Speech Recognition and Machine Translation: A Comparative Overview

Xiaodong He

Natural Language Processing group, Microsoft Research Redmond, WA, USA

BIRS Multimedia, Mathematics and Machine Learning workshop II

Outline

- Introduction of ASR and SMT
- HMM: ASR vs. MT
- System Combination
- Summary

ASR & MT: Sequential PR Problems

Sequential Pattern Recognition:

Input signal: a sequence of input samples Output result:

a sequence of output symbols

Simple Illustration of ASR and SMT

ASR	Speech signal		
	Feature seq. (via feature extraction)		
	phonemes	h au	ar ju
	compose phones to word		
	Transcript	how	are you
SMT	Source lang. sentence	你过得怎样	?
	Lexical translation	$\downarrow \downarrow \downarrow \downarrow$	ţ
	Target lang. words	you are how	?
	Word reordering		ţ
	Translation	how are you	?

4

HMM for Sequential PR Problem

States of HMM Λ

Observation sample seq. Y

 $\mathsf{P}(\mathsf{Y}, q | \Lambda) = \Pi_t \{ \mathsf{a}_{at-1, at} \mathsf{b}_{at}(\mathsf{y}_t) \}$

- Training Problem: $\Lambda^* = \operatorname{argmax}_{\Lambda} \{ P(Y | \Lambda) \}$
- Evaluation Problem: $P(Y | \Lambda) = \Sigma_q \{P(Y,q | \Lambda)\}$
- Decoding Problem: $q^* = \operatorname{argmax}_{q} \{ P(Y,q \mid \Lambda) \}$

[EM] [Forward/Backward] [Viterbi]

HMM for ASR and MT: Alignment

- Align the input sample seq. to the reference symbol seq.
- HMM is used. each symbol in the reference is treated as a HMM state.
- ASR vs. MT:
 - ASR: Input speech samples and HMM states are in *monotonic* order.
 - SMT: Input source words and HMM states are in nonmonotonic order.
- Viterbi decoding works for both ASR and MT (in polynomial time).

 $a^* = vou$

are

how

?

HMM for ASR and MT: Decoding

- Search for the optimal output symbol sequence given the input.
- HMM is used. Each symbol in the vocabulary is treated as a HMM state.
- ASR vs. MT:
 - ASR: Input speech and HMM states are non-monotonic (since need to explore all possible phone seq). But input is still monotonic to output.

Viterbi works. (but harder)

• *SMT*: The order of the output words can not be determined even if we find the best state sequence.

Viterbi doesn't work.

7

Extended HMM State

- To make the comparison clearer, we extend the previous HMM. I.e., each state is not only word/phone dependent, but also position dependent.
 - i.e., each state is a <phone, pos> or <word, pos> pair for ASR and MT, respectively.
 - pos is the position of the phone/word in the output phone/word sequence
 - Then, the state sequence determines both the output phones/words and their ordering.

ASR after State Extension

- After state extension, decoding of ASR becomes *monotonic*.
- Position constraint: each position should be taken by one and only one phone.
 - This is out of the capability of a general HMM (bc. short memory).
 - But we can design the topology of the HMM such that
 - backward jump is not allowed
 - position skipping is not allowed
- Viterbi still works.
 - Given this topology, any valid state sequence meets the position constraint.

MT after State Extension

- After state extension, decoding of MT is non-monotonic.
- Note, now both the output words and their order can be determined if we can find the optimal state sequence.
- But not easy: *Position constraint*.
 - Unfortunately, no workaround as the ASR case.
 Viterbi doesn't work.
- The decoding problem is NP-complete since it needs to remember the past state history. (Traveling Sales Man problem.)

Highlights

- Word ordering is a major challenge distinguishing MT from ASR.
 - For training, since both input and output are known, don't need to "decide" the order of the output.
 - So HMM/Viterbi work for both ASR and MT
 - Still, MT is harder due to non-monotonic order
 - For decoding, HMM/Viterbi doesn't work for MT due to the non-monotonic-order problem.
 - It is more clear if we cast both ASR and MT into HMM with state extension:
 - MT decoding is a NP problem
 - ASR, instead, can survive after applying some tricks

System Combination for ASR

- ROVER (Fiscus, 97)
 - Recognizer Output Voting Error Reduction
 - Other works (Byrne et al.)
 - 10% to 20% error rate reduction.
- Averaging gives a result better than the best.

N-best from ASR systems E_1 : how you E_2 : how and you E_3 : who are you E_4 : how are oil

Theory Behind: MBR

Given the observation F and a hypothesis E', Bayes-risk of classifying F to E'

$$\bigcirc R(E') = \sum_{E \in \mathbf{E}_e} P(E \mid F) L(E', E)$$

MBR classification

$$E^* = \underset{E' \in \mathbf{E}_h}{\operatorname{arg\,min}} \sum_{E \in \mathbf{E}_e} P(E \mid F) L(E', E)$$

 \bigcirc *P*(*E* | *F*): posterior probability

 \bigcirc *L*(*E'*, *E*): loss function, application specific

- \bigcirc **E**_{*h*} : hypothesis space, for selecting classification candidate
- \bigcirc **E**_{*e*} : evidence space, for computing Bayes-risk

Segmental - MBR

The global risk can be decomposed

$$R(E') = \sum_{E \in \mathbf{E}_{e}} P(E \mid F) L(E', E)$$

$$= \sum_{E \in \mathbf{E}_{e}} P(E \mid F) \sum_{l=1}^{L} L(e'_{l}, e_{l})$$

$$= \sum_{l=1}^{L} \sum_{e_{l} \in \mathbf{e}_{l}} L(e'_{l}, e_{l}) \sum_{\substack{E:E \in \mathbf{E}_{e} \\ \& e_{l} \in E}} P(E \mid F)$$

$$\underbrace{\sum_{l=1}^{L} \sum_{e_{l} \in \mathbf{e}_{l}} L(e'_{l}, e_{l}) \sum_{\substack{E:E \in \mathbf{E}_{e} \\ \& e_{l} \in E}} P(E \mid F)}_{\text{local posterior: } P(e_{l} \mid F)}$$

Minimizing global risk can be done by minimizing local risks

System Combination for SMT

N-best from MT systems

 E_l : he have good car

 E_2 : he has nice sedan

 E_3 : it a nice car

 E_4 : a sedan he has

Similar to ROVER of ASR.

But alignment is challenging

- Non-monotonic word ordering
- Synonyms / Semantic similarity measurement

1) Hypothesis alignment E_B : he have ε good car E_4 : a ε sedan he has

Previous works: Matusov et al, Sim et al, Rosti et al., He et al.

HMM based Hypothesis Alignment

Results on 2008 NIST Open MT Eval

The MSR-NRC-SRI entry for Chinese-to-English

Problems of ROVER

 Alignment, word ordering and lexical choice are decided independently.

Lots of heuristics and local decisions

MT system hypotheses w/ pair-wise alignments.

she	bought	the	Jeep	3
she	buys	the	SUV	3
she	bought	the	SUV	Jeep

Conventional Confusion Network

Beyond ROVER: Direct Decoding

A joint optimization framework via a max entropy model:

$$w^* = \operatorname*{argmax}_{w \in \boldsymbol{W}, \boldsymbol{O} \in \boldsymbol{O}, \boldsymbol{C} \in \boldsymbol{C}} exp\left\{ \sum_{i=1}^{F} \alpha_i \cdot f_i(w, \boldsymbol{O}, \boldsymbol{C}, \boldsymbol{H}) \right\}$$

Features

 Word posterior, bi-gram posterior, order distortion to input hyp, alignment score, word count, LM, alignment entropy

Search Space

A product of the alignment, ordering, and lexical selection spaces.

Decoding Algorithm

Beam search

(He and Toutanova, EMNLP09)

Decoding Algorithm

- A finite state machine
- Each state records:
 - Decoding cost, back-trace history, output words
- State expansion
- Beam pruning

Experimental Results

Database: 2008 NIST MT Open Eval Chinese-to-English track

- Single systems: the top five C2E entries of NIST MT08
- Training and testing data: divide the data into dev set and test set.

Evaluation metric: ci BLEU

System ID	dev	test
System A	32.88	31.81
System B	32.82	32.03
System C	32.16	31.87
System D	31.40	31.32
System E	27.44	27.67
IHMM baseline	36.91	35.85
Incremental HMM	37.32	36.38
Direct Decoding	37.94	37.20

Summary

- Both ASR and MT are sequential pattern recognition problem.
- Techniques in ASR and MT can be cross-fertilized.
- However, the difference between ASR and MT raises special challenges (or opportunities)
 - Word ordering
 - Semantic features
 - Context dependency

Two online machine translation services:

Microsoft MT http://www.microsofttranslator.com/

Google MT http://translate.google.com/