'06, Shimizu'07]
- Recently at PCS'09 we apply the projective rectification-based view interpolation in [Hartley'99] to MVC
 - Allow flexible camera setup
 - Camera parameters not needed
 - Also used for rendering in [Farin'06, Kauff'07]
 - R-D performance not studied yet

This talk:

- Theoretical model for rectification-based view interpolation and the corresponding R-D model for MVC [ICME'09]
- View extrapolation-based MVC [ICME'09]
- Multiple description coding (MDC) of multiview images [Asilomar'09]


Rectified Left view

Rectified Right view

00 **1**

Jie Liang

Rectification based View Interpolation

Problem: complexity

Interpolated view

Unrectified interpolated view

8 8 **1**

View Interpolation-based MVC

- To use the view interpolation in H.264 based MVC, each frame can have 4 reference frames:
 - The interpolated view (from rectification)
 - The temporal reference from the same view
 - The current frames in the left & right neighbouring views
- Each block picks the best reference using R-D optimization.

Introduction

Existing Theoretical Models

Our R-D analysis is mainly based on the following papers:

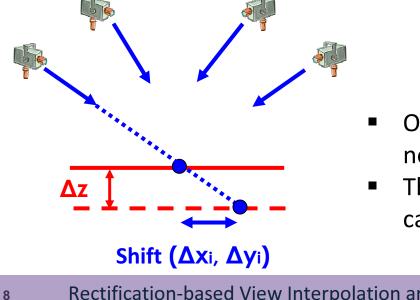
R-D Analysis

[Girod et al.-'03,'06,'07]

Rectification

- [Takahashi-ICIP'08]
- 1. MVC R-D Model in [Girod *et al.-'03,'06,'07*]:
 - Object:

2D signal s(x,y) on a planar surface


Geometry error:


an offset Δz from its true position

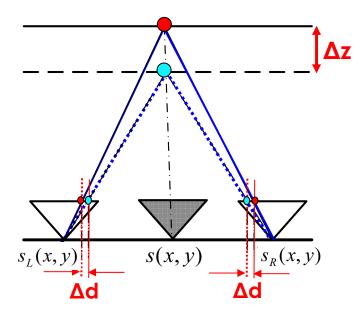
Applications

 \rightarrow Each view is a **shifted** version of s(x,y):

- Other view-dependent effects are modeled as noise.
- The impact of ∆z on MVC R-D performance can be derived from this.

Conclusion

Introduction Rectification R-D Analysis Applications Conclusion Jie Liang


• 2. View Interp. Model in [Takahashi-ICIP'08]: s(x,y): middle view

$$s(x, y) = 1/2 \{ s_L(x+d, y) + s_R(x-d, y) \}$$

2d: disparity between left & right views

SEL

Assumption: geometry error Δz causes some disparity error Δd

Interpolated view:

$$\hat{s}(x, y) = \frac{1}{2} \{ s_L(x + (d + \Delta d), y) + s_R(x - (d + \Delta d), y) \}$$

= $\frac{1}{2} \{ s(x + \Delta d, y) + s(x - \Delta d, y) \}$

Error:
$$e(x, y) = s(x, y) - \hat{s}(x, y)$$

Power spectral density (PSD) of e(x,y):

$$\Phi_{ee}(\omega_x, \omega_y) = (1 - \cos(\Delta d \cdot \omega_x))^2 \Phi_{ss}(\omega_x, \omega_y).$$

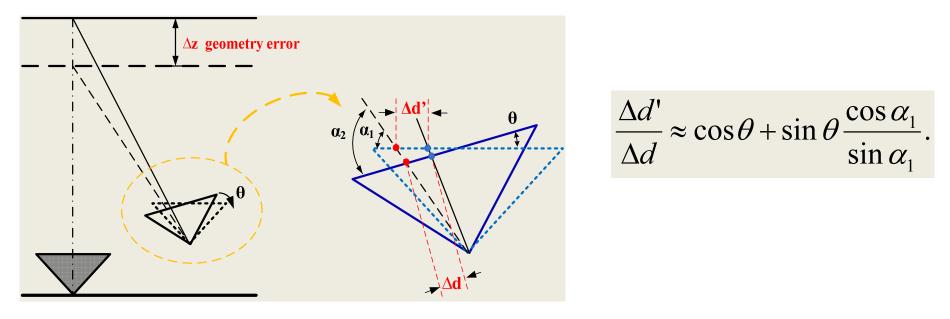
The MSE of the interpolated view can be obtained.

Limitations: 1. Parallel cameras; 2. R-D and MVC are not considered.

Conclusion

Proposed Model for Rectification-based View Interpolation

- Our Goal: analyze the R-D performance of MVC when rectification-based view interpolation is used
 - Assuming the orientations of the left & right views differ from the middle view by θ and are not in the same line as the middle view


Rectification becomes:

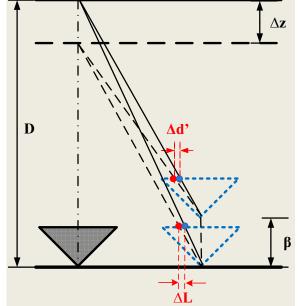
- 1. Rotate left & right views to parallel positions.
- 2. Shift them to the same line as the middle view.

Step 1: After rotation, the disparity error Δd becomes Δd':

Avg. of
$$\Delta d' / \Delta d$$

in the field of view: $\frac{1}{\alpha_{FOV}} \int_{FOV} \left(\cos \theta + \sin \theta \cdot \frac{\cos \alpha_1}{\sin \alpha_1} \right) d\alpha_1 = \cos \theta.$

 \rightarrow Rectification reduces the disparity error by a factor of $\cos\theta$ on average.

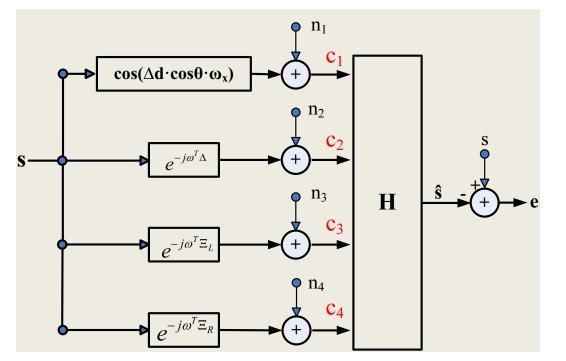

11 Rectification-based View Interpolation and Extrapolation: Theory and Applications

• Step 2: If D>> β , the disparity error has little change after shifting by $\beta \rightarrow$

 $\Delta L \approx \Delta d' \approx \Delta d \cdot \cos \theta.$

Interpolated middle view after rectification:

$$\hat{s}(x,y) = 1/2 \{ s(x + \Delta d \cdot \cos \theta, y) + s(x - \Delta d \cdot \cos \theta, y) \}$$


Fourier Transform:

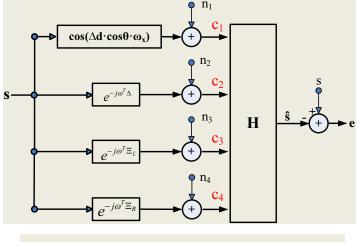
$$\hat{S}(\omega_x, \omega_y) = \cos(\Delta d \cdot \cos \theta \cdot \omega_x) \cdot S(\omega_x, \omega_y).$$

The model in [Takahashi-ICIP'08] is a special case of ours with θ = 0.

- To use view interp. In MVC, each frame has 4 reference frames:
 - C1: The interpolated view
 - C₂: The temporal reference with motion displacement Δ .
 - C₃, C₄: The references from left & right views, with disparity
- Ξ_L and Ξ_R .
- The following model is obtained (based on [Girod et al.-'03,'06,'07]):

- The MVC can be modelled as a linear estimation problem.
- The prediction residual *e* is encoded.
- The RD performance can be obtained.
- Another performance measure: Rate difference w.r.t. direct coding.

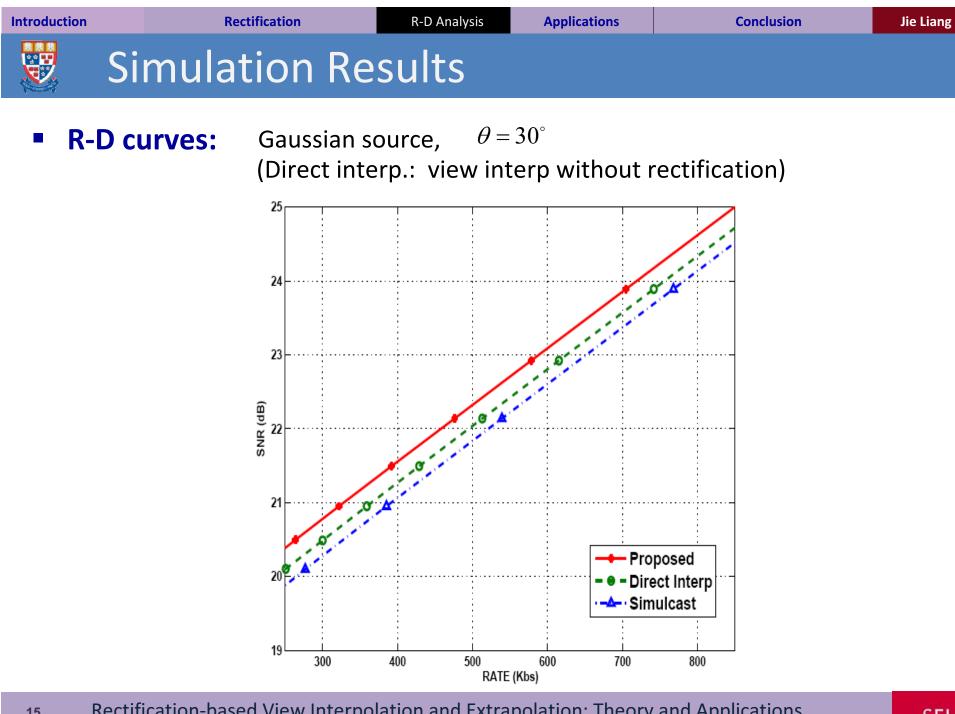
• The LMMSE filter:


$$\mathbf{H} = \Phi_{cs}^* \Phi_{cc}^{-1}$$

The PSD of the prediction residual:

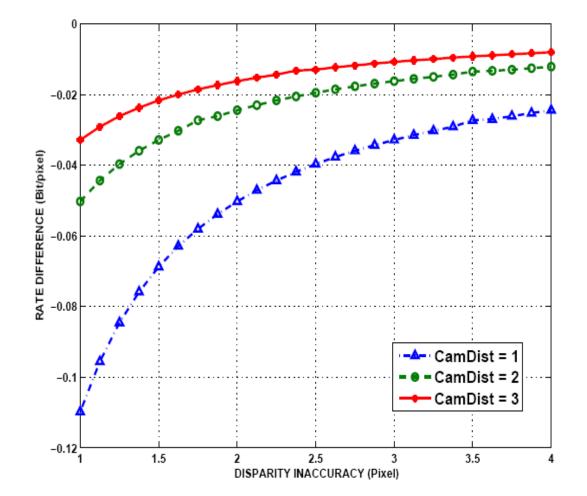
$$\Phi_{ee} = \Phi_{ss} - \Phi_{cs}^* \Phi_{cc}^{-1} \Phi_{cs}$$

R-D function of Gaussian signal x(x, y):


$$R(\lambda) = \frac{1}{8\pi^2} \int_{\omega_x} \int_{\omega_y} \max\left(0, \log_2 \frac{\Phi_{xx}(\omega_x, \omega_y)}{\lambda}\right) d\omega_x d\omega_y$$
$$D(\lambda) = \frac{1}{4\pi^2} \int_{\omega_x} \int_{\omega_y} \min(\lambda, \Phi_{xx}(\omega_x, \omega_y)) d\omega_x d\omega_y$$

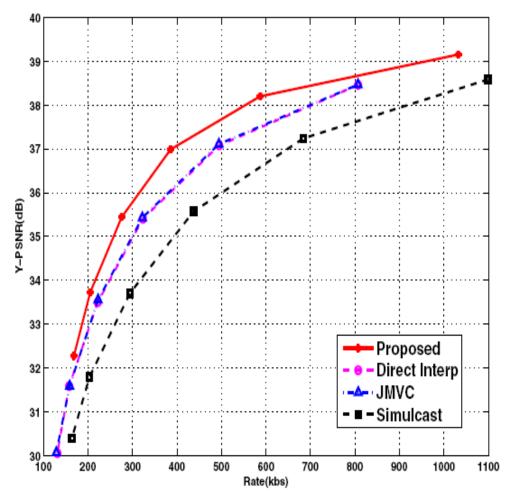
$$\mathbf{c} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix}^T$$

Rate difference between predictive coding and direct coding:


$$\Delta R = R_e - R_s = \frac{1}{8\pi^2} \int_{\omega_x} \int_{\omega_y} \log_2 \frac{\Phi_{ee}(\omega_x, \omega_y)}{\Phi_{ss}(\omega_x, \omega_y)} d\omega_x d\omega_y$$

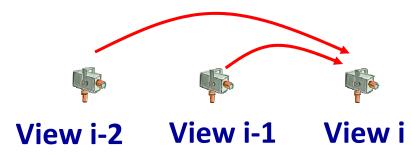
Rectification-based View Interpolation and Extrapolation: Theory and Applications 15

Impact of disparity error Δd and camera distance on rate difference:



- Introduction
- R-D analysis
- Applications
 - View interpolation-based MVC
 - View extrapolation-based MVC
 - Multiple description coding of multiview images
- Summary

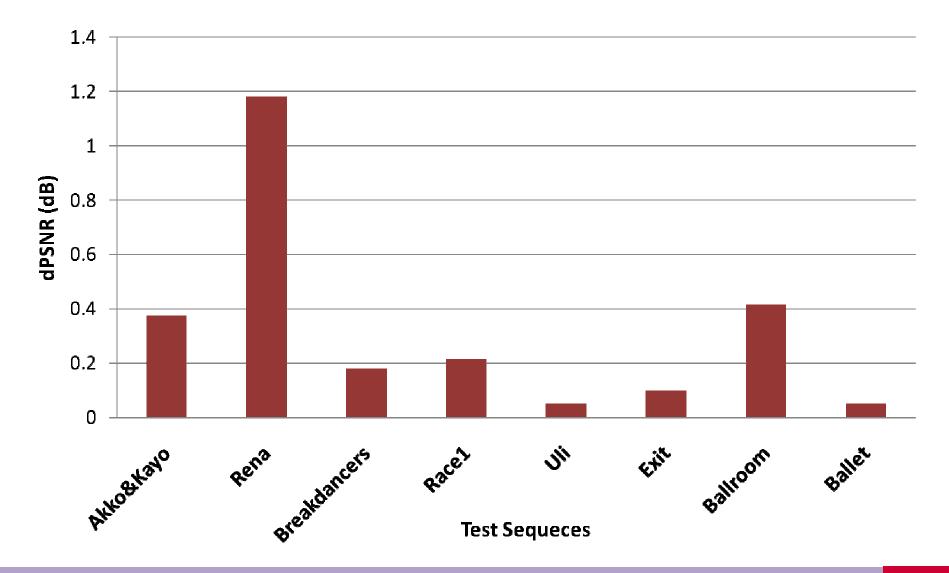
Coding Results: 2nd view of Breakdancers: up to 1 dB higher than JMVC



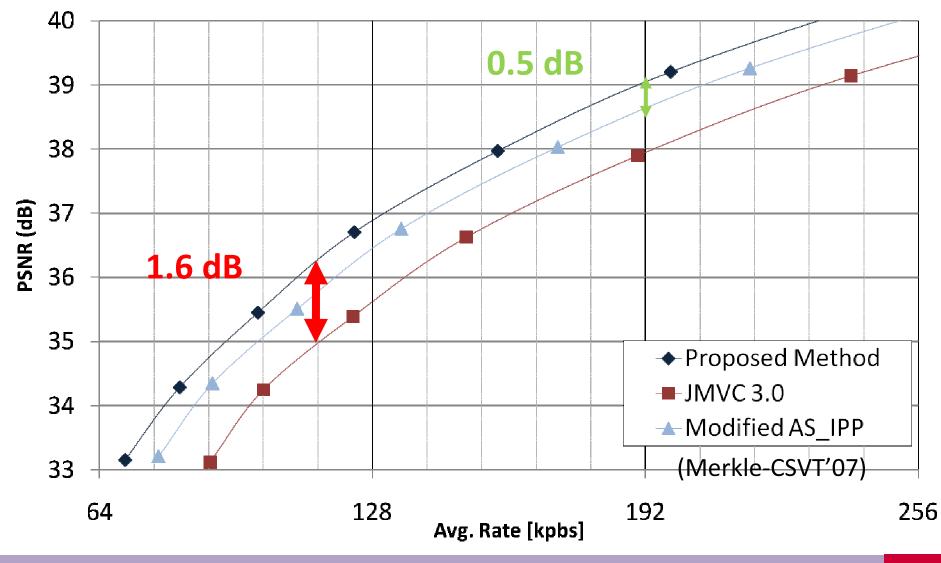
Limitation: view interpolation can only be used in half of the views.

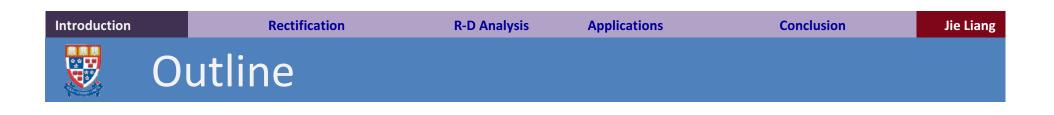
18 Rectification-based View Interpolation and Extrapolation: Theory and Applications

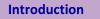
- To apply view synthesis prediction to more views, we develop an rectification-based view extrapolation method:
 - Use two previous views
 - Rectification → disparity estimation
 - → view extrapolation → un-rectification



Extrapolation-based MVC:

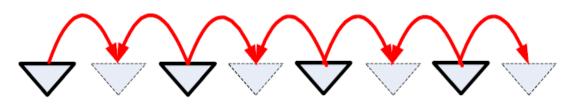

- Encode the 1st and 2nd views using existing method
- For other views, use the previous two views to extrapolate a synthesised view, which is used as an additional reference frame.





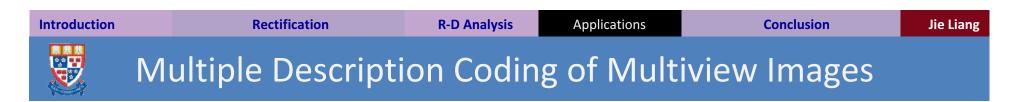
21 Rectification-based View Interpolation and Extrapolation: Theory and Applications

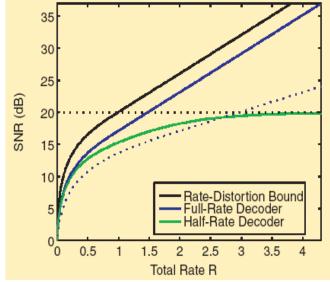
- Introduction
- R-D analysis
- Applications
 - View interpolation-based MVC
 - View extrapolation-based MVC
 - Multiple description coding of multiview images
- Summary



Conclusion

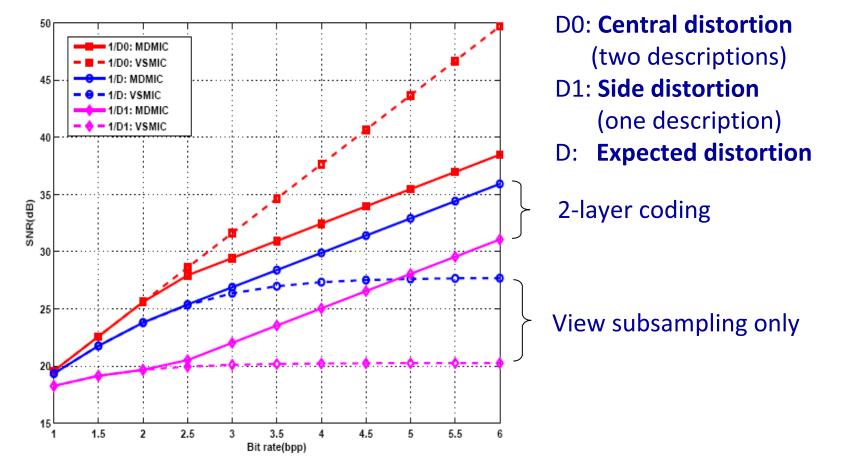
Multiple Description Coding of Multiview Images

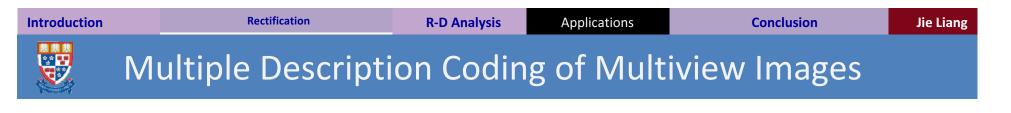

- Multiple description coding (MDC) of multiview images and videos have not been well studied.
- Related work: View subsampling [Ishii-ICIP08]:
 - Goal: Reduce transmission bandwidth
 - Approach: Encode only half of the views (primary views).
 - Decoder: Missing (secondary) views are estimated from neighboring views using view interpolation.

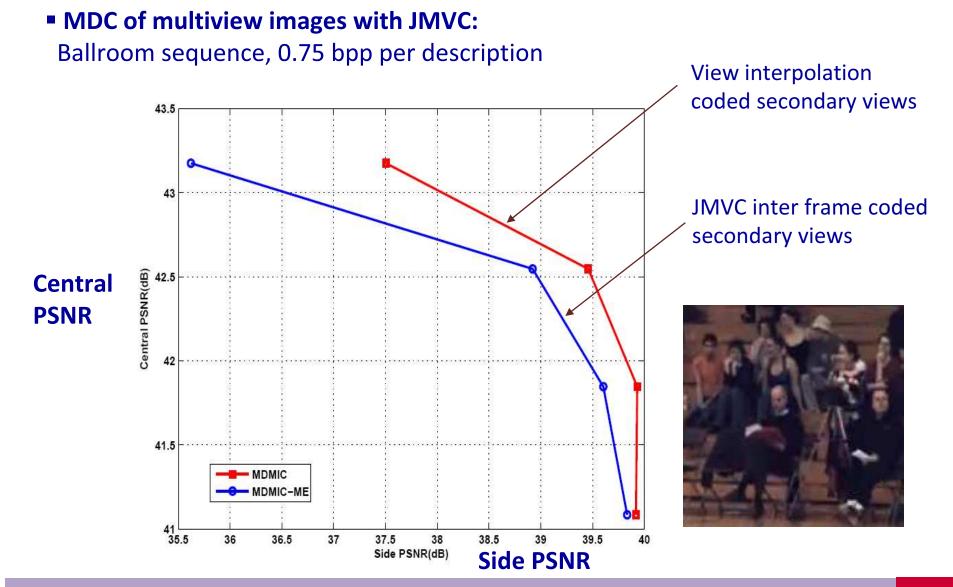

Problem:

 The quality of the missing views cannot be improved even at high rates, due to prediction residual.

- This is equivalent to the even-odd spliting MDC scheme in [Jayant'81]
- The problem of the half-rate decoder (side decoder) is also well known [Goyal'01]


[Goyal'01], pp. 78


- Possible solution: 2-layer coding [Wang'02], [Liang'07]:
 - Base layer: primary views.
 - Enhancement layer: prediction residual of secondary views.
- Rectification-based view interpolation is helpful here.



Theoretical R-D Analysis for MDC of multiview images:

Central/side/expected distortions vs bit rate

- Summary:
 - Theoretical model for rectification-based view interpolation and the corresponding MVC
 - Performance in MVC with view interpolation and video extrapolation
 - Multiple description coding of multiview images
- Current work:
 - Refinement of the R-D model
 - Coding gain for all views
- Acknowledgements:
 - NSERC New Media Initiative Grant
 - Xiaoyu Xiu
 - Derek Pang

Introduction		Rectification	R-D Analysis	Applications	Summary	Jie Liang
	Refere	ences				

- X. Xiu and J. Liang, "<u>Projective Rectification-based View Interpolation for Multiview</u> <u>Video Coding and Free Viewpoint Generation</u>," Proc. Picture Coding Symposium, Chicago, IL, USA, May 2009.
- X. Xiu and J. Liang, "<u>Rate-Distortion Analysis of Rectification-based View Interpolation</u> for Multiview Video Coding," Proc. IEEE International Conference on Multimedia & Expo, New York, pp. 13-16, June, 2009.
- D. Pang, X. Xiu and J. Liang, "<u>Multiview Video Coding Using Projective Rectification-Based View Extrapolation and Synthesis Bias Correction</u>," Proc. IEEE International Conference on Multimedia & Expo, New York, pp. 5-8, June, 2009.
- X. Xiu, and J. Liang, "Multiple Description Coding of Multiview Images," 2009 IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2009, submitted, May 2009.

Introduction		Rectification	R-D Analysis	Applications	Summary	Jie Liang
	Refe	rences				

- M. Flierl, A. Mavlankar, and B. Girod, "Motion and Disparity Compensated Coding for Multi-View Video," IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1474 – 1484, November 2007.
- P. Ramanathan and B. Girod, "Rate-Distortion Analysis for Light Field Coding and Streaming," EURASIP Signal Processing: Image Communication, vol. 21, no. 6, pp. 462-475, July 2006.
- M. Magnor, P. Ramanathan, and B. Girod, "Multiview Coding for Image-Based Rendering using 3-D Scene Geometry," IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 11, pp. 1092-1106, Nov. 2003.
- K. Takahashi, and T. Naemura, "Theoretical model and optimal prefilter for view interpolation," IEEE International Conf. Image Processing, pp. 1528-1531, San Diego, Oct. 2008.
- 9. M. Ishii, K. Takahashi, T. Naemura, "Rate-distortion performance of multi-view image coding with subsampling of viewpoints," IEEE International Conf. Image Processing, pp. 2428-2431, San Diego, Oct. 2008.

