

BIRS, Banff, Canada, 06-11 July 2009

Statistical Methods for Speech, Language and Image Processing: Achievements and Open Problems

Hermann Ney

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University, Germany

Outline

1	Overview	4
2	Speech Recognition	8
	2.1 Problem of Speech Recognition	. 9
	2.2 Bayes Decision Rule	. 11
	2.3 Acoustic Modelling	. 13
	2.4 Baseline Training	. 16
	2.5 Training using the EM Algorithm	. 17
	2.6 Language Model	. 22
	2.7 Search	. 24
	2.8 Adaptation	. 25
	2.9 Discriminative Training	
	2.10 Results	. 30
	2.11 The Statistical Approach Revisited	
H. I	Ney: Statistical Methods: Speech, Text, Image ©RWTH Aachen 2 07-July-2009	RNTH

3	Discriminative Models, Log-linear Models and CRFs	43
	3.1 Motivtion	ae f3
	3.2 Frame Level	46
	3.3 String Level without Alignments	51
	3.4 HMM: State Level with Alignments	54
	3.5 C ⁴ : Correctness, Complexity, Convexity, Convergence	56
4	Statistical MT	57
	4.1 History	57
	4.2 Training	64
	4.3 Phrase Extraction	69
	4.4 Phrase Models and Log-Linear Scoring	74
	4.5 Generation	81
	4.6 Summary	86
	······································	
5	Image Recognition	87
6	Conclusion	93

RWTH

3

1 Overview

tasks considered:

- speech recognition
- translation of text and speech
- image recognition: handwriting

natural language processing: NLP human language technology: HLT = NLP + speech

more tasks in HLT:

- (spoken/written) language understanding
- dialog systems
- speech synthesis
- text summarization

• ...

TC-Star (2004-2007): integrated research project funded by EU:

- primary domain: Spanish/English speeches of EU parliament (TV station: Europe by satellite, 11 languages before EU extension)
- tasks: speech recognition, translation, synthesis
- partners:

IBM, IRST Trento, LIMSI Paris, UKA Karlsruhe, UPC Barcelona, Siemens, ...

• first time: speech translation for real-life data

GALE (2005-2010?): funded by DARPA:

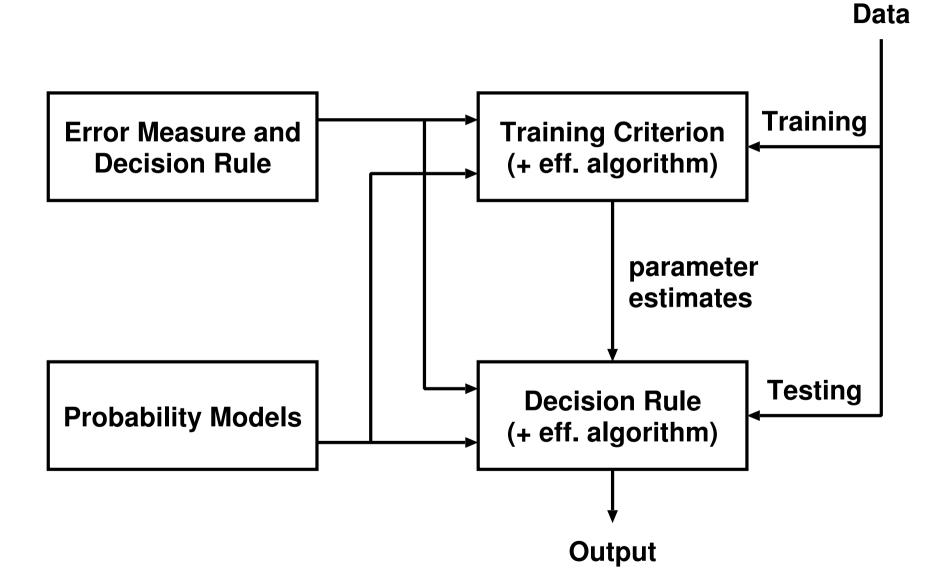
- primary domain: Arabic and Chinese, texts and TV shows
- three (huge) teams headed by BBN, IBM, SRI
- tasks: speech recognition, translation, information extraction

QUAERO (2008-2013): funded by OSEO/French Government

- French partners and 2 German partners: industry: Thomson, France Telecom, Jouve, LTU/Exalead, ... academia: CNRS, INRIA, INRA, U of Karlsruhe, RWTH Aachen, ...
- primary goal: processing of multimedia and multilingual documents (web, archives, ...)
- many languages: French, German, Chinese, Arabic,...
- tasks:

speech recognition, translation of text and speech, handwriting recogition, image recognition, information extraction/retrieval, ...

four key ingredients:



2 Speech Recognition

- What are the main achievements over the last 30 years?
- What are the successful approaches?
- What are the lessons learned?

lessons:

- contribution from phonetics or linguistics: small
- data-driven methods
- avoid local decisions
- consistent models and training criteria
- comparative evaluations

public software for ASR: RWTH i6 web site

2.1 Problem of Speech Recognition

characteristic properties:

- high variability: from utterance to utterance
 - dependence on the phonetic context
 - from speaker to speaker
- speaking rate: can vary drastically
 - no anchor points
- word and phoneme (sound) boundaries: do not exist in acoustic signal

9

• context or prior information:

syntactic-semantic structures of the spoken language

compare:

- human-human communication:
 - proper names via telephone \rightarrow spelling
 - native language \rightarrow foreign language:
 - \rightarrow understanding much harder
- character recognition: character error rate: 20–30% [sub.+del.+ins.]

State of the Art

heavy dependence on:

- vocabulary size
- perplexity of LM
- speaking style
- acoustic quality

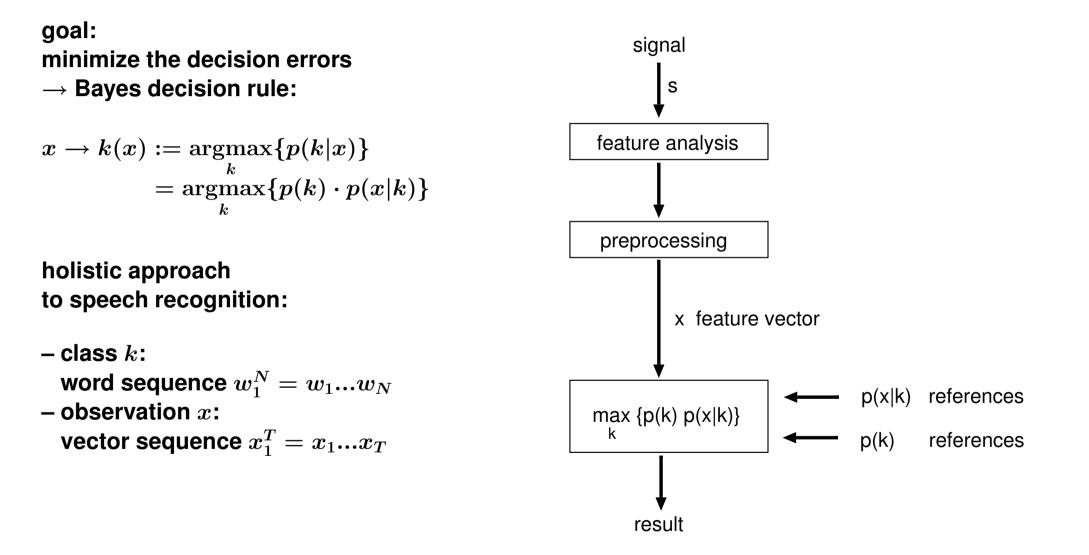
standard data bases with following conditions:

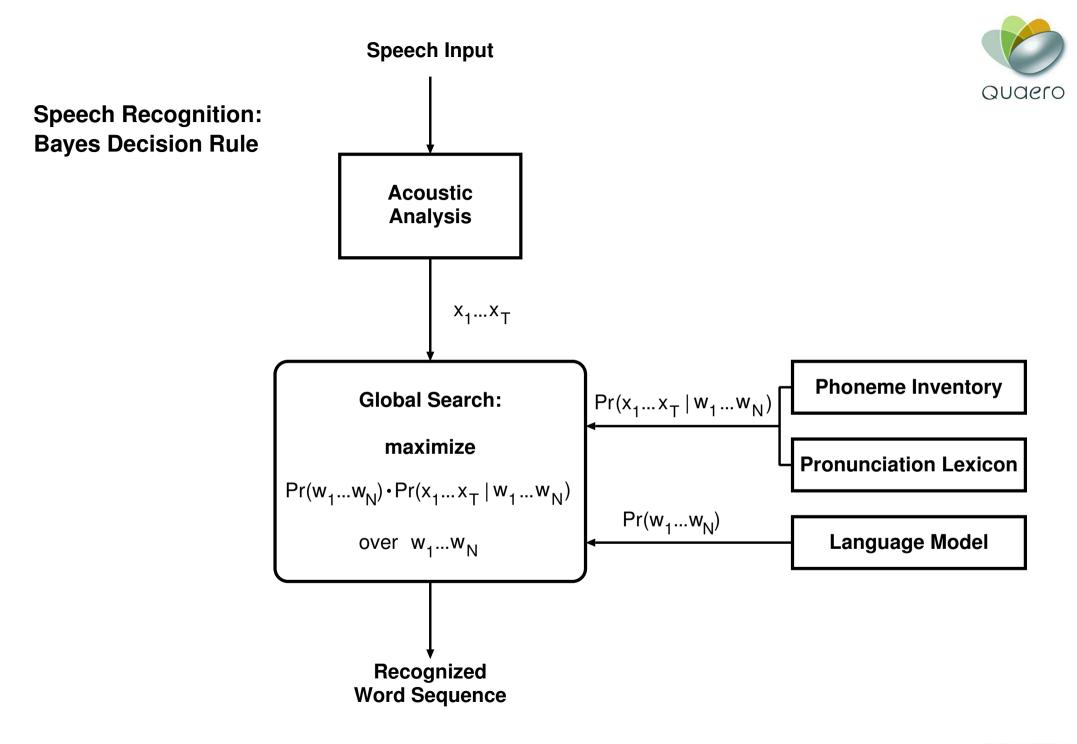
- American English
- continuous speech
- speaker independent
- 100 hours of speech and more

performance of best research systems:

Task	Speaking	Vocabulary	Perplexity	Word Error
	Style	Size		Rate [%]
Digit Strings	read	11	11	0.3
Voice Commands	read	1000	60	6.0
Text dictation	read	64 000	150	10.0
Broadcast News	natural	64 000	200	15.0
Telephone Conversations	colloquial	64 000	120	30.0

2.2 Bayes Decision Rule





2.3 Acoustic Modelling

Problem:

prob.distributions over sequences w_1^N and x_1^T

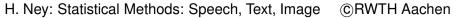
 \rightarrow factorization of probability distributions

Hidden Markov Model (HMM):

$$egin{aligned} Pr(x_1^T | w_1^N) \ &= \ \sum_{s_1^T} \ Pr(x_1^T, s_1^T | w_1^N) = \sum_{s_1^T} \prod_{t=1}^T \ p(x_t, s_t | s_{t-1}, w_1^N) \ &= \ \sum_{s_1^T} \prod_{t=1}^T \ \left[p(s_t | s_{t-1}, w_1^N) \cdot p(x_t | s_t, w_1^N)
ight] \end{aligned}$$

HMM at several levels:

- phoneme
- word: concatenation of phonemes
- sentence: concatenation of words



HMM = statistical finite-state automaton (phoneme, word, sentence) with first-order dependencies

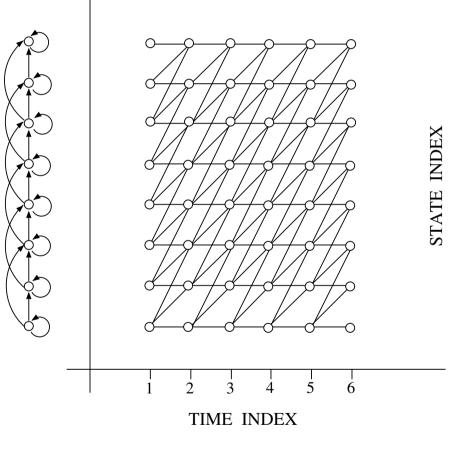
- observations: continuous-valued vectors x_t
- two distributions:

 $p(x_t,s|s',w) = p(s|s',w) \cdot p(x_t|s,w)$:

- transition prob. p(s|s', w): prior model structure
- emission prob. $p(x_t|s, w)$: link to observations

note:

- efficient probability model $p(x_1...x_T|w)$ for string $x_1...x_T$
- handling of time alignment problem



07-July-2009

• augmented vector: window around t:

$$p(x_t|s,w)$$
 with $x_t = [z_{t-\delta},...,z_t,...,z_{t+\delta}]$

with original acoustic vectors x_t over time t

- LDA: linear discriminant analysis for reducting the dimension of the augmented feature space
- Gaussian mixture (multimodal distribution):

$$p(x|s,w) ~=~ \sum_i p(x,i|s,w) = \sum_i p(i|s,w) ~p(x|s,i,w)$$

 phoneme models in triphone context: decision trees (CART) for finding equivalence classes

2.4 Baseline Training

key quantity: class posterior probability

$$p_ heta(c|x) \ = \ rac{p_ heta(c) \ p_ heta(x|c)}{\sum_{c'} p_ heta(c') \ p_ heta(x|c')}$$

with parameter set θ to be trained

• natural criterion with labeled training data $(x_r, c_r), r = 1, ..., R$:

$$rg\max_{ heta} \Big\{ \sum_r \log \; p_ heta(c_r|x_r) \Big\}$$

approximation: numerator only = joint likelihood
 'maximum-likelihood' (in engineering, pattern recognition, ...)

$$egin{argmat}{l} rgmath{\max}_{ heta} igg\{ \sum_r \log \; p_ heta(c_r,x_r) igg\} = \ &= rg \max_{ heta} igg\{ \sum_r \log \; p_ heta(c_r) + \sum_r \log \; p_ heta(x_r|c_r) igg\} \end{split}$$

- additional complication:
 - HMM with hidden variables
 - EM algorithm and its variants

2.5 Training using the EM Algorithm

define model distribution $p_{\vartheta}(y|x)$ for random variables x and y and parameters ϑ and hidden variable A:

$$egin{aligned} p_artheta(y|x) &=& \sum_A p_artheta(y,A|x) \ &=& \sum_A p_artheta(A|x) \cdot p_artheta(y|A,x) \end{aligned}$$

examples of hidden variables:

- mixture index in Gaussian mixtures
- linear interpolation for language models
- time alignment in HMM for ASR
- word alignment in HMM and IBM-2 for SMT

training data:

$$(x_n,y_n), \hspace{1em} n=1,...,N$$

training criterion: consider the likelihood function (or its logarithm) and maximize it over the unknown parameters ϑ :

$$egin{array}{rcl} artheta &
ightarrow F(artheta) \,:=\, \log \,\prod_n \sum_A p_artheta(y_n,A|x_n) \ &=\, \sum_n \,\log \,\sum_A p_artheta(y_n,A|x_n) \end{array}$$

typical situation:

no closed-form solution

- iterative procedures using the EM algorithm

For the difference of log-likelihoods with two parameter estimates ϑ and $\hat{\vartheta}$, we have the following inequality:

$$F(\hat{artheta}) - F(artheta) \ \geq \ Q(artheta; \hat{artheta}) - Q(artheta; artheta)$$

with the definition of the $Q(\cdot; \cdot)$ function:

$$Q(artheta; \hat{artheta}) \ := \ \sum_n \sum_A \ \gamma_n(A | artheta) \ \log \ p_{\hat{artheta}}(y_n, A | x_n)$$

and the (sort of) posterior probabilities $\gamma_n(A|\vartheta)$:

$$egin{aligned} &\gamma_n(A|artheta) \ &\coloneqq \ p_artheta(A|x_n,y_n) \ &= \ rac{p_artheta(y_n,A|x_n)}{\sum\limits_{A'} p_artheta(y_n,A'|x_n)} \end{aligned}$$

proof of inequality: based on divergence inequality (see literature)

EM Algorithm

operations of EM algorithm:

$$\hat{artheta} \, := \, rgmax_{artheta} \, \Big\{ \sum_n \sum_A \, \, \gamma_n(A|artheta) \, \log \, p_{\hat{artheta}}(y_n,A|x_n) \Big\}$$

- E = expectation of $\log \, p_{\hat{artheta}}(y_n,A|x_n)$
- M = maximization of $Q(\vartheta; \hat{\vartheta})$ over $\hat{\vartheta}$ (most attractive if there is a closed-form solution!)

EM algorithm = iterative procedure:

- previous estimate: ϑ
- new estimate: $\hat{\vartheta}$ (local convergence is guaranteed)

EM algorithm: interpretation:

- ullet weighted likelihood function for the model p(y,A|x)
- weights = posterior probabilities $\gamma_n(A|\vartheta)$

Maximum Approximation

exact criterion:

$$\hat{artheta} \ = \ rg\max_{artheta} \left\{ \sum_n \ \log \ \sum_A p_artheta(y_n,A|x_n)
ight\}$$

maximum approximation (Viterbi training): replace sum by maximum:

$$\hat{artheta} \,\cong\, rg\max_{artheta} \left\{ \sum_n \,\log\, \max_A p_{artheta}(y_n,A|x_n)
ight\}$$

iterative procedure with the alternating steps:

$$egin{aligned} \hat{artheta} &:= & ... \ \hat{A}_n &:= & rg\max_A \left\{ p_{\hat{artheta}}(y_n,A|x_n)
ight\} & n=1,...,N \ \hat{artheta} &:= & rg\max_artheta \left\{ \sum_n \ \log \ p_{\hat{artheta}}(y_n,\hat{A}_n|x_n)
ight\} \ \hat{A}_n &:= & ... \end{aligned}$$

2.6 Language Model

Trigram Model (for sentence prior):

$$Pr(w_1^N) \ = \ \prod_{n=1}^N p(w_n|w_1^{n-1}) = \prod_{n=1}^N p(w_n|w_{n-2},w_{n-1})$$

Disambiguation of Homophones:

• Homophones: two, to, too

Twenty-two people are too many to be put in this room.

• Homophones: right, write, Wright

Please write to Mrs. Wright right away.

• problem: unseen events:

 $64\,000$ words: $64\,000^3 = 2^{18}\cdot 10^9$ trigrams

```
consequence: virtuall all word trigrams
have relative frequeny = 0
```

- remedy: smoothing
- leave-one-out (or cross-validation)
 - empirical Bayes estimate
 - Turing-Good estimate

Search or Decoding:

$$rg\max_{w_1^N, s_1^T} \Big\{ \prod_n p\Big(w_n | w_{n-2}, w_{n-1} ig) \cdot \prod_t \; p(s_t | s_{t-1}, w_1^N) \cdot p(x_t | s_t, w_1^N) \Big\}$$

- consequence: holistic approach
 - no segmentation
 - no local decisions
 - time alignment is part of decision process
- search strategy: dynamic programming with refinements
 - beam search and pruning
 - look-ahead estimates
 - word lattice rather than single best sentence

2.8 Adaptation

adaptive recognition:

- recognition problem may depend on varying conditions: room acoustics, speaker, microphone, ...
- Bayesian spirit:

assume adaptation parameter set α and integrate out α (with $X = x_1^T, W = w_1^N$):

$$egin{aligned} p(X|W, heta) &= \int dlpha \; p(X,lpha|W; heta) \ &= \int dlpha \; p(lpha|W, heta) \cdot p(X|W; heta,lpha) \ &\cong \; \max_lpha \left\{ p(lpha|W, heta) \cdot p(X|W; heta,lpha)
ight\} \end{aligned}$$

• Bayes decision rule:

$$rg\max_W \left\{ p(W) \cdot \max_lpha p(X, lpha | W; heta)
ight\}$$

Adaptation: Impact on Architecture

• recognition:

$$rg\max_{W} \left\{ p(W) \cdot \max_{lpha} p(X, lpha | W; heta)
ight\}$$

implementation: estimate α in a) two recognition passes b) text-independent mode

• training

with training data (X_r, W_r) for each speaker r = 1, ..., R:

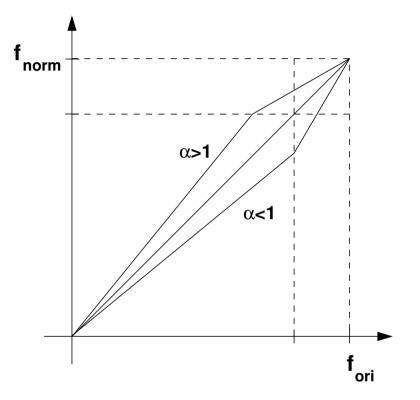
$$rg\max_{ heta} \prod_{r=1}^R \max_{lpha} \left\{ p(X_r, lpha | W_r; heta)
ight\}$$

result: more complex optimization problem

- vocal tract length:
 - depends on speaker
 - irrelevant for recognition
- approach:
 - 'linear' scaling (warping) of frequency axis
 - reference model: normalized frequency axis

Remarks:

- VTN: frequency axis normalization
- Wakita 1975-77



other types of adaptation: linear transformation: matrix

2.9 Discriminative Training

notation:

- *r*: sentence index
- X_r : sequence of feature vectors of sentence r
- W_r : spoken word sequence of sentence r,
- W: any word sequence
- class posterior probability:

$$F(heta) = \sum_r \log p_ heta(W_r|X_r) \qquad p_ heta(W_r|X_r) := rac{p(W_r)p_ heta(X_r|W)}{\sum_W p(W)p_ heta(X_r|W)}$$

/___ \

/ ____

• MCE: minimum classification error rate ('old' concept in pattern recognition):

$$F(heta) = \sum_r rac{1}{1 + igg(rac{p(W_r)p_ heta(X_r|W_r)}{\displaystyle\max_{W
eq W_r} p(W)p_ heta(X_r|W)} igg)^{2eta}}$$

(β : smoothing constant)

discriminative training: practical aspects

- initialization:
 - acoustic models trained by Max.Lik.
- implementation details:
 - word lattice (for sum in denominator)
 - unigram LM in training
 - scaling of acoustic and language models
- experimental results:
 - MCE: typically better
 - discriminative training more efficient after adaptation (SAT)

2.10 Results

effects of specific methods in RWTH system (WER [%]):

	English		Spanish	
	dev06	eval06	dev06	eval06
baseline	15.7	13.1	9.9	13.8
+ adaptation (SAT)	14.0	11.5	7.9	-
+ unsupervised data	12.9	-	-	-
+ discrim. training	12.5	-	7.3	9.6
+ adaptation (MLLR)	11.8	9.8	7.1	9.3
+ improved lexicon	11.6	9.6	7.1	9.3
+ larger LM	11.0	8.5	-	-
+ system combination	10.6	8.4	-	-

rule of thumb: reduction of WER by one third over baseline system

TC-Star Evaluation 2007: Spanish

word error rates [%]:

System	open	public	restricted
RWTH			8.9
LIMSI			9.2
IBM	9.2		9.4
IRST		9.6	9.5
LIUM			19.8
UPC			27.5
DAEDALUS		46.6	
SysComb		7.4	

No de la

R

TC-Star Evaluation 2007: English

word error rates [%]:

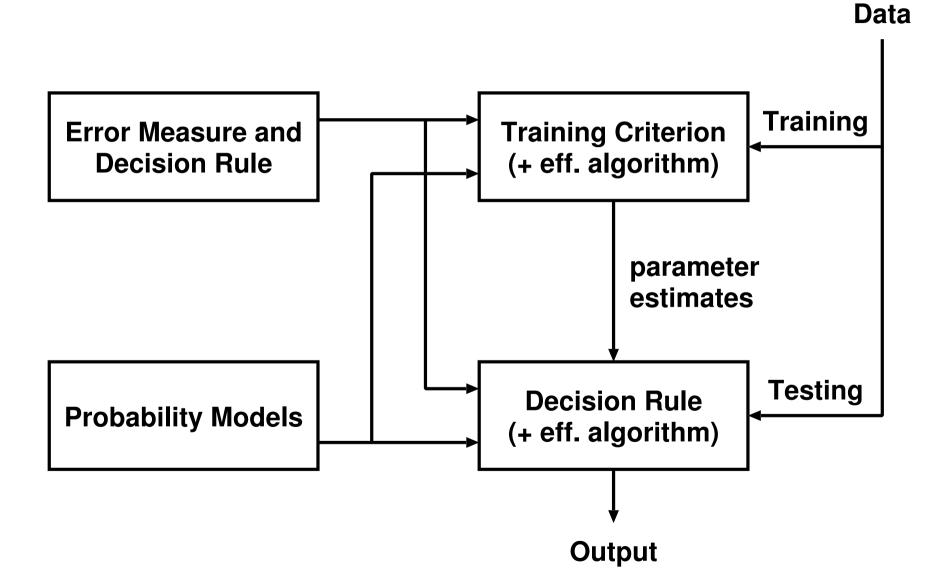
	open	public	restricted	
RWTH		9.0	9.7	
LIMSI		9.1		
IBM	7.1	9.2	9.8	
UKA		9.2		
IRST		10.2	11.3	
LIUM		22.1	22.4	
SysComb	6.9			

RX

two attractive properties:

- holistic decision criterion:
 - exploits all (available) dependencies (= knowledge sources)
 - is able to combine thousands/millions of weak dependencies
 - handles interdependences, ambiguities and conflicts
- powerful training methods:
 - training criterion is (ideally!) linked to PERFORMANCE
 - fully AUTOMATIC procedures (no human involved !)
 - HUGE amounts of data can be exploited

four key ingredients:



• error measure (= loss function) and decision rule:

$$egin{aligned} R(c|x) &:= \sum\limits_{ ilde{c}} pr(ilde{c}|x) \, L[c, ilde{c}] \ x & o \hat{c}(x) \;=\; rg\min_{c} \left\{ R(c|x)
ight\} \end{aligned}$$

with a suitable definition of $L[c, ilde{c}]$

- probability model $p_{\theta}(c|x)$ or $p_{\theta}(c) \cdot p_{\theta}(x|c)$ is used to replace pr(c|x) or $pr(c) \cdot pr(x|c)$
- training criterion (+ eff. algorithm) to learn the unknown parameters θ from training data
- decision rule (+ eff. algorithm) : search or decoding: requires optimization (sometimes hard!)

inconsistencies:

- POS tagging:
 - in practice: symbol error rate
 - in Bayes rule: 0/1 loss (= SER, sentence error)
- speech recognition:
 - in practice: edit distance (= WER, word error rate)
 - in Bayes rule: 0/1 loss (= SER, sentence error)
- machine translation:
 - in practice: BLEU or TER (= translation error rate)
 - in Bayes rule: 0/1 loss (= SER, sentence error)

attempts to go beyond 0/1 loss function: only small or negligible improvements

- discriminant functions (linear and nonlinear)
- neural networks: (virtually) any structure
- Gaussian classifier
- Gaussian mixtures
- models with hidden variables (path, alignment):
 - Hidden Markov models (HMM) in speech recognition
 - alignment models in machine translation
- maximum entropy models (log-linear, exponential, multiplicative)
- decision trees (CART)
- ...

labelled training data: $(x_r, c_r), r = 1, ..., R$

• maximum likelihood:

$$rg\max_{ heta} \left\{ \sum_{r=1}^R \log \, p_ heta(c_r)
ight\} \qquad ext{and} \qquad rg\max_{ heta} \left\{ \sum_{r=1}^R \log \, p_ heta(x_r|c_r)
ight\}$$

• posterior probability (or MMI):

$$rg\max_{ heta} \left\{ \sum_{r=1}^R \log \, p_ heta(c_r|x_r)
ight\}$$

• squared error criterion:

$$rgmin_{ heta} \left\{ \sum_{r=1}^R \sum_c \left[p_{ heta}(c|x_r) - \delta(c,c_r)
ight]^2
ight\}$$

• minimum classification error (MCE, smoothed error count)

•

- EM (expectation/maximization) algorithm: maximum likelihood for hidden-variable models (maximum approximation: Viterbi training)
- error back propagation: squared error criterion for neural networks
- GIS (general iterative scaling): posterior probability for maximum entropy (log-linear) models

• ...

specific algorithms depends on probability models:

• forward algorithm:

for HMM in speech recognition (for a single hypothesized word sequence)

- dynamic programming
 - for POS tagging and other tagging tasks:
 - for small vocabulary-speech recognition,
 - for translation using finite-state transducers
- time-synchronous beam search and A* search: for large-vocabulary speech recognition
- position-synchronous beam search and A* search: for large-vocabulary language translation

• ...

Why does a statistical decision system make errors?

To be more exact: Why errors IN ADDITION to the minimum Bayes errors?

Reasons from the viewpoint of Bayes' decision rule:

- incorrect input (or observation): only an incomplete part or a poor transformation of the true observations is used.
- incorrect modelling:
 - incorrect probability distribution
 - not enough training data
 - poor training criterion
 - convergence problems: slow or several optima
- incorrect search or generation:
 - suboptimal decision rule
 - suboptimal search procedure

open issues:

- symbol vs. string error rate: inconsistencies in Bayes decision rule: theoretical justification for negative experimental results?
- need for better features and dependencies in acoustic models:
 - \rightarrow improved robustness of ASR systems
- various aspects in discriminative training:
 - various criteria: MMI vs. sentence, word, phone error rate
 - problems with local optima
 - efficient optimization strategies
- within discriminative training: signal analysis and feature extraction

3 Discriminative Models, Log-linear Models and CRFs

43

3.1 Motivtion

- log-linear models: well known in statistics advantage: convex optimization problem in training
- recent results by Heigold et al. (RWTH Aachen) (Eurospeech'07, ICASSP'08, ICML'08, Interspeech'08): class posterior of many generative models = log-linear model or CRF
- experimental results: ongoing work

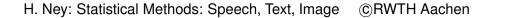
HMM in ASR:

- observations:
 - sequence of acoustic vectors x_1^T
 - sequence of words w_1^N
- hidden variables: state sequence (= alignment path) s_1^T

$$egin{aligned} p(w_1^N, x_1^T) &= p(w_1^N) \, p(w_1^N | x_1^T) \ &= p(w_1^N) \, \sum_{s_1^T} p(s_1^T | w_1^N) \, p(x_1^T | w_1^N, s_1^T) \end{aligned}$$

(assumption: first-order dependencies)

$$= \ p(w_1^N) \ \sum_{s_1^T} \prod_t p(s_t | s_{t-1}, w_1^N) \ p(x_t | s_t, w_1^N)$$



discriminative training: posterior probability of word sequence:

$$egin{aligned} p(w_1^N | x_1^T) &= \sum_{s_1^T} p(w_1^N, s_1^T | x_1^T) \ &= rac{1}{p(x_1^T)} \cdot p(w_1^N) \sum_{s_1^T} \prod_t p(s_t | s_{t-1}, w_1^N) \, p(x_t | s_t, w_1^N) \ &= rac{1}{p(x_1^T)} \cdot p(w_1^N) \sum_{s_1^T} \expig(\sum_t [\log \, p(s_t | s_{t-1}, w_1^N) + \log \, p(x_t | s_t, w_1^N)]ig) \end{aligned}$$

relation to log-linear model/CRF will be studied in 3 steps:

- frame level: Gaussian model
- sequence level:
 - without alignments
 - with alignments: maximum approximation

3.2 Frame Level

frame level: Gaussian model for $x \in {\rm I\!R^D}$ and class c:

$$egin{aligned} p_{ heta}(c|x) &= rac{1}{p(x)} \cdot p(c) \, \mathcal{N}(x|\mu_c,\Sigma_c) \ &= rac{1}{p(x)} \cdot rac{p(c)}{\sqrt{\det(2\pi\Sigma_c)}} \expigg(-rac{1}{2}(x-\mu_c)^t\Sigma_c^{-1}(x-\mu_c)igg) \ &= rac{1}{p(x)} \cdot \expigg(\log p(c) - rac{1}{2}\log\det(2\pi\Sigma_c) - rac{1}{2}\mu_c^t\Sigma_c^{-1}\mu_c + \mu_c^t\Sigma_c^{-1}x - rac{1}{2}x^t\Sigma_c^{-1}xigg) \ &= rac{1}{p(x)} \cdot \expigg(lpha_c + \lambda_c^Tx + x^T\Lambda_cxigg) \end{aligned}$$

with the (constrained) parameters:

$$heta:=\{lpha_c\in{\rm I\!R},\ \ \lambda_{
m c}\in{
m I\!R}^{
m D},\ \ \Lambda_{
m c}\in{
m I\!R}^{
m D\cdot{
m D}}\}$$

important result: log-linear model:

- (log) linear in parameters $lpha_c \in {\rm I\!R}, \lambda_{
 m c} \in {\rm I\!R}^{
 m D}, \Lambda_{
 m c} \in {\rm I\!R}^{
 m DxD}$
- (log) quadratic in observations x

posterior form of Gaussian model:

• log-linear model is invariant under additive transformations:

$$egin{array}{rcl} lpha_c &
ightarrow lpha_c + lpha_0 &\in {
m I\!R} \ \lambda_c &
ightarrow \lambda_c + \lambda_0 &\in {
m I\!R^D} \ \Lambda_c &
ightarrow \Lambda_c + \Lambda_0 &\in {
m I\!R^{DxD}} \end{array}$$

- for conversion back to Gaussian model: exploit these invariances to satisfy the constraints of Gaussian model:
 - normalization of p(c)
 - positive definite property of Σ_c
 - invertibility of $\boldsymbol{\Sigma}_c$
- note when going generative Gaussian model to its posterior form: parameters of Gaussian model are not unique anymore!

Equivalence

result: EXACT equivalence between

- posterior form of Gaussian model
- log-linear model with quadratic observations (features)

consequence: discriminative training criterion for Gaussian models defines a convex optimization problem:

$$rg\max_{ heta} \Big\{ \sum_r \log \, p_ heta(c_r|x_r) \Big\}$$

with labelled training data $(x_r,c_r), r=1,...,R$

generalization: define high-order features $y \in {\rm I\!R}^{{
m D}_y}$ for $x \in {\rm I\!R}^{{
m D}}$:

or more general feature function:

$$x=x_1^D
ightarrow y=y(x)\in{\rm I\!R}^{
m D_y}$$

log-linear model for class posterior probability:

$$egin{aligned} p(c|x) &= p(c|y) \ &= rac{\exp\left[\lambda_c^t y
ight]}{\sum\limits_{c'} \exp\left[\lambda_{c'}^t y
ight]} \end{aligned}$$

49

properties of training criterion:

- convex problem (proof: compute and consider second derivative)
- no closed form solution
- strategy: solve the optimization problem directly (not the equaton using the derivatives)
- convergence might be very slow
- parameters may not be unique, but the posterior model is!
- overfitting: (some) parameters might tend to $\pm \infty$ \rightarrow remedy: regularization

3.3 String Level without Alignments

example of string handling: POS tagging problem

- observations: sequence of (written) words: $x_1^N = x_1,...,x_n,....,x_N$
- goal: for each word position n, find the associated POS label c_n to form the tag sequence $c_1^N=c_1,...,c_n,...,c_N$

compare with notation in speech HMM: word sequence: $x_1^T :=$ sequence of acoustic observations label sequence: $s_1^T :=$ sequence of states

generative model: POS bigram model ('HMM approach'):

• generative model with the joint probability:

$$p(c_1^N, x_1^N) \;=\; \prod_n ig[p(c_n | c_{n-1}) \, p(x_n | c_n) ig]$$

with membership probability $p(x|c) = p(x_n|c_n)$ and bigram model $p(c|c') = p(c_n|c_{n-1})$

• free parameters of model: entries of tables p(x|c) and p(c|c')

consider the posterior form of this model:

$$egin{aligned} p(c_1^N | x_1^N) &= rac{p(c_1^N, x_1^N)}{\sum_{ ilde{c}_1^N} p(ilde{c}_1^N, x_1^N)} = rac{1}{p(x_1^N)} \cdot p(c_1^N, x_1^N) \ &= rac{1}{p(x_1^N)} \cdot \prod_n p(c_n | c_{n-1}) \, p(x_n | c_n) \end{aligned}$$

convert to log-linear form:

$$egin{aligned} p(c_1^N|x_1^N) &= rac{1}{p(x_1^N)} \cdot \expigg(\sum_nigl[\log p(c_n|c_{n-1}) + \log p(x_n|c_n)igr]igr) \ &= rac{1}{p(x_1^N)} \cdot \expigg(\sum_nigl[\lambda(c_n;c_{n-1}) + \lambda(x_n;c_n)igr]igr) \end{aligned}$$

which is the form of a CRF (conditional random field)

constraints: normalization requirements

- experiments: do they matter?
- theory: do they cancel?

consider modified model:

- \bullet add string end symbol \$ to tag set Σ
- normalization constraint:

$$\sum_{c\in\Sigma\cup\{\$\}}p(c|c')=1 \qquad orall c'\in\Sigma\cup\{\$\}$$

• experimental check:

no degradation in performance due to modification

mathematical analysis using matrix algebra (Heigold Interspeech'08):

posterior form of POS bigram tagging model is a log-linear model (or CRF)

more precise terminology for CRF in speech and language processing: one-dimensioal CRF with log-linear first-order dependencies

3.4 HMM: State Level with Alignments

posterior probability of word sequence:

$$p(w_1^N|x_1^T) \ = \ rac{1}{p(x_1^T)} \cdot \sum_{s_1^T} \exp \Big(\log p(w_1^N) + \sum_t [\log \ p(s_t|s_{t-1},w_1^N) + \log \ p(x_t|s_t,w_1^N)] \Big)$$

assumption: estimate state sequence by maximum approximation

joint posterior probability of word and state sequence:

$$p(w_1^N,s_1^T|x_1^T) \ = \ rac{1}{p(x_1^T)} \cdot \exp\Big(\log \, p(w_1^N) \ + \ \sum_t [\log \, p(s_t|s_{t-1},w_1^N) \ + \ \log \, p(x_t|s_t,w_1^N)]\Big)$$

which, for Gaussian emission models, will be an exact log-linear model!

summary: discriminative training of HMMs:

- conventional training criterion ('MMI')
- with known state sequence: convex problem
- maximum approximation:
 - alternating optimization between alignment and parameter learning
 - only LOCAL convergence
- attractive property:

ALL parameters of the model can be trained:

Gaussian parameter, transition probabilities, LM scale factor, ...

key problem: efficient calculation of the denominator

- even polynomial complexity might require numeric approximations
- approximations to sum: word lattice or beam search

3.5 C⁴: Correctness, Complexity, Convexity, Convergence

most important aspect: correctness of training criterion: e.g. criterion: $\log p(c|x)$ vs. $\log p(x|c)$

various level of training complexity:

- closed-form solutions: typical example: max.lik. estimation (for Gaussian, Poisson, multinomial models)
- convex, without closed-form solution:
 - typical examples: SVM and log-linear models
 - advantage: no problem with initialization
- local optimum, with guaranteed convergence:
 - typical examples: EM for Gaussian mixtures and HMM, K-Means with splitting, Hidden-GIS algorithm [Heigold ICASSP 08]
 - advantage: no problems with step size
- local optimum with explicit gradient
 - convergence must be controlled via step-size

4 Statistical MT

4.1 History

use of statistics has been controversial in NLP (NLP := natural language processing):

• Chomsky 1969:

... the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term.

was considered to be true by most experts in NLP and AI

1988: IBM starts building a statistical system for MT (= machine translation) (in opposition to linguistics and artificial intelligence)

short (and simplified) history:

- 1949 Shannon/Weaver: statistical (=information theoretic) approach
- 1950–1970 empirical/statistical approaches to NLP ('empiricism')
- 1969 Chomsky: ban on statistics in NLP
- 1970–? hype of AI and rule-based approaches; BUT: statistical methods for speech recognition
- 1988–1995 statistical translation at IBM Research:
 - corpus: Canadian Hansards: English/French parliamentary debates
 - DARPA evaluation in 1994: comparable to 'conventional' approaches (Systran)
- 1992 workshop TMI: *Empiricist vs. Rationalist Methods in MT* controversial panel discussion

limited domain (data collected in lab):

- speech translation: travelling, appointment scheduling,...
- projects:
 - C-Star consortium
 - Verbmobil (German)
 - EU projects: Eutrans, PF-Star

'unlimited' domain (real-life data):

- US DARPA TIDES 2001-04: written text (newswire): Arabic/Chinese to English
- EU TC-Star 2004-07: speech-to-speech translation
- US DARPA GALE 2005-2010:
 - Arabic/Chinese to English
 - speech and text
 - ASR, MT and information extraction

automatic speech recognition (ASR): key ideas:

- Bayes decision rule:
 - minimizes the decision errors
 - defines the probabilistic framework
- probabilistic structures
 - problem-specific models (in lieu of 'big tables')
 - strings: hidden variables (alignments) and HMM structures
 - in addition: LDA (acoustic context), phonetic decison trees (CART), speaker adaptation, ...

- learning from examples:
 - statistical estimation and machine learning
 - smoothing and unseen events (e.g. trigram language model)
 - suitable training criteria (Max.Lik, MMI, MCE, ...)
- search (= max operation in Bayes decision rule):
 - advantage: consistent and holistic criterion
 - avoid local decisions (interaction between 10-ms level and sentence level; no distinction between statistical PR and syntactical/structural PR)
 - cost: complexity of search
 - experiments: dynamic programming beam search

Analogy: ASR and Statistical MT

Klatt in 1980 about the principles of DRAGON and HARPY (1976); p. 261/2 in 'Lea, W. (1980): Trends in Speech Recognition':

"...the application of simple structured models to speech recognition. It might seem to someone versed in the intricacies of phonology and the acoustic-phonetic characteristics of speech that a search of a graph of expected acoustic segments is a naive and foolish technique to use to decode a sentence. In fact such a graph and search strategy (and probably a number of other simple models) can be constructed and made to work very well indeed if the proper acoustic-phonetic details are embodied in the structure".

my adaption to statistical MT (Ney 2008):

"...the application of simple structured models to machine translation. It might seem to someone versed in the intricacies of morphology and the syntactic-semantic characteristics of language that a search of a graph of expected sentence fragments is a naive and foolish technique to use to translate a sentence. In fact such a graph and search strategy (and probably a number of other simple models) can be constructed and made to work very well indeed if the proper syntactic-semantic details are embodied in the structure".

four key components in building today's MT systems:

• training:

word alignment and probabilistic lexicon of (source, target) word pairs

- phrase extraction: find (source,target) fragments (='phrases') in bilingual training corpus
- log-linear model: combine various types of dependencies between *F* and *E*
- generation (search, decoding): generate most likely (='plausible') target sentence

ASR: some similar components (not all!)

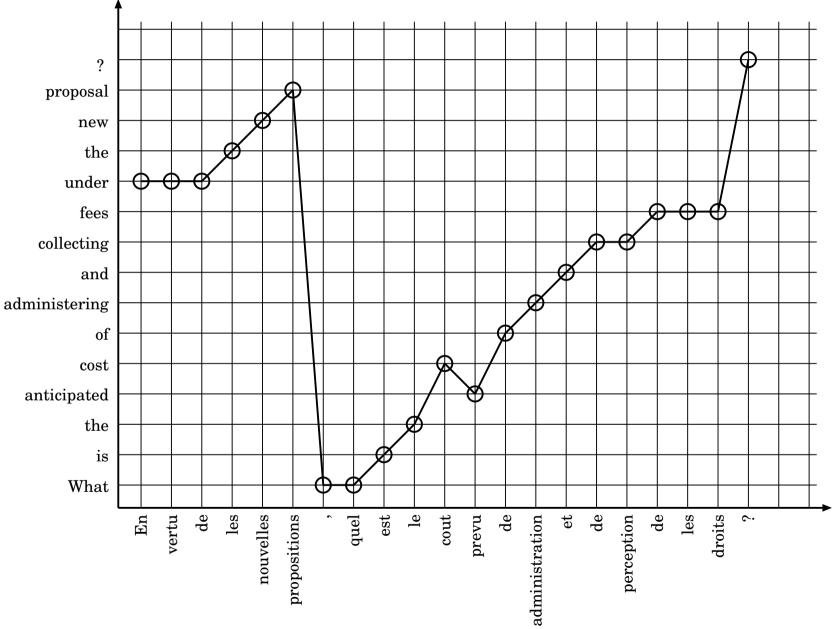
4.2 Training

starting point: probabilistic models in Bayes decision rule:

$$F
ightarrow \hat{E}(F) \; = \; rg\max_{E} \left\{ p(E|F)
ight\} \; = \; rg\max_{E} \left\{ p(E) \cdot p(F|E)
ight\}$$

- distributions p(E) and p(F|E):
 - are unknown and must be learned
 - complex: distribution over strings of symbols
 - using them directly is not possible (sparse data problem)!
- therefore: introduce (simple) structures by decomposition into smaller 'units'
 - that are easier to learn
 - and hopefully capture some true dependencies in the data
- example: ALIGNMENTS of words and positions: bilingual correspondences between words (rather than sentences) (counteracts sparse data and supports generalization capabilities)

Example of Alignment (Canadian Hansards)



speech recognition	text translation
$Pr(x_1^T T,w) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $	$Pr(f_1^J J, e_1^I) = \sum \prod \left[m(g_1 g_2, \dots, I) m(f_1 g_2) ight]$
$\sum\limits_{s_1^T} \prod\limits_t \; [p(s_t s_{t-1},S_w,w) \; p(x_t s_t,w)]$	$\sum\limits_{a_1^J}\prod\limits_j \ [p(a_j a_{j-1},I) \ p(f_j e_{a_j})]$
time $t = 1,, T$	source positions $j = 1,, J$
observations x_1^T	observations f_1^J
with acoustic vectors x_t	with source words f_j
states $s = 1,, S_w$	target positions $i=1,,I$
of word w	with target words e_1^I
path: $t \rightarrow s = s_t$	alignment: $j \rightarrow i = a_j$
always: monotonic	partially monotonic
transition prob. $p(s_t s_{t-1}, S_w, w)$ emission prob. $p(x_t s_t, w)$	alignment prob. $p(a_j a_{j-1},I)$ lexicon prob. $p(f_j e_{a_j})$

RWTH

HMM: first-order dependence in alignments:

$$egin{aligned} p(f_1^J,a_1^J|J,e_1^I) &=& \prod_j p(a_j|a_{j-1},J,I) p(f_j|e_{a_j}) \ && p(f_1^J|J,e_1^I) &=& \sum_{a_1^J} p(f_1^J,a_1^J|J,e_1^I) \end{aligned}$$

IBM models 1–5 introduced in 1993:

- IBM-1: = IBM-2 with uniform alignment probabilities
- IBM-2: zero-order dependence in alignments

$$egin{aligned} p(f_1^J, a_1^J | J, e_1^I) &= & \prod_j p(a_j | j, J, I) p(f_j | e_{a_j}) \ & p(f_1^J | J, e_1^I) &= & \sum_{a_1^J} p(f_1^J, a_1^J | J, e_1^I) = ... = \prod_j \sum_i p(i | j, J, I) p(f_j | e_i) \end{aligned}$$

- IBM-3: = IBM-2 using inverted alignments $i \rightarrow j = b_i$ with fertility concept
- IBM-4: inverted alignment with first-order dependency and dependence of relative distance j j' and word classes
- IBM-5: = IBM-4 with proper normalization

standard procedure:

- sequence of IBM-1,...,IBM-5 and HMM models: (conferences before 2000; Comp.Ling.2003+2004)
- EM algorithm (and its approximations)
- implementation in public software (GIZA++)

remarks on training:

- based on single word lexica p(f|e) and p(e|f); no context dependency
- simplifications: only IBM-1 and HMM

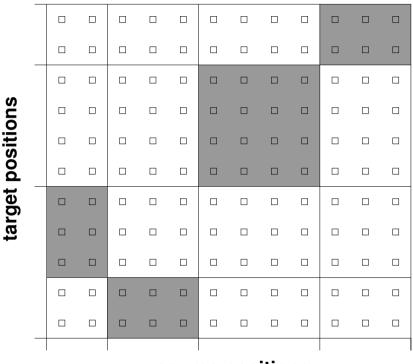
alternative concept for alignment (and generation): ITG approach [Wu ACL 1995/6]

4.3 Phrase Extraction

segmentation into two-dim. 'blocks'

blocks have to be "consistent" with the word alignment:

- words within the phrase cannot be aligned to words outside the phrase
- unaligned words are attached to adjacent phrases

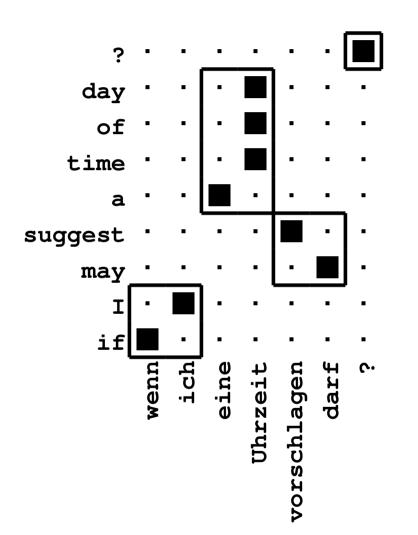


source positions

purpose: decomposition of a sentence pair (F, E)into phrase pairs $(\tilde{f}_k, \tilde{e}_k), k = 1, ..., K$:

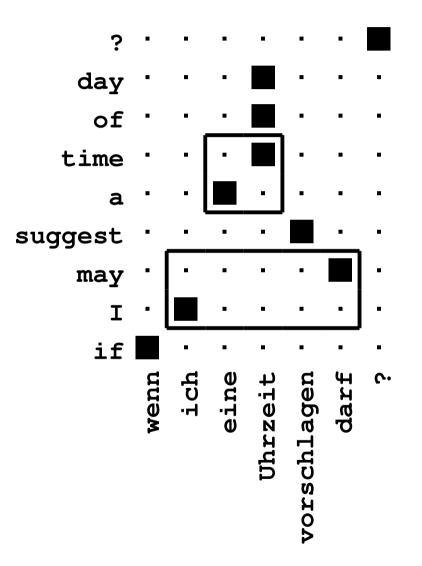
$$p(E|F) \;=\; p(ilde{e}_{1}^{K}| ilde{f}_{1}^{K}) \;=\; \prod_{k} p(ilde{e}_{k}| ilde{f}_{k})$$

(after suitable re-ordering at phrase level)



possible phrase pairs:

impossible phrase pairs:



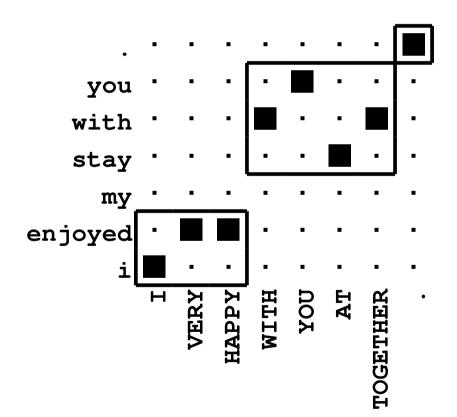
Example: Alignments for Phrase Extraction

source sentence 我很高兴和你在一起.

gloss notation I VERY HAPPY WITH YOU AT TOGETHER.

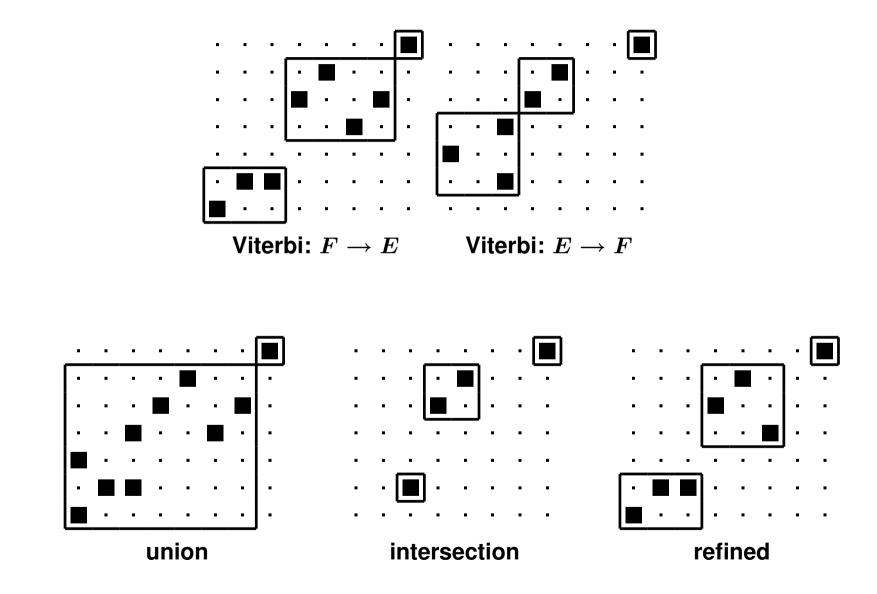
target sentence I enjoyed my stay with you .

Viterbi alignment for $F \rightarrow E$:



71

Example: Alignments for Phrase Extraction



most alignment models are asymmetric:

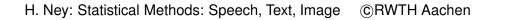
 $F \rightarrow E$ and $E \rightarrow F$ will give different results

in practice: combine both directions using heuristics

- intersection: only use alignments where both directions agree
- *union*: use all alignments from both directions
- *refined*: start from *intersection* and include adjacent alignments from each direction

effect on number of extracted phrases and on translation quality (IWSLT 2005)

heuristic	# phrases	BLEU[%]	TER[%]	WER[%]	PER[%]
union	489 035	49.5	36.4	38.9	29.2
refined	1 055 455	54.1	34.9	36.8	28.9
intersection	3 582 891	56.0	34.3	35.7	29.2



4.4 Phrase Models and Log-Linear Scoring

combination of various types of dependencies using log-linear framework (maximum entropy):

$$p(E|F) \ = \ rac{\expig[\sum_m \lambda_m h_m(E,F)ig]}{\sum_{ ilde{E}} \expig[\sum_m \lambda_m h_m(ilde{E},F)ig]}$$

with 'models' (feature functions) $h_m(E,F), m=1,...,M$

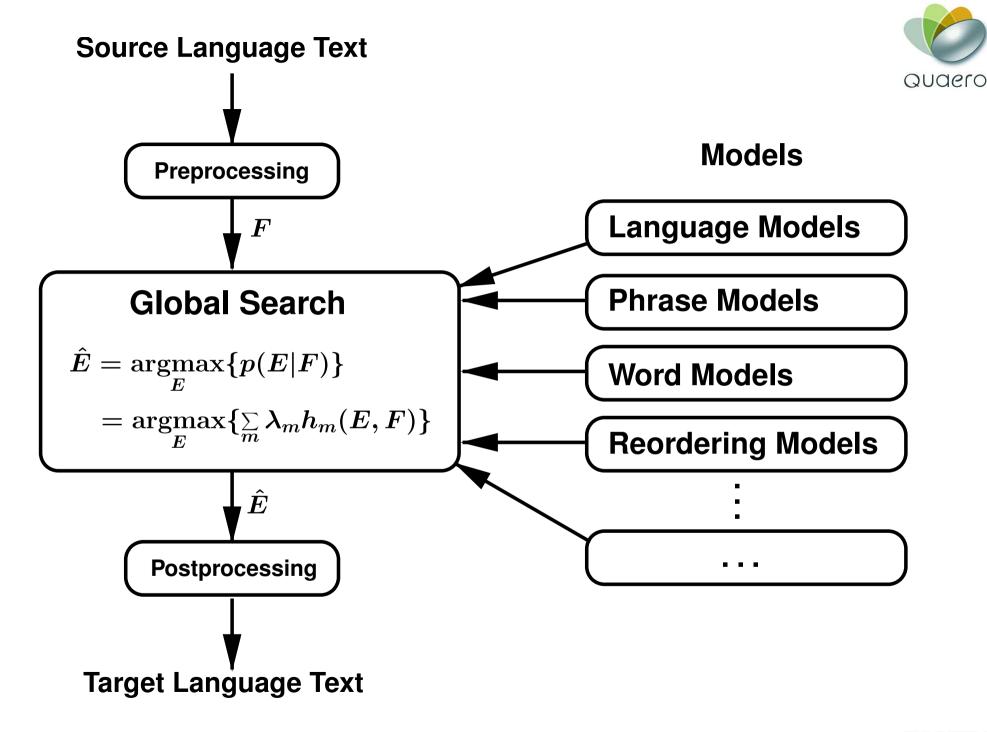
Bayes decision rule:

$$egin{aligned} F & o \ \hat{E}(F) \ = \ rgmax_E \left\{ p(E|F)
ight\} \ = \ rgmax_E \left\{ \exp \left[\sum_m \lambda_m h_m(E,F)
ight]
ight\} \ \ = \ rgmax_E \left\{ \sum_m \lambda_m h_m(E,F)
ight\} \end{aligned}$$

consequence:

- do not worry about normalization

- include additional 'feature functions' by checking BLEU ('trial and error')



Phrase Model Scoring

most models $h_m(E,F)$ are based on segmentation into two-dim. 'blocks' k := 1,...,K

five baseline models:

- phrase lexicon in both directions:
 - $p(ilde{f}_k| ilde{e}_k)$ and $p(ilde{e}_k| ilde{f}_k)$
 - estimation: relative frequencies
- single-word lexicon in both directions:
 - $p(f_j| ilde{e}_k)$ and $p(e_i| ilde{f}_k)$
 - model: IBM-1 across phrase
 - estimation: relative frequencies
- monolingual (fourgram) LM

suc						
position						
öd						
target						
tar						

source positions

7 free parameters: 5 exponents + phrase/word penalty

history:

- Och et al.; EMNLP 1999:
 - alignment templates ('with alignment information')
 - and comparison with single-word based approach
- Zens et al., 2002: German Conference on Al, Springer 2002; phrase models used by many groups (Och → ISI, Google, ...)

later extensions, mainly for rescoring N-best lists:

- phrase count model
- IBM-1 $p(f_j|e_1^I)$
- deletion model
- word n-gram posteriors
- sentence length posterior

		BLEU[%]	
Search	Model	Dev	Test
monotonic	4-gram LM + phrase model $p(ilde{f} ilde{e})$	31.9	29.5
	+ word penalty	32.0	30.7
	+ inverse phrase model $p(ilde{e} ilde{f})$	33.4	31.4
	+ phrase penalty	34.0	31.6
	+ inverse word model $p(e ilde{f})$ (noisy-or)	35.4	33.8
non-monotonic	+ distance-based reordering	37.6	35.6
	+ phrase orientation model	38.8	37.3
	+ 6-gram LM (instead of 4-gram)	39.2	37.8

Dev: NIST'02 eval set; Test: combined NIST'03-NIST'05 eval sets

soft constraints ('scores'):

- distance-based reordering model
- phrase orientation model

hard constraints (to reduce search complexity):

- level of source words:
 - local re-ordering
 - IBM (forward) constraints
 - IBM backward constraints
- level of source phrases:
 - IBM constraints (e.g. #skip=2)
 - side track: ITG constraints

Re-ordering Constraints

dependence on specific language pairs:

- German English
- Spanish English
- French English
- Japanese English
- Chinese English
- Arabic English

4.5 Generation

constraints: no empty phrases, no gaps and no overlaps

operations with interdependencies:

- find segment boundaries
- allow re-ordering in target language
- find most 'plausible' sentence

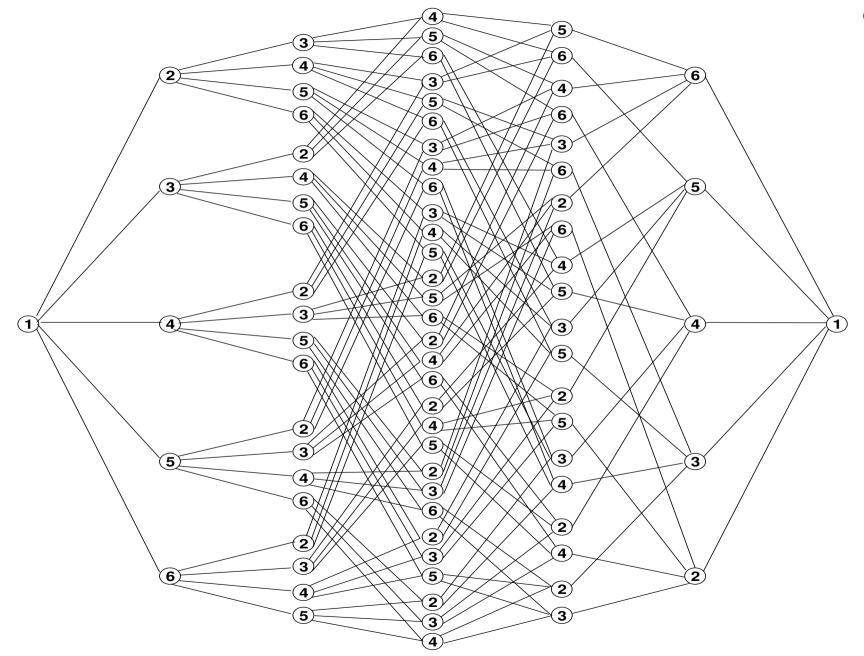
similar to: memory-based and example-based translation

				-							
			-		•						
]										
suc										•	
positions]	•									
öd]	•									
target	•										
tar]										
							-				
									•		
						-					
				-				11.			

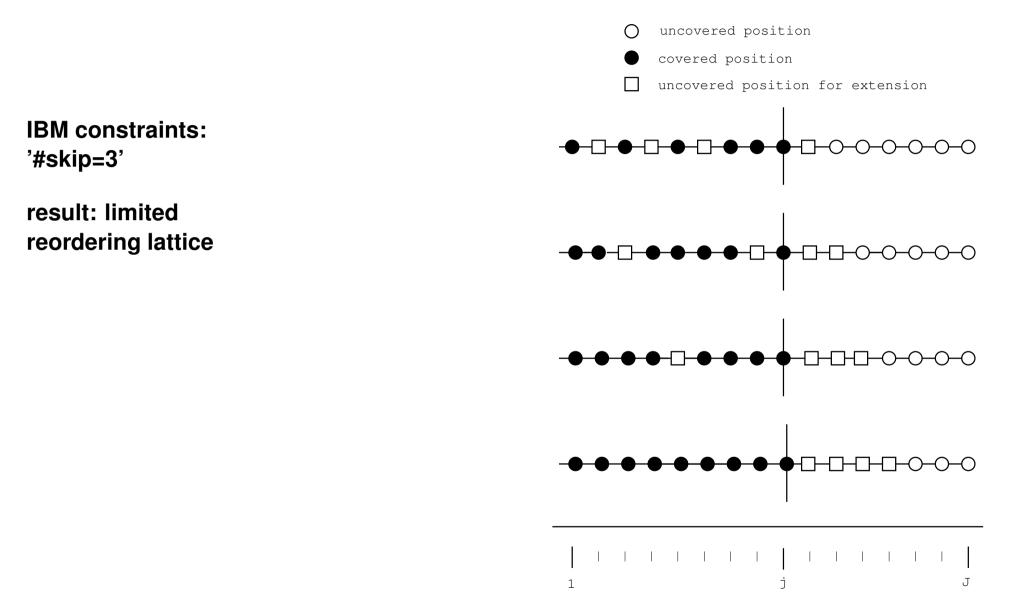
source positions

search strategies: (Tillmann et al.: Coling 2000, Comp.Ling. 2003; Ueffing et al. EMNLP 2002)

Travelling Salesman Problem: Redraw Network (J=6)



Reordering: IBM Constraints



DP-based Algorithm for Statistical MT

extensions:

- phrases rather than words
- rest cost estimate for uncovered positions

in	put:	source language string $f_1f_jf_J$
fo	or ea	ch cardinality $c=1,2,,J$ do
	for	each set $C \subset \{1,,J\}$ of covered positions with $ C = c$ do
	f	or each target suffix string $ ilde{e}$ do
		– evaluate score $Q(C, \tilde{e}) :=$
		– apply beam pruning
tra	acek	back:
	– re	ecover optimal word sequence

dynamic programming beam search:

- build up hypotheses of increasing cardinality: each hypothesis (C, \tilde{e}) has two parts: coverage hyp. (C) + lexical hyp. (\tilde{e})
- consider and prune competing hypotheses:
 - with the same coverage vector
 - with the same cardinality

4.6 Summary

today's statistical MT:

- word alignment (IBM,HMM): learning from bilingual data
- from words to phrases: phrase extraction, scoring models and generation (search) algorithms
- experience with various tasks and 'distant' language pairs: better than rule-based approaches
- text + speech

room for improvements:

- training of phrase models: right now: more extraction than training
- improved alignment and lexicon models: more complex models in lieu of p(e|f)
- phrase and word re-ordering:
 - long-distance dependencies
 - hierarchical ('gappy') phrases [Chiang 2005]
 - syntax [Marcu et al. 2006]

5 Image Recognition

interest: strictly appearance-based approach:

- appearance based concept, i.e. no explicit extraction of features
- avoid segmentation: interdependence between object recognition and boundary detection
- matching: each pixel of the test image must be matched against a pixel in the reference image
- pixel representation: grey level + neigbourhood ('derivatives')

contrast: more conventional approach:

- decomposition of image into patches and extraction of features and descriptors (SIFT)
- classifier: Gaussian mixture

competitive results on CalTech database and in PASCAL evaluations; papers by Deselaers et al.

ingredients of appearance-based approach:

- observations: Gaussian distribution for pixel vectors
- matching: alignment model:

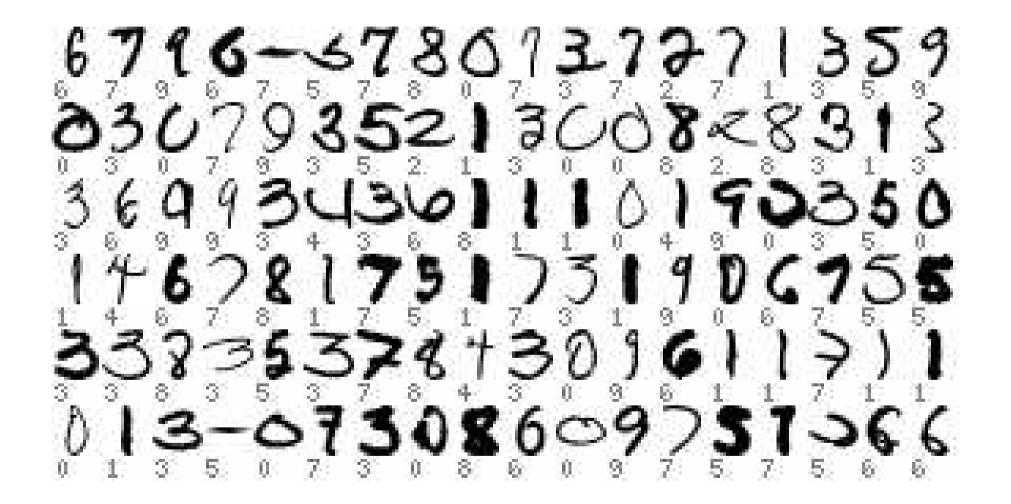
$$t=(i,j)
ightarrow s_t=(u,v)_{ij}$$

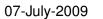
position: vertical and horizontal coordinates

- problem: first-order dependencies require Markov random field (MRF)
 - \rightarrow exponential complexity for sum in denominator

possible approximations:

- convert the problem into a 1-D problem:
 - approprate for continuous cursive handwriting
 - similar to ASR approach in virtually all details
 - competitive results on Arabic and English tasks [ICDAR 2009, Dreuw et al.]
- zero-order model for alignments: $p(s_t|t,c)$ in lieu of $p(s_t|s_{t-1},c)$
 - appropriate for digits: USPS (16^2 pixels) and MNIST (26^2 pixels) database
 - advantage: polynomial complexity for sum in denominator





RNTH

method for handwritten digits (USPS and MNIST):

- appearance based concept, i.e. no explicit extraction of features
- pixel: grey level, various derivatives
- zero-order alignment model ('IDM: image distortion model')
- Gaussian model with discriminative training: log-linear model

extensions towards face recognition

experimental results:

- distortion model is important
- competitve results with comparatively small models

	MNIS	USPS			
Model	# param.	ER	# param.	ER	
NN	47,040,000	3.1%	1,866,496	5.6%	
$NN + IDM^{(1)}$	47,040,000	0.6%	1,866,496	2.4%	
single Gaussians	7,840	18.0%	2,560	18.5%	
single Gaussians + $IDM^{(1)}$	7,840	5.8%	2,560	6.5%	
SVM	?	1.5%	532,000	4.4%	
SVM + IDM $^{(1)}$	-	-	532,000	2.8%	
log-linear model:					
grey values (no IDM)	7,850	7.4%	2,570	8.5%	
{derivatives} + IDM	227,370	1.3%	69,130	3.5%	
{derivatives} + IDM + tying	31,390	1.3%	5,220	3.8%	
deep belief network	1,665,010	1.3%	640,610	-	
conv. network	2,406,325	0.4%	-	-	

(1) additional features in distance computation

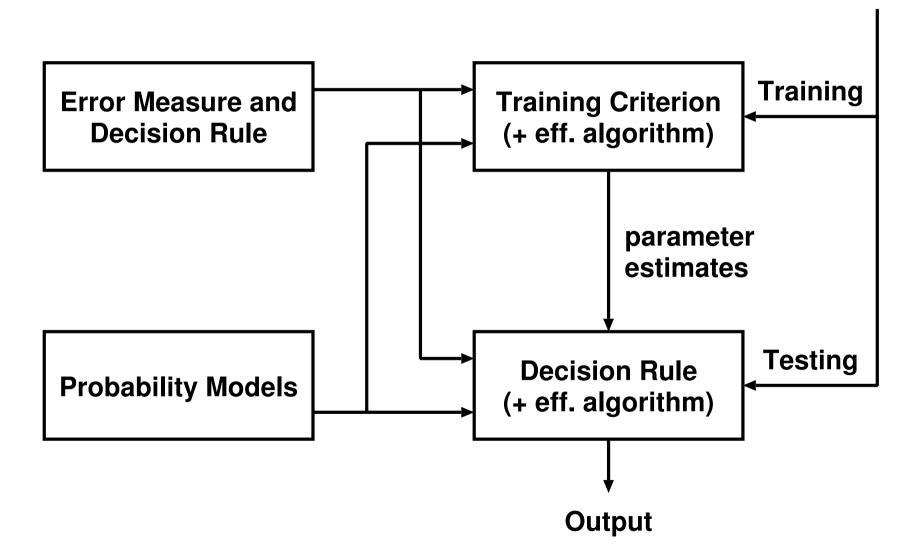
RNTH

open questions:

- MRF: suitable approximations ('belief propagation') (for either sum or maximum)
- feature extraction: result of discriminative training
- more challenging tasks and more powerful algorithms for matching

6 Conclusion

Data



four key ingredients for ASR, MT and image recognition:

THE END

