Thermoacoustic tomography, variable sound speed

Plamen Stefanov
Purdue University

Based on a joint work with Gunther Uhlmann

Thermoacoustic Tomography

In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient's body. The tissue reacts and emits an ultrasound wave form any point, that is measured away from the body. Then one tries to reconstruct the internal structure of a patient's body form those measurements.

Thermoacoustic Tomography

In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient's body. The tissue reacts and emits an ultrasound wave form any point, that is measured away from the body. Then one tries to reconstruct the internal structure of a patient's body form those measurements.

The Mathematical Model

$$
P=c^{2} \frac{1}{\sqrt{\operatorname{det} g}}\left(\frac{1}{\mathrm{i}} \frac{\partial}{\partial x^{i}}+a_{i}\right) g^{i j} \sqrt{\operatorname{det} g}\left(\frac{1}{\mathrm{i}} \frac{\partial}{\partial x^{j}}+a_{j}\right)+q .
$$

Let u solve the problem

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+P\right) u & =0 \tag{1}\\
\left.u\right|_{t=0} & =f \\
\left.\partial_{t} u\right|_{t=0} & =0
\end{align*}\right.
$$

where $T>0$ is fixed.
Assume that f is supported in $\bar{\Omega}$, where $\Omega \subset \mathbf{R}^{n}$ is some smooth bounded domain. The measurements are modeled by the operator

$$
\Lambda f:=\left.u\right|_{[0, T] \times \partial \Omega} .
$$

The problem is to reconstruct the unknown f.

If $T=\infty$, we can just solve a Cauchy problem backwards with zero initial data.

If $T=\infty$, we can just solve a Cauchy problem backwards with zero initial data. One of the most common methods when $T<\infty$ is to do the same (time reversal).

Then we define the following

If $T=\infty$, we can just solve a Cauchy problem backwards with zero initial data.
One of the most common methods when $T<\infty$ is to do the same (time reversal). Solve

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+P\right) v_{0} & =0 \quad \text { in }(0, T) \times \Omega, \tag{2}\\
v_{0} \mid[0, T] \times \partial \Omega & =h, \\
\left.v_{0}\right|_{t=T} & =0, \\
\left.\partial_{t} v_{0}\right|_{t=T} & =0
\end{align*}\right.
$$

Then we define the following
"Approximate Inverse"

If $T=\infty$, we can just solve a Cauchy problem backwards with zero initial data.
One of the most common methods when $T<\infty$ is to do the same (time reversal). Solve

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+P\right) v_{0} & =0 \tag{2}\\
\left.v_{0}\right|_{[0, T] \times \partial \Omega} & =h \\
\left.v_{0}\right|_{t=T} & =0 \\
\left.\partial_{t} v_{0}\right|_{t=T} & =0
\end{align*}\right.
$$

Then we define the following

"Approximate Inverse"

$$
A_{0} h:=v_{0}(0, \cdot) \quad \text { in } \bar{\Omega}
$$

If $T=\infty$, we can just solve a Cauchy problem backwards with zero initial data.
One of the most common methods when $T<\infty$ is to do the same (time reversal). Solve

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+P\right) v_{0} & =0 \tag{2}\\
\left.v_{0}\right|_{[0, T] \times \partial \Omega} & =h \\
\left.v_{0}\right|_{t=T} & =0 \\
\left.\partial_{t} v_{0}\right|_{t=T} & =0
\end{align*}\right.
$$

Then we define the following

"Approximate Inverse"

$$
A_{0} h:=v_{0}(0, \cdot) \quad \text { in } \bar{\Omega} .
$$

Most (but not all) works are in the case of constant coefficients, i.e., when $P=-\Delta$. If n is odd, and $T>\operatorname{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

If $T=\infty$, we can just solve a Cauchy problem backwards with zero initial data.
One of the most common methods when $T<\infty$ is to do the same (time reversal). Solve

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+P\right) v_{0} & =0 \tag{2}\\
\left.v_{0}\right|_{[0, T] \times \partial \Omega} & =h \\
\left.v_{0}\right|_{t=T} & =0 \\
\left.\partial_{t} v_{0}\right|_{t=T} & =0
\end{align*}\right.
$$

Then we define the following

"Approximate Inverse"

$$
A_{0} h:=v_{0}(0, \cdot) \quad \text { in } \bar{\Omega}
$$

Most (but not all) works are in the case of constant coefficients, i.e., when $P=-\Delta$. If n is odd, and $T>\operatorname{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

In that case, this is actually an integral geometry problem because of Kirchoff's formula - recovery of f from integrals over spheres centered at $\partial \Omega$.

If $T=\infty$, we can just solve a Cauchy problem backwards with zero initial data.
One of the most common methods when $T<\infty$ is to do the same (time reversal). Solve

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+P\right) v_{0} & =0 \tag{2}\\
\left.v_{0}\right|_{[0, T] \times \partial \Omega} & =h \\
\left.v_{0}\right|_{t=T} & =0 \\
\left.\partial_{t} v_{0}\right|_{t=T} & =0
\end{align*}\right.
$$

Then we define the following

"Approximate Inverse"

$$
A_{0} h:=v_{0}(0, \cdot) \quad \text { in } \bar{\Omega}
$$

Most (but not all) works are in the case of constant coefficients, i.e., when $P=-\Delta$. If n is odd, and $T>\operatorname{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

In that case, this is actually an integral geometry problem because of Kirchoff's formula - recovery of f from integrals over spheres centered at $\partial \Omega$.

When n is even, or when the coefficients are not constant, this is an "approximate solution" only. As $T \rightarrow \infty$, the error tends to zero by finite energy decay. The convergence is exponentially fast, when the geometry is non-trapping.

Known results

Kruger; Agranovsky, Ambartsoumian, Finch, Georgieva-Hristova, Jin, Haltmeier, Kuchment, Nguyen, Patch, Quinto, Wang, Xu ...

The time reversal method is frequently used in a slightly modified way. The boundary condition h is first cut-off near $t=T$ in a smooth way. Then the compatibility conditions at $\{T\} \times \partial \Omega$ are satisfied and at least we stay in the energy space. When T is fixed, there is no control over the error (unless n is odd and $P=-\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion, or explicit formulas in the constant coefficient case (with $T=\infty$ in even dimensions), that just give a computable version of the time reversal method.

Known results

Kruger; Agranovsky, Ambartsoumian, Finch, Georgieva-Hristova, Jin, Haltmeier, Kuchment, Nguyen, Patch, Quinto, Wang, Xu ...

The time reversal method is frequently used in a slightly modified way. The boundary condition h is first cut-off near $t=T$ in a smooth way. Then the compatibility conditions at $\{T\} \times \partial \Omega$ are satisfied and at least we stay in the energy space.
\qquad
\qquad
\qquad

Known results

Kruger; Agranovsky, Ambartsoumian, Finch, Georgieva-Hristova, Jin, Haltmeier, Kuchment, Nguyen, Patch, Quinto, Wang, Xu ...

The time reversal method is frequently used in a slightly modified way. The boundary condition h is first cut-off near $t=T$ in a smooth way. Then the compatibility conditions at $\{T\} \times \partial \Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and $P=-\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T=\infty$ in even dimensions), that just give a computable version of the time reversal method.

Known results

Kruger; Agranovsky, Ambartsoumian, Finch, Georgieva-Hristova, Jin, Haltmeier, Kuchment, Nguyen, Patch, Quinto, Wang, Xu ...

The time reversal method is frequently used in a slightly modified way. The boundary condition h is first cut-off near $t=T$ in a smooth way. Then the compatibility conditions at $\{T\} \times \partial \Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and $P=-\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T=\infty$ in even dimensions), that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. Finch and Rakesh (2009) proved uniqueness when $T>\operatorname{diam}(\Omega)$, based on Tataru's uniqueness theorem (that we use, too). Reconstructions for finite T have been tried numerically, and they "seem to work" at least for non-trapping geometries.

Known results

Kruger; Agranovsky, Ambartsoumian, Finch, Georgieva-Hristova, Jin, Haltmeier, Kuchment, Nguyen, Patch, Quinto, Wang, Xu ...

The time reversal method is frequently used in a slightly modified way. The boundary condition h is first cut-off near $t=T$ in a smooth way. Then the compatibility conditions at $\{T\} \times \partial \Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and $P=-\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T=\infty$ in even dimensions), that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. Finch and Rakesh (2009) proved uniqueness when $T>\operatorname{diam}(\Omega)$, based on Tataru's uniqueness theorem (that we use, too). Reconstructions for finite T have been tried numerically, and they "seem to work" at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with measurements on a part of the boundary. There were no results so far for the variable coefficient case, and there is a uniqueness result in the constant coefficients one by Finch, Patch and Rakesh (2004).

The main results in a nutshell

- We study the general case of variable coefficients and fixed $T>T(\Omega)$ (the longest geodesics of $c^{-2} g$).

Measurements on the whole boundary:

- we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability)

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not

The main results in a nutshell

- We study the general case of variable coefficients and fixed $T>T(\Omega)$ (the longest geodesics of $c^{-2} g$).

Measurements on the whole boundary:

- we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).
Measurements on a part of the boundary:
\qquad

The main results in a nutshell

- We study the general case of variable coefficients and fixed $T>T(\Omega)$ (the longest geodesics of $c^{-2} g$).

Measurements on the whole boundary:

- we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.

The main results in a nutshell

- We study the general case of variable coefficients and fixed $T>T(\Omega)$ (the longest geodesics of $c^{-2} g$).

Measurements on the whole boundary:

- we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.

Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

The main results in a nutshell

- We study the general case of variable coefficients and fixed $T>T(\Omega)$ (the longest geodesics of $c^{-2} g$).

Measurements on the whole boundary:

- we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.

The main results in a nutshell

- We study the general case of variable coefficients and fixed $T>T(\Omega)$ (the longest geodesics of $c^{-2} g$).

Measurements on the whole boundary:

- we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.
- Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

We assume here that (Ω, g) is non-trapping, i.e., $T(\Omega)<\infty$, and that $T>T(\Omega)$.

A new pseudo-inverse
Given h (that eventuallv will be replaced by $\wedge f$), solve
where ϕ solves the elliptic boundary value problem

Note that the initial data at $t=T$ satisfies compatibility conditions of first order (no jump at $\{T\} \times \partial \Omega)$. Then we define the following pseudo-inverse

We assume here that (Ω, g) is non-trapping, i.e., $T(\Omega)<\infty$, and that $T>T(\Omega)$.

A new pseudo-inverse

Given h (that eventually will be replaced by Λf), solve

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+P\right) v & =0 \quad \text { in }(0, T) \times \Omega, \tag{3}\\
\left.v\right|_{[0, T] \times \partial \Omega} & =h, \\
\left.v\right|_{t=T} & =\phi, \\
\left.\partial_{t} v\right|_{t=T} & =0,
\end{align*}\right.
$$

where ϕ solves the elliptic boundary value problem

$$
P \phi=0,\left.\quad \phi\right|_{\partial \Omega}=h(T, \cdot)
$$

Note that the initial data at $t=T$ satisfies compatibility conditions of first order (no jump at $\{T\} \times \partial \Omega$). Then we define the following pseudo-inverse

$$
A h:=v(0, \cdot) \quad \text { in } \bar{\Omega} .
$$

Why would we do that? We are missing the Cauchy data at $t=T$; the only thing we know there is its value on $\partial \Omega$.
minimizes the energy.

Given $U \subset \mathbb{R}^{n}$, the energy in U is given by
$\mathrm{d} \operatorname{Vol}(x)=(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$. In particular, we define the space $H_{D}(U)$ to be the completion of $C_{0}^{\infty}(U)$ under the Dirichlet norm

Why would we do that? We are missing the Cauchy data at $t=T$; the only thing we know there is its value on $\partial \Omega$. The time reversal methods just replace it by zero. We replace it by that data (namely, by $(\phi, 0)$), having the same trace on the boundary, that minimizes the energy.

Given $U \subset \mathbb{R}^{n}$, the energy in U is given by
$\mathrm{d} \operatorname{Vol}(x)=(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$. In particular, we define the space $H_{D}(U)$ to be the completion
of $C_{0}^{\infty}(U)$ under the Dirichlet norm

The norms in $H_{D}(\Omega)$ and $H^{1}(\Omega)$ are equivalent, so

Why would we do that? We are missing the Cauchy data at $t=T$; the only thing we know there is its value on $\partial \Omega$. The time reversal methods just replace it by zero. We replace it by that data (namely, by $(\phi, 0)$), having the same trace on the boundary, that minimizes the energy.

Given $U \subset \mathbf{R}^{n}$, the energy in U is given by

$$
E_{U}(t, u)=\int_{U}\left(|D u|^{2}+c^{-2} q|u|^{2}+c^{-2}\left|u_{t}\right|^{2}\right) \mathrm{d} \mathrm{Vol}
$$

where $D_{j}=-\mathrm{i} \partial / \partial x^{j}+a_{j}, D=\left(D_{1}, \ldots, D_{n}\right),|D u|^{2}=g^{i j}\left(D_{i} u\right)\left(D_{j} u\right)$, and $\mathrm{d} \operatorname{Vol}(x)=(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$. In particular, we define the space $H_{D}(U)$ to be the completion of $C_{0}^{\infty}(U)$ under the Dirichlet norm

$$
\|f\|_{H_{D}}^{2}=\int_{U}\left(|D u|^{2}+c^{-2} q|u|^{2}\right) \mathrm{d} \mathrm{Vol}
$$

Why would we do that? We are missing the Cauchy data at $t=T$; the only thing we know there is its value on $\partial \Omega$. The time reversal methods just replace it by zero. We replace it by that data (namely, by $(\phi, 0)$), having the same trace on the boundary, that minimizes the energy.

Given $U \subset \mathbf{R}^{n}$, the energy in U is given by

$$
E_{U}(t, u)=\int_{U}\left(|D u|^{2}+c^{-2} q|u|^{2}+c^{-2}\left|u_{t}\right|^{2}\right) \mathrm{d} \mathrm{Vol}
$$

where $D_{j}=-\mathrm{i} \partial / \partial x^{j}+a_{j}, D=\left(D_{1}, \ldots, D_{n}\right),|D u|^{2}=g^{i j}\left(D_{i} u\right)\left(D_{j} u\right)$, and $\mathrm{d} \operatorname{Vol}(x)=(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$. In particular, we define the space $H_{D}(U)$ to be the completion of $C_{0}^{\infty}(U)$ under the Dirichlet norm

$$
\|f\|_{H_{D}}^{2}=\int_{U}\left(|D u|^{2}+c^{-2} q|u|^{2}\right) \mathrm{d} \mathrm{Vol}
$$

The norms in $H_{D}(\Omega)$ and $H^{1}(\Omega)$ are equivalent, so

$$
H_{D}(\Omega) \cong H_{0}^{1}(\Omega)
$$

Main results, whole boundary

Theorem 1

Let $T>T(\Omega)$. Then $A \Lambda=I d-K$, where K is compact in $H_{D}(\Omega)$, and $\|K\|_{H_{D}(\Omega)}<1$. In particular, Id $-K$ is invertible on $H_{D}(\Omega)$, and the inverse thermoacoustic problem has an explicit solution of the form

$$
f=\sum_{m=0}^{\infty} K^{m} A h, \quad h:=\Lambda f .
$$

Some numerical experiments (with Peijun Li, see next slide) show that even the first term

 Ah only works quite well. In the case, we have the following error estimate:
Main results, whole boundary

Theorem 1

Let $T>T(\Omega)$. Then $A \Lambda=I d-K$, where K is compact in $H_{D}(\Omega)$, and $\|K\|_{H_{D}(\Omega)}<1$. In particular, Id $-K$ is invertible on $H_{D}(\Omega)$, and the inverse thermoacoustic problem has an explicit solution of the form

$$
f=\sum_{m=0}^{\infty} K^{m} A h, \quad h:=\Lambda f
$$

Some numerical experiments (with Peijun Li, see next slide) show that even the first term Ah only works quite well. In the case, we have the following error estimate:

Corollary 2

$$
\|f-A \wedge f\|_{H_{D}(\Omega)} \leq\left(\frac{E_{\Omega}(u, T)}{E_{\Omega}(u, 0)}\right)^{\frac{1}{2}}\|f\|_{H_{D}(\Omega)}, \quad \forall f \in H_{D(\Omega)}, f \neq 0
$$

where u is the solution with Cauchy data $(f, 0)$.

Here, $\Omega=B(0,1), T=2$. Based on the 1st term only. Original:

Here, $\Omega=B(0,1), T=2$. Based on the 1st term only. Reconstruction:

Measurements on a part of the boundary

Assume that $P=-\Delta$ outside Ω.
where s is a fixed continuous function on Γ. This corresponds to measurements taken at each $x \in \Gamma$ for the time interval $0<t<s(x)$. The special case studied so far is $s(x) \equiv T$, for some $T>0$; then $\mathcal{G}=[0, T] \times \Gamma$ We assume now that the observations are made on \mathcal{G} only, i.e., we assume we are given

Measurements on a part of the boundary

Assume that $P=-\Delta$ outside Ω. Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

$$
\mathcal{G}:=\{(t, x) ; x \in \Gamma, 0<t<s(x)\}
$$

where s is a fixed continuous function on Γ. This corresponds to measurements taken at each $x \in \Gamma$ for the time interval $0<t<s(x)$. The special case studied so far is $s(x) \equiv T$, for some $T>0$; then $\mathcal{G}=[0, T] \times \Gamma$.

[^0]
Measurements on a part of the boundary

Assume that $P=-\Delta$ outside Ω. Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

$$
\mathcal{G}:=\{(t, x) ; x \in \Gamma, 0<t<s(x)\}
$$

where s is a fixed continuous function on Γ. This corresponds to measurements taken at each $x \in \Gamma$ for the time interval $0<t<s(x)$. The special case studied so far is $s(x) \equiv T$, for some $T>0$; then $\mathcal{G}=[0, T] \times \Gamma$.

We assume now that the observations are made on \mathcal{G} only, i.e., we assume we are given

$$
\left.\Lambda f\right|_{\mathcal{G}}
$$

Measurements on a part of the boundary

Assume that $P=-\Delta$ outside Ω. Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

$$
\mathcal{G}:=\{(t, x) ; x \in \Gamma, 0<t<s(x)\},
$$

where s is a fixed continuous function on Γ. This corresponds to measurements taken at each $x \in \Gamma$ for the time interval $0<t<s(x)$. The special case studied so far is $s(x) \equiv T$, for some $T>0$; then $\mathcal{G}=[0, T] \times \Gamma$.

We assume now that the observations are made on \mathcal{G} only, i.e., we assume we are given

$$
\left.\Lambda f\right|_{\mathcal{G}}
$$

We consider f 's with

$$
\operatorname{supp} f \subset \mathcal{K}
$$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Measurements on a part of the boundary

Assume that $P=-\Delta$ outside Ω. Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

$$
\mathcal{G}:=\{(t, x) ; x \in \Gamma, 0<t<s(x)\},
$$

where s is a fixed continuous function on Γ. This corresponds to measurements taken at each $x \in \Gamma$ for the time interval $0<t<s(x)$. The special case studied so far is $s(x) \equiv T$, for some $T>0$; then $\mathcal{G}=[0, T] \times \Gamma$.

We assume now that the observations are made on \mathcal{G} only, i.e., we assume we are given

$$
\left.\Lambda f\right|_{\mathcal{G}}
$$

We consider f 's with

$$
\operatorname{supp} f \subset \mathcal{K}
$$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Measurements on a part of the boundary

Assume that $P=-\Delta$ outside Ω. Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

$$
\mathcal{G}:=\{(t, x) ; x \in \Gamma, 0<t<s(x)\},
$$

where s is a fixed continuous function on Γ. This corresponds to measurements taken at each $x \in \Gamma$ for the time interval $0<t<s(x)$. The special case studied so far is $s(x) \equiv T$, for some $T>0$; then $\mathcal{G}=[0, T] \times \Gamma$.

We assume now that the observations are made on \mathcal{G} only, i.e., we assume we are given

$$
\left.\Lambda f\right|_{\mathcal{G}}
$$

We consider f 's with

$$
\operatorname{supp} f \subset \mathcal{K}
$$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Measurements on a part of the boundary

Assume that $P=-\Delta$ outside Ω. Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

$$
\mathcal{G}:=\{(t, x) ; x \in \Gamma, 0<t<s(x)\},
$$

where s is a fixed continuous function on Γ. This corresponds to measurements taken at each $x \in \Gamma$ for the time interval $0<t<s(x)$. The special case studied so far is $s(x) \equiv T$, for some $T>0$; then $\mathcal{G}=[0, T] \times \Gamma$.

We assume now that the observations are made on \mathcal{G} only, i.e., we assume we are given

$$
\left.\Lambda f\right|_{\mathcal{G}}
$$

We consider f 's with

$$
\operatorname{supp} f \subset \mathcal{K}
$$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

Uniqueness

Heuristic arguments for uniqueness: To recover f from $\wedge f$ on \mathcal{G}, we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for $t<s(z)$. In other words, we should at least require that

Condition A

$$
\forall x \in \mathcal{K}, \exists z \in \Gamma \text { so that } \operatorname{dist}(x, z)<s(z)
$$

Uniqueness

Heuristic arguments for uniqueness: To recover f from $\wedge f$ on \mathcal{G}, we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for $t<s(z)$. In other words, we should at least require that

Condition A

$$
\forall x \in \mathcal{K}, \exists z \in \Gamma \text { so that } \operatorname{dist}(x, z)<s(z)
$$

Theorem 3

Let $P=-\Delta$ outside Ω, and let $\partial \Omega$ be strictly convex. Then under Condition A, if $\Lambda f=0$ on \mathcal{G} for $f \in H_{D}(\Omega)$ with $\operatorname{supp} f \subset \mathcal{K}$, then $f=0$.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for flat oenmetry hy Finch et al

It is worth mentioning that without Condition A, one can recover f on the reachable part of K Of cource one cannet recover anything nutside it hy finite sneed of nronagation
\square
Condition A is an "if and only if" condition for uniqueness

Uniqueness

Heuristic arguments for uniqueness: To recover f from Λf on \mathcal{G}, we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for $t<s(z)$. In other words, we should at least require that

Condition A

$$
\forall x \in \mathcal{K}, \exists z \in \Gamma \text { so that } \operatorname{dist}(x, z)<s(z)
$$

Theorem 3

Let $P=-\Delta$ outside Ω, and let $\partial \Omega$ be strictly convex. Then under Condition A, if $\Lambda f=0$ on \mathcal{G} for $f \in H_{D}(\Omega)$ with $\operatorname{supp} f \subset \mathcal{K}$, then $f=0$.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for flat geometry by Finch et al.

It is worth mentioning that without Condition A, one can recover f on the reachable part of \mathcal{K}. Of course, one cannot recover anything outside it, by finite speed of propagation. Thus, up to replacing $<$ with

Uniqueness

Heuristic arguments for uniqueness: To recover f from Λf on \mathcal{G}, we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for $t<s(z)$. In other words, we should at least require that

Condition A

$$
\forall x \in \mathcal{K}, \exists z \in \Gamma \text { so that } \operatorname{dist}(x, z)<s(z)
$$

Theorem 3

Let $P=-\Delta$ outside Ω, and let $\partial \Omega$ be strictly convex. Then under Condition A, if $\Lambda f=0$ on \mathcal{G} for $f \in H_{D}(\Omega)$ with $\operatorname{supp} f \subset \mathcal{K}$, then $f=0$.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for flat geometry by Finch et al.

It is worth mentioning that without Condition A , one can recover f on the reachable part of \mathcal{K}. Of course, one cannot recover anything outside it, by finite speed of propagation. Thus, up to replacing $<$ with \leq,

Condition A is an "if and only if" condition for uniqueness.

Stability

Heuristic arguments for stability: To be able to recover f from $\wedge f$ on \mathcal{G} in a stable way, we should be able to recover all singularities. In other words, we should require that

Condition B

$$
\forall(x, \xi) \in S^{*} \mathcal{K},\left(\tau_{\sigma}(x, \xi), \gamma_{x, \xi}\left(\tau_{\sigma}(x, \xi)\right) \in \mathcal{G} \text { for either } \sigma=+ \text { or } \sigma=-\right. \text { (or both). }
$$

Stability

Heuristic arguments for stability: To be able to recover f from Λf on \mathcal{G} in a stable way, we should be able to recover all singularities. In other words, we should require that

Condition B

$$
\forall(x, \xi) \in S^{*} \mathcal{K},\left(\tau_{\sigma}(x, \xi), \gamma_{x, \xi}\left(\tau_{\sigma}(x, \xi)\right) \in \mathcal{G} \text { for either } \sigma=+ \text { or } \sigma=-\right. \text { (or both). }
$$

We show next that this is an "if and only if" condition (up to replacing an open set by a closed one, as before) for stability. Actually, we show a bit more.

Stability

Heuristic arguments for stability: To be able to recover f from Λf on \mathcal{G} in a stable way, we should be able to recover all singularities. In other words, we should require that

Condition B

$$
\forall(x, \xi) \in S^{*} \mathcal{K},\left(\tau_{\sigma}(x, \xi), \gamma_{x, \xi}\left(\tau_{\sigma}(x, \xi)\right) \in \mathcal{G} \text { for either } \sigma=+ \text { or } \sigma=-\right. \text { (or both). }
$$

We show next that this is an "if and only if" condition (up to replacing an open set by a closed one, as before) for stability. Actually, we show a bit more.

Proposition 1

Assume formally $T=\infty$. Then $\Lambda=\Lambda_{+}+\Lambda_{-}$, where $\Lambda_{ \pm}$are elliptic Fourier Integral Operators of zeroth order with canonical relations given by the graphs of the maps

$$
(y, \xi) \mapsto\left(\tau_{ \pm}(y, \xi), \gamma_{y, \pm \xi}\left(\tau_{ \pm}(y, \xi)\right),|\xi|, \dot{\gamma}_{y, \pm \xi}^{\prime}\left(\tau_{ \pm}(y, \xi)\right)\right)
$$

where $|\xi|$ is the norm in the metric $c^{-2} g$, and the prime in $\dot{\gamma}^{\prime}$ stands for the tangential projection of $\dot{\gamma}$ on $T \partial \Omega$.

Let us say that $c=1$, and we take measurements on $[0, T] \times \Gamma, T>\operatorname{diam}(\Omega)$. Then Condition B is equivalent to the following:

Every line through \mathcal{K} intersects Γ.

Choose and fix $T>\sup _{\Gamma} s$. Let A be the "time reversal" operator as before (ϕ will be 0 because of χ below). Let $\chi(t) \in C^{\infty}$ be a cutoff equal to 1 near $[0, T(\Omega)]$, and equal to 0 close to $t=T$.

Theorem 4

$A \chi \Lambda$ is a zero order classical $\Psi D O$ in some neighborhood of \mathcal{K} with principal symbol

$$
\frac{1}{2}\left(\chi\left(\gamma_{x, \xi}\left(\tau_{+}(x, \xi)\right)\right)+\chi\left(\gamma_{x, \xi}\left(\tau_{-}(x, \xi)\right)\right)\right)
$$

If \mathcal{G} satisfies Condition B, then
(a) $A \chi \wedge$ is elliptic,
(b) $A \chi \Lambda$ is a Fredholm operator on $H_{D}(\mathcal{K})$, and
(c) there exists a constant $C>0$ so that

$$
\|f\|_{H_{D}(\mathcal{K})} \leq C\|\Lambda f\|_{H^{1}(\mathcal{G})} .
$$

Choose and fix $T>\sup _{\Gamma} s$. Let A be the "time reversal" operator as before (ϕ will be 0 because of χ below). Let $\chi(t) \in C^{\infty}$ be a cutoff equal to 1 near $[0, T(\Omega)]$, and equal to 0 close to $t=T$.

Theorem 4

$A \chi \Lambda$ is a zero order classical $\Psi D O$ in some neighborhood of \mathcal{K} with principal symbol

$$
\frac{1}{2}\left(\chi\left(\gamma_{x, \xi}\left(\tau_{+}(x, \xi)\right)\right)+\chi\left(\gamma_{x, \xi}\left(\tau_{-}(x, \xi)\right)\right)\right)
$$

If \mathcal{G} satisfies Condition B, then
(a) $A \chi \wedge$ is elliptic,
(b) $A \chi \Lambda$ is a Fredholm operator on $H_{D}(\mathcal{K})$, and
(c) there exists a constant $C>0$ so that

$$
\|f\|_{H_{D}(\mathcal{K})} \leq C\|\Lambda f\|_{H^{1}(\mathcal{G})} .
$$

(b) follows by building a parametrix, and (c) follows from (b) and from the uniqueness result.

Reconstruction

One can constructively write the problem in the form
Reducing the problem to a Fredholm one

$$
(I d-K) f=B A \chi \wedge f \quad \text { with the r.h.s. given, }
$$

i.e., B is an explicit operator (a parametrix), where K is compact with 1 not an eigenvalue.

Reconstructing the acoustic speed c

Let f be known first. Linearize Λ near some background c. Then $\delta \Lambda[f, \delta c]$ is a bilinear form. Then

$$
\Delta f \neq 0 \quad \text { on } \operatorname{supp} \delta c
$$

is a sufficient condition for $\delta \Lambda[f, \cdot]$ to be Fredholm. On the other hand, if $\Delta f=0$ in an open set inside $\operatorname{supp} \delta c$, then that map, even if it happens to be injective, will be unstable in any pair of Sobolev spaces.
\qquad
\qquad

The recovery of both f and c is not so clear. Preliminary calculations show that the linearization $\delta \wedge$ mav have a hioge kernel One could try to use more than one measurements but how realistic is that?

Reconstructing the acoustic speed c

Let f be known first. Linearize Λ near some background c. Then $\delta \Lambda[f, \delta c]$ is a bilinear form. Then

$$
\Delta f \neq 0 \quad \text { on } \operatorname{supp} \delta c
$$

is a sufficient condition for $\delta \Lambda[f, \cdot]$ to be Fredholm. On the other hand, if $\Delta f=0$ in an open set inside $\operatorname{supp} \delta c$, then that map, even if it happens to be injective, will be unstable in any pair of Sobolev spaces.

We still do not know if $\delta \Lambda[f, \cdot]$ is injective. If so, one would have local uniqueness and Hölder stability.

The recovery of both f and c is not so clear. Preliminary calculations show that the linearization $\delta \wedge$ mav have a huge kernel One could try to use more than one

Reconstructing the acoustic speed c

Let f be known first. Linearize Λ near some background c. Then $\delta \Lambda[f, \delta c]$ is a bilinear form. Then

$$
\Delta f \neq 0 \quad \text { on } \operatorname{supp} \delta c
$$

is a sufficient condition for $\delta \Lambda[f, \cdot]$ to be Fredholm. On the other hand, if $\Delta f=0$ in an open set inside $\operatorname{supp} \delta c$, then that map, even if it happens to be injective, will be unstable in any pair of Sobolev spaces.

We still do not know if $\delta \Lambda[f, \cdot]$ is injective. If so, one would have local uniqueness and Hölder stability.

The recovery of both f and c is not so clear. Preliminary calculations show that the linearization $\delta \Lambda$ may have a huge kernel. One could try to use more than one measurements but how realistic is that?

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media.

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media. That means: replace f by $f+f_{0}$ with $\operatorname{supp} f_{0}$ non intersecting $\operatorname{supp} f$.

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media. That means: replace f by $f+f_{0}$ with $\operatorname{supp} f_{0}$ non intersecting supp f. Take your measurements $\Lambda\left(f+f_{0}\right)$.
without the need to alter the patient

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media. That means: replace f by $f+f_{0}$ with $\operatorname{supp} f_{0}$ non intersecting supp f. Take your measurements $\Lambda\left(f+f_{0}\right)$. Subtract Λf from that.

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media. That means: replace f by $f+f_{0}$ with supp f_{0} non intersecting supp f. Take your measurements $\Lambda\left(f+f_{0}\right)$. Subtract Λf from that. Then we get

$\wedge f_{0}$

without the need to alter the patient.

each point on the boundary.

Then repeat this with f_{0} supported elsewhere, etc. Then recover c from the travel times

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media. That means: replace f by $f+f_{0}$ with supp f_{0} non intersecting supp f. Take your measurements $\Lambda\left(f+f_{0}\right)$. Subtract Λf from that. Then we get

Λf_{0}

without the need to alter the patient. Now, from Λf_{0}, we can get the travel times from $\partial \operatorname{supp} f$ through Ω. If $\operatorname{supp} f_{0}$ is small enough, then just measure the first arrival time at each point on the boundary.

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media. That means: replace f by $f+f_{0}$ with supp f_{0} non intersecting supp f. Take your measurements $\Lambda\left(f+f_{0}\right)$. Subtract Λf from that. Then we get

Λf_{0}

without the need to alter the patient. Now, from Λf_{0}, we can get the travel times from $\partial \operatorname{supp} f$ through Ω. If $\operatorname{supp} f_{0}$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_{0} supported elsewhere, etc. Then recover c from the travel times.

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_{0} " different from the surrounding media. That means: replace f by $f+f_{0}$ with supp f_{0} non intersecting supp f. Take your measurements $\Lambda\left(f+f_{0}\right)$. Subtract Λf from that. Then we get

$\wedge f_{0}$

without the need to alter the patient. Now, from Λf_{0}, we can get the travel times from $\partial \operatorname{supp} f$ through Ω. If $\operatorname{supp} f_{0}$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_{0} supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

[^0]: where $\mathcal{K} \subset \Omega$ is a fixed compact

