Thermoacoustic tomography, variable sound speed

PLAMEN STEFANOV

Purdue University

Based on a joint work with GUNTHER UHLMANN

э

・ロト ・個ト ・ヨト ・ヨト

Thermoacoustic Tomography

In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient's body. The tissue reacts and emits an ultrasound wave form any point, that is measured away from the body. Then one tries to reconstruct the internal structure of a patient's body form those measurements.

The Mathematical Model

$$P = c^2 \frac{1}{\sqrt{\det g}} \left(\frac{1}{i} \frac{\partial}{\partial x^i} + a_i \right) g^{ij} \sqrt{\det g} \left(\frac{1}{i} \frac{\partial}{\partial x^j} + a_j \right) + q.$$

Let *u* solve the problem

$$\begin{cases} (\partial_t^2 + P)u &= 0 & \text{in } (0, T) \times \mathbb{R}^n, \\ u|_{t=0} &= f, \\ \partial_t u|_{t=0} &= 0, \end{cases}$$
(1)

where T > 0 is fixed.

Assume that f is supported in $\overline{\Omega}$, where $\Omega \subset \mathbf{R}^n$ is some smooth bounded domain. The measurements are modeled by the operator

$$\Lambda f := u|_{[0,T] \times \partial \Omega}.$$

The problem is to reconstruct the unknown *f*

Thermoacoustic Tomography

In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient's body. The tissue reacts and emits an ultrasound wave form any point, that is measured away from the body. Then one tries to reconstruct the internal structure of a patient's body form those measurements.

The Mathematical Model

$$P = c^2 \frac{1}{\sqrt{\det g}} \left(\frac{1}{\mathrm{i}} \frac{\partial}{\partial x^i} + a_i \right) g^{ij} \sqrt{\det g} \left(\frac{1}{\mathrm{i}} \frac{\partial}{\partial x^j} + a_j \right) + q.$$

Let u solve the problem

$$\begin{cases} (\partial_t^2 + P)u &= 0 & \text{in } (0, T) \times \mathbf{R}^n, \\ u|_{t=0} &= f, \\ \partial_t u|_{t=0} &= 0, \end{cases}$$
(1)

where T > 0 is fixed.

Assume that f is supported in $\overline{\Omega}$, where $\Omega \subset \mathbf{R}^n$ is some smooth bounded domain. The measurements are modeled by the operator

$$\Lambda f := u|_{[0,T] \times \partial \Omega}.$$

The problem is to reconstruct the unknown f.

$$\begin{array}{rcl} (\partial_t^2 + P)v_0 &=& 0 & \text{in } (0, T) \times \Omega, \\ v_0|_{[0,T] \times \partial \Omega} &=& h, \\ v_0|_{t=T} &=& 0, \\ \partial_t v_0|_{t=T} &=& 0. \end{array}$$

$$(2$$

3

・ロト ・四ト ・ヨト ・ヨト

Formulation Time reversal

If $T = \infty$, we can just solve a Cauchy problem backwards with zero initial data. One of the most common methods when $T < \infty$ is to do the same (time reversal). Solve

	Formulation	Time reversal
--	-------------	---------------

One of the most common methods when $T < \infty$ is to do the same (time reversal). Solve

$$\begin{cases} (\partial_t^2 + P)\mathbf{v}_0 &= 0 \quad \text{in } (0, T) \times \Omega, \\ \mathbf{v}_0|_{[0, T] \times \partial \Omega} &= h, \\ \mathbf{v}_0|_{t=T} &= 0, \\ \partial_t \mathbf{v}_0|_{t=T} &= 0. \end{cases}$$
(2)

Then we define the following

"Approximate Inverse"

 $A_0h := v_0(0, \cdot) \quad \text{in } \Omega.$

Most (but not all) works are in the case of constant coefficients, i.e., when $P = -\Delta$. If *n* is odd, and $T > \text{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

In that case, this is actually an integral geometry problem because of Kirchoff's formula — recovery of f from integrals over spheres centered at $\partial\Omega$.

When *n* is even, or when the coefficients are not constant, this is an "approximate solution" only. As $T \to \infty$, the error tends to zero by finite energy decay. The convergence is exponentially fast, when the geometry is non-trapping.

イロン イロン イヨン イヨン 三日

Formulation	Time reversal
-------------	---------------

One of the most common methods when $T < \infty$ is to do the same (time reversal). Solve

$$\begin{cases} (\partial_t^2 + P)\mathbf{v}_0 &= 0 \quad \text{in } (0, T) \times \Omega, \\ \mathbf{v}_0|_{[0, T] \times \partial \Omega} &= h, \\ \mathbf{v}_0|_{t=T} &= 0, \\ \partial_t \mathbf{v}_0|_{t=T} &= 0. \end{cases}$$
(2)

Then we define the following

"Approximate Inverse"

 $A_0h := v_0(0, \cdot)$ in $\overline{\Omega}$.

Most (but not all) works are in the case of constant coefficients, i.e., when $P = -\Delta$. If n is odd, and $T > \text{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

In that case, this is actually an integral geometry problem because of Kirchoff's formula — recovery of f from integrals over spheres centered at $\partial\Omega$.

When *n* is even, or when the coefficients are not constant, this is an "approximate solution" only. As $T \to \infty$, the error tends to zero by finite energy decay. The convergence is exponentially fast, when the geometry is non-trapping.

<ロ> (四) (四) (三) (三) (三) (三)

Formulation	Time reversal
-------------	---------------

One of the most common methods when $T < \infty$ is to do the same (time reversal). Solve

$$\begin{cases} (\partial_t^2 + P)\mathbf{v}_0 &= 0 \quad \text{in } (0, T) \times \Omega, \\ \mathbf{v}_0|_{[0, T] \times \partial \Omega} &= h, \\ \mathbf{v}_0|_{t=T} &= 0, \\ \partial_t \mathbf{v}_0|_{t=T} &= 0. \end{cases}$$
(2)

Then we define the following

"Approximate Inverse"

$$A_0h := v_0(0, \cdot)$$
 in $\overline{\Omega}$.

Most (but not all) works are in the case of constant coefficients, i.e., when $P = -\Delta$. If *n* is odd, and $T > \text{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

In that case, this is actually an integral geometry problem because of Kirchoff's formula — recovery of f from integrals over spheres centered at $\partial\Omega$.

When *n* is even, or when the coefficients are not constant, this is an "approximate solution" only. As $T \to \infty$, the error tends to zero by finite energy decay. The convergence is exponentially fast, when the geometry is non-trapping.

イロン イロン イヨン イヨン 三日

Formulation	Time reversal
-------------	---------------

One of the most common methods when $T < \infty$ is to do the same (time reversal). Solve

$$\begin{cases} (\partial_t^2 + P)v_0 &= 0 \quad \text{in } (0, T) \times \Omega, \\ v_0|_{[0, T] \times \partial \Omega} &= h, \\ v_0|_{t=T} &= 0, \\ \partial_t v_0|_{t=T} &= 0. \end{cases}$$

$$(2)$$

Then we define the following

"Approximate Inverse"

$$A_0h := v_0(0, \cdot)$$
 in $\overline{\Omega}$.

Most (but not all) works are in the case of constant coefficients, i.e., when $P = -\Delta$. If n is odd, and $T > \text{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

In that case, this is actually an integral geometry problem because of Kirchoff's formula — recovery of f from integrals over spheres centered at $\partial\Omega$.

When *n* is even, or when the coefficients are not constant, this is an "approximate solution" only. As $T \to \infty$, the error tends to zero by finite energy decay. The convergence is exponentially fast, when the geometry is non-trapping.

イロン イロン イヨン イヨン 三日

Formulation	Time reversal
-------------	---------------

One of the most common methods when $T < \infty$ is to do the same (time reversal). Solve

$$\begin{cases} (\partial_t^2 + P)\mathbf{v}_0 &= 0 \quad \text{in } (0, T) \times \Omega, \\ \mathbf{v}_0|_{[0, T] \times \partial \Omega} &= h, \\ \mathbf{v}_0|_{t=T} &= 0, \\ \partial_t \mathbf{v}_0|_{t=T} &= 0. \end{cases}$$
(2)

Then we define the following

"Approximate Inverse"

$$A_0h := v_0(0, \cdot)$$
 in $\overline{\Omega}$.

Most (but not all) works are in the case of constant coefficients, i.e., when $P = -\Delta$. If n is odd, and $T > \text{diam}(\Omega)$, this is an exact method by the Hyugens' principle.

In that case, this is actually an integral geometry problem because of Kirchoff's formula — recovery of f from integrals over spheres centered at $\partial\Omega$.

When *n* is even, or when the coefficients are not constant, this is an "approximate solution" only. As $T \to \infty$, the error tends to zero by finite energy decay. The convergence is exponentially fast, when the geometry is non-trapping.

◆□> ◆□> ◆□> ◆□> ◆□> □ □

KRUGER; AGRANOVSKY, AMBARTSOUMIAN, FINCH, GEORGIEVA-HRISTOVA, JIN, HALTMEIER, KUCHMENT, NGUYEN, PATCH, QUINTO, WANG, XU ...

The time reversal method is frequently used in a slightly modified way. The boundary condition h is first cut-off near t = T in a smooth way. Then the compatibility conditions at $\{T\} \times \partial \Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and $P = -\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T = \infty$ in even dimensions), that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. FINCH AND RAKESH (2009) proved uniqueness when $T > \text{diam}(\Omega)$, based on Tataru's uniqueness theorem (that we use, too). Reconstructions for finite T have been tried numerically, and they "seem to work" at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with measurements on a part of the boundary. There were no results so far for the variable coefficient case, and there is a uniqueness result in the constant coefficients one by Finch, Patch and Rakesh (2004).

KRUGER; AGRANOVSKY, AMBARTSOUMIAN, FINCH, GEORGIEVA-HRISTOVA, JIN, HALTMEIER, KUCHMENT, NGUYEN, PATCH, QUINTO, WANG, XU ...

The time reversal method is frequently used in a slightly modified way. The boundary condition *h* is first cut-off near t = T in a smooth way. Then the compatibility conditions at $\{T\} \times \partial\Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and $P = -\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T = \infty$ in even dimensions), that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. FINCH AND RAKESH (2009) proved uniqueness when $T > \text{diam}(\Omega)$, based on Tataru's uniqueness theorem (that we use, too). Reconstructions for finite T have been tried numerically, and they "seem to work" at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with measurements on a part of the boundary. There were no results so far for the variable coefficient case, and there is a uniqueness result in the constant coefficients one by Finch, Patch and Rakesh (2004).

KRUGER; AGRANOVSKY, AMBARTSOUMIAN, FINCH, GEORGIEVA-HRISTOVA, JIN, HALTMEIER, KUCHMENT, NGUYEN, PATCH, QUINTO, WANG, XU ...

The time reversal method is frequently used in a slightly modified way. The boundary condition *h* is first cut-off near t = T in a smooth way. Then the compatibility conditions at $\{T\} \times \partial\Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and $P = -\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T = \infty$ in even dimensions), that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. FINCH AND RAKESH (2009) proved uniqueness when $T > \text{diam}(\Omega)$, based on Tataru's uniqueness theorem (that we use, too). Reconstructions for finite T have been tried numerically, and they "seem to work" at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with measurements on a part of the boundary. There were no results so far for the variable coefficient case, and there is a uniqueness result in the constant coefficients one by Finch, Patch and Rakesh (2004).

KRUGER; AGRANOVSKY, AMBARTSOUMIAN, FINCH, GEORGIEVA-HRISTOVA, JIN, HALTMEIER, KUCHMENT, NGUYEN, PATCH, QUINTO, WANG, XU ...

The time reversal method is frequently used in a slightly modified way. The boundary condition *h* is first cut-off near t = T in a smooth way. Then the compatibility conditions at $\{T\} \times \partial\Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless *n* is odd and $P = -\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T = \infty$ in even dimensions), that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. FINCH AND RAKESH (2009) proved uniqueness when $T > \text{diam}(\Omega)$, based on Tataru's uniqueness theorem (that we use, too). Reconstructions for finite T have been tried numerically, and they "seem to work" at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with measurements on a part of the boundary. There were no results so far for the variable coefficient case, and there is a uniqueness result in the constant coefficients one by Finch, Patch and Rakesh (2004).

KRUGER; AGRANOVSKY, AMBARTSOUMIAN, FINCH, GEORGIEVA-HRISTOVA, JIN, HALTMEIER, KUCHMENT, NGUYEN, PATCH, QUINTO, WANG, XU ...

The time reversal method is frequently used in a slightly modified way. The boundary condition *h* is first cut-off near t = T in a smooth way. Then the compatibility conditions at $\{T\} \times \partial\Omega$ are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and $P = -\Delta$). There are other methods, as well, for example a method based on an eigenfunctions expansion; or explicit formulas in the constant coefficient case (with $T = \infty$ in even dimensions), that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. FINCH AND RAKESH (2009) proved uniqueness when $T > \text{diam}(\Omega)$, based on Tataru's uniqueness theorem (that we use, too). Reconstructions for finite T have been tried numerically, and they "seem to work" at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with measurements on a part of the boundary. There were no results so far for the variable coefficient case, and there is a uniqueness result in the constant coefficients one by Finch, Patch and Rakesh (2004).

• We study the general case of variable coefficients and fixed $T > T(\Omega)$ (the longest geodesics of $c^{-2}g$).

Measurements on the whole boundary:

• we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.
- Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

イロン イヨン イヨン イヨン

We study the general case of variable coefficients and fixed T > T(Ω) (the longest geodesics of c⁻²g).

Measurements on the whole boundary:

• we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.
- Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

イロン イヨン イヨン イヨン

We study the general case of variable coefficients and fixed T > T(Ω) (the longest geodesics of c⁻²g).

Measurements on the whole boundary:

• we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.
- Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

・ロト ・回ト ・ヨト ・ヨト

We study the general case of variable coefficients and fixed T > T(Ω) (the longest geodesics of c⁻²g).

Measurements on the whole boundary:

• we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.
- Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

・ロト ・回ト ・ヨト ・ヨト

We study the general case of variable coefficients and fixed T > T(Ω) (the longest geodesics of c⁻²g).

Measurements on the whole boundary:

• we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.
- Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

We study the general case of variable coefficients and fixed T > T(Ω) (the longest geodesics of c⁻²g).

Measurements on the whole boundary:

• we write an explicit solution formula in the form of a converging Neumann series (hence, uniqueness and stability).

Measurements on a part of the boundary:

- We give an almost "if and only if" condition for uniqueness, stable or not.
- We give another almost "if and only if" condition for stability.
- We describe the observation operator Λ as an FIO, and under the condition above, we show that it is elliptic.
- Then we show that the problem reduces to solving a Fredholm equation with a trivial kernel.

We assume here that (Ω, g) is non-trapping, i.e., $T(\Omega) < \infty$, and that $T > T(\Omega)$.

A new pseudo-inverse

Given h (that eventually will be replaced by Λf), solve

$$\begin{array}{lll} (\partial_t^2 + P)v &=& 0 & \text{ in } (0,T) \times \Omega \\ v|_{[0,T] \times \partial \Omega} &=& h, \\ v|_{t=T} &=& \phi, \\ \partial_t v|_{t=T} &=& 0, \end{array}$$

where ϕ solves the elliptic boundary value problem

$$P\phi = 0, \quad \phi|_{\partial\Omega} = h(T, \cdot).$$

Note that the initial data at t = T satisfies compatibility conditions of first order (no jump at $\{T\} \times \partial \Omega$). Then we define the following pseudo-inverse

$$Ah:=v(0,\cdot)$$
 in $ar\Omega$.

イロン イヨン イヨン イヨン

We assume here that (Ω, g) is non-trapping, i.e., $T(\Omega) < \infty$, and that $T > T(\Omega)$.

A new pseudo-inverse

Given h (that eventually will be replaced by Λf), solve

$$\begin{cases} (\partial_t^2 + P)v = 0 & \text{in } (0, T) \times \Omega, \\ v|_{[0,T] \times \partial \Omega} = h, \\ v|_{t=T} = \phi, \\ \partial_t v|_{t=T} = 0, \end{cases}$$

where ϕ solves the elliptic boundary value problem

$$P\phi = 0, \quad \phi|_{\partial\Omega} = h(T, \cdot).$$

Note that the initial data at t = T satisfies compatibility conditions of first order (no jump at $\{T\} \times \partial \Omega$). Then we define the following pseudo-inverse

$$Ah := v(0, \cdot)$$
 in $\overline{\Omega}$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

(3)

Given $U \subset \mathbf{R}^n$, the energy in U is given by

$$E_U(t,u) = \int_U \left(|Du|^2 + c^{-2}q|u|^2 + c^{-2}|u_t|^2 \right) \mathrm{d} \operatorname{Vol}$$

where $D_j = -i\partial/\partial x^j + a_j$, $D = (D_1, ..., D_n)$, $|Du|^2 = g^{ij}(D_iu)(D_ju)$, and $d \operatorname{Vol}(x) = (\det g)^{1/2} dx$. In particular, we define the space $H_D(U)$ to be the completion of $C_0^{\infty}(U)$ under the Dirichlet norm

$$\|f\|_{H_D}^2 = \int_U \left(|Du|^2 + c^{-2}q|u|^2\right) \,\mathrm{d}\,\mathrm{Vol}$$

The norms in $H_D(\Omega)$ and $H^1(\Omega)$ are equivalent, so

 $H_D(\Omega)\cong H_0^1(\Omega).$

・ロト ・回ト ・ヨト ・ヨト

Given $U \subset \mathbf{R}^n$, the energy in U is given by

$$E_U(t,u) = \int_U \left(|Du|^2 + c^{-2}q|u|^2 + c^{-2}|u_t|^2 \right) \mathrm{d} \operatorname{Vol}$$

where $D_j = -i\partial/\partial x^j + a_j$, $D = (D_1, ..., D_n)$, $|Du|^2 = g^{ij}(D_iu)(D_ju)$, and $d \operatorname{Vol}(x) = (\det g)^{1/2} dx$. In particular, we define the space $H_D(U)$ to be the completion of $C_0^{\infty}(U)$ under the Dirichlet norm

$$\|f\|_{H_D}^2 = \int_U \left(|Du|^2 + c^{-2}q|u|^2 \right) \,\mathrm{d}\,\mathrm{Vol}\,.$$

The norms in $H_D(\Omega)$ and $H^1(\Omega)$ are equivalent, so

 $H_D(\Omega)\cong H_0^1(\Omega).$

ヘロン ヘロン ヘヨン ヘヨン

Given $U \subset \mathbf{R}^n$, the energy in U is given by

$$E_U(t,u) = \int_U \left(|Du|^2 + c^{-2}q|u|^2 + c^{-2}|u_t|^2 \right) \mathrm{d} \operatorname{Vol},$$

where $D_j = -i\partial/\partial x^j + a_j$, $D = (D_1, ..., D_n)$, $|Du|^2 = g^{ij}(D_iu)(D_ju)$, and $d \operatorname{Vol}(x) = (\det g)^{1/2} dx$. In particular, we define the space $H_D(U)$ to be the completion of $C_0^{\infty}(U)$ under the Dirichlet norm

$$\|f\|_{H_D}^2 = \int_U \left(|Du|^2 + c^{-2}q|u|^2 \right) \,\mathrm{d}\,\mathsf{Vol}\,.$$

The norms in $H_D(\Omega)$ and $H^1(\Omega)$ are equivalent, so

 $H_D(\Omega)\cong H_0^1(\Omega).$

Given $U \subset \mathbf{R}^n$, the energy in U is given by

$$E_U(t, u) = \int_U \left(|Du|^2 + c^{-2} q |u|^2 + c^{-2} |u_t|^2 \right) \mathrm{d} \operatorname{Vol}_{\mathcal{H}}$$

where $D_j = -i\partial/\partial x^j + a_j$, $D = (D_1, ..., D_n)$, $|Du|^2 = g^{ij}(D_iu)(D_ju)$, and $d \operatorname{Vol}(x) = (\det g)^{1/2} dx$. In particular, we define the space $H_D(U)$ to be the completion of $C_0^{\infty}(U)$ under the Dirichlet norm

$$\|f\|_{H_D}^2 = \int_U \left(|Du|^2 + c^{-2}q|u|^2 \right) \,\mathrm{d}\,\mathrm{Vol}\,.$$

The norms in $H_D(\Omega)$ and $H^1(\Omega)$ are equivalent, so

$$H_D(\Omega)\cong H_0^1(\Omega).$$

イロン イロン イヨン イヨン 三日

Main results, whole boundary

Theorem 1

Let $T > T(\Omega)$. Then $A\Lambda = Id - K$, where K is compact in $H_D(\Omega)$, and $||K||_{H_D(\Omega)} < 1$. In particular, Id - K is invertible on $H_D(\Omega)$, and the inverse thermoacoustic problem has an explicit solution of the form

$$f=\sum_{m=0}^{\infty}K^{m}Ah,\quad h:=\Lambda f.$$

Some numerical experiments (with Peijun Li, see next slide) show that even the first term *Ah* only works quite well. In the case, we have the following error estimate:

Corollary 2

$$\|f - A\Lambda f\|_{H_D(\Omega)} \leq \left(\frac{E_{\Omega}(u, T)}{E_{\Omega}(u, 0)}\right)^{\frac{1}{2}} \|f\|_{H_D(\Omega)}, \quad \forall f \in H_{D(\Omega)}, \ f \neq 0,$$

where u is the solution with Cauchy data (f, 0).

.

Main results, whole boundary

Theorem 1

Let $T > T(\Omega)$. Then $A\Lambda = Id - K$, where K is compact in $H_D(\Omega)$, and $||K||_{H_D(\Omega)} < 1$. In particular, Id - K is invertible on $H_D(\Omega)$, and the inverse thermoacoustic problem has an explicit solution of the form

$$f = \sum_{m=0}^{\infty} K^m A h, \quad h := \Lambda f.$$

Some numerical experiments (with Peijun Li, see next slide) show that even the first term Ah only works quite well. In the case, we have the following error estimate:

Corollary 2

$$\|f - A\Lambda f\|_{H_D(\Omega)} \leq \left(\frac{E_{\Omega}(u, T)}{E_{\Omega}(u, 0)}\right)^{\frac{1}{2}} \|f\|_{H_D(\Omega)}, \quad \forall f \in H_{D(\Omega)}, \ f \neq 0,$$

where u is the solution with Cauchy data (f, 0).

Preliminary numerical results

Here, $\Omega = B(0,1)$, T = 2. Based on the 1st term only. Original:

Here, $\Omega = B(0,1)$, T = 2. Based on the 1st term only. Reconstruction:

Assume that $P = -\Delta$ outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

 $\mathcal{G} := \{(t, x); \ x \in \Gamma, \ 0 < t < s(x)\},\$

where s is a fixed continuous function on Γ . This corresponds to measurements taken at each $x \in \Gamma$ for the time interval 0 < t < s(x). The special case studied so far is $s(x) \equiv T$, for some T > 0; then $\mathcal{G} = [0, T] \times \Gamma$.

We assume now that the observations are made on ${\mathcal G}$ only, i.e., we assume we are given

 $\Lambda f|_{\mathcal{G}}.$

We consider *f*'s with

 $\operatorname{supp} f \subset \mathcal{K},$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

イロン イヨン イヨン イヨン

Assume that $P = -\Delta$ outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

 $\mathcal{G} := \{(t, x); \ x \in \Gamma, \ 0 < t < s(x)\},\$

where s is a fixed continuous function on Γ . This corresponds to measurements taken at each $x \in \Gamma$ for the time interval 0 < t < s(x). The special case studied so far is $s(x) \equiv T$, for some T > 0; then $\mathcal{G} = [0, T] \times \Gamma$.

We assume now that the observations are made on ${\mathcal G}$ only, i.e., we assume we are given

 $\Lambda f|_{\mathcal{G}}.$

We consider *f*'s with

 $\operatorname{supp} f \subset \mathcal{K},$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

Assume that $P = -\Delta$ outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

 $\mathcal{G} := \{(t, x); \ x \in \Gamma, \ 0 < t < s(x)\},\$

where s is a fixed continuous function on Γ . This corresponds to measurements taken at each $x \in \Gamma$ for the time interval 0 < t < s(x). The special case studied so far is $s(x) \equiv T$, for some T > 0; then $\mathcal{G} = [0, T] \times \Gamma$.

We assume now that the observations are made on $\mathcal G$ only, i.e., we assume we are given

 $\Lambda f|_{\mathcal{G}}.$

We consider *f*'s with

 $\operatorname{supp} f \subset \mathcal{K},$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

Assume that $P = -\Delta$ outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

 $\mathcal{G} := \{(t, x); \ x \in \Gamma, \ 0 < t < s(x)\},\$

where s is a fixed continuous function on Γ . This corresponds to measurements taken at each $x \in \Gamma$ for the time interval 0 < t < s(x). The special case studied so far is $s(x) \equiv T$, for some T > 0; then $\mathcal{G} = [0, T] \times \Gamma$.

We assume now that the observations are made on $\mathcal G$ only, i.e., we assume we are given

 $\Lambda f|_{\mathcal{G}}.$

We consider f's with

 $\operatorname{supp} f \subset \mathcal{K},$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

Assume that $P = -\Delta$ outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

 $\mathcal{G} := \{(t, x); \ x \in \Gamma, \ 0 < t < s(x)\},\$

where s is a fixed continuous function on Γ . This corresponds to measurements taken at each $x \in \Gamma$ for the time interval 0 < t < s(x). The special case studied so far is $s(x) \equiv T$, for some T > 0; then $\mathcal{G} = [0, T] \times \Gamma$.

We assume now that the observations are made on $\mathcal G$ only, i.e., we assume we are given

 $\Lambda f|_{\mathcal{G}}.$

We consider f's with

 $\operatorname{supp} f \subset \mathcal{K},$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

Assume that $P = -\Delta$ outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

 $\mathcal{G} := \{(t, x); \ x \in \Gamma, \ 0 < t < s(x)\},\$

where s is a fixed continuous function on Γ . This corresponds to measurements taken at each $x \in \Gamma$ for the time interval 0 < t < s(x). The special case studied so far is $s(x) \equiv T$, for some T > 0; then $\mathcal{G} = [0, T] \times \Gamma$.

We assume now that the observations are made on $\mathcal G$ only, i.e., we assume we are given

 $\Lambda f|_{\mathcal{G}}.$

We consider f's with

 $\operatorname{supp} f \subset \mathcal{K},$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

Assume that $P = -\Delta$ outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Set

 $\mathcal{G} := \{(t, x); \ x \in \Gamma, \ 0 < t < s(x)\},\$

where s is a fixed continuous function on Γ . This corresponds to measurements taken at each $x \in \Gamma$ for the time interval 0 < t < s(x). The special case studied so far is $s(x) \equiv T$, for some T > 0; then $\mathcal{G} = [0, T] \times \Gamma$.

We assume now that the observations are made on ${\mathcal{G}}$ only, i.e., we assume we are given

 $\Lambda f|_{\mathcal{G}}.$

We consider f's with

 $\operatorname{supp} f \subset \mathcal{K},$

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness?

Stability?

Reconstruction?

・ロト ・個ト ・ヨト ・ヨト

Heuristic arguments for uniqueness: To recover f from Λf on \mathcal{G} , we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for t < s(z). In other words, we should at least require that

Condition A

 $\forall x \in \mathcal{K}, \exists z \in \Gamma \text{ so that } \operatorname{dist}(x, z) < s(z).$

Theorem 3

Let $P = -\Delta$ outside Ω , and let $\partial \Omega$ be strictly convex. Then under Condition A, if $\Lambda f = 0$ on \mathcal{G} for $f \in H_D(\Omega)$ with supp $f \subset \mathcal{K}$, then f = 0.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for flat geometry by Finch et al.

It is worth mentioning that without Condition A, one can recover f on the reachable part of \mathcal{K} . Of course, one cannot recover anything outside it, by finite speed of propagation. Thus, up to replacing < with \leq ,

Heuristic arguments for uniqueness: To recover f from Λf on \mathcal{G} , we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for t < s(z). In other words, we should at least require that

Condition A

 $\forall x \in \mathcal{K}, \exists z \in \Gamma \text{ so that } \operatorname{dist}(x, z) < s(z).$

Theorem 3

Let $P = -\Delta$ outside Ω , and let $\partial \Omega$ be strictly convex. Then under Condition A, if $\Lambda f = 0$ on \mathcal{G} for $f \in H_D(\Omega)$ with $\operatorname{supp} f \subset \mathcal{K}$, then f = 0.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for flat geometry by Finch et al.

It is worth mentioning that without Condition A, one can recover f on the reachable part of \mathcal{K} . Of course, one cannot recover anything outside it, by finite speed of propagation. Thus, up to replacing < with \leq ,

Heuristic arguments for uniqueness: To recover f from Λf on \mathcal{G} , we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for t < s(z). In other words, we should at least require that

Condition A

 $\forall x \in \mathcal{K}, \exists z \in \Gamma \text{ so that } \operatorname{dist}(x, z) < s(z).$

Theorem 3

Let $P = -\Delta$ outside Ω , and let $\partial \Omega$ be strictly convex. Then under Condition A, if $\Lambda f = 0$ on \mathcal{G} for $f \in H_D(\Omega)$ with $\operatorname{supp} f \subset \mathcal{K}$, then f = 0.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for flat geometry by Finch et al.

It is worth mentioning that without Condition A, one can recover f on the reachable part of \mathcal{K} . Of course, one cannot recover anything outside it, by finite speed of propagation. Thus, up to replacing < with \leq ,

Heuristic arguments for uniqueness: To recover f from Λf on \mathcal{G} , we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one signal from x to reach some $z \in \Gamma$ for t < s(z). In other words, we should at least require that

Condition A

 $\forall x \in \mathcal{K}, \exists z \in \Gamma \text{ so that } \operatorname{dist}(x, z) < s(z).$

Theorem 3

Let $P = -\Delta$ outside Ω , and let $\partial \Omega$ be strictly convex. Then under Condition A, if $\Lambda f = 0$ on \mathcal{G} for $f \in H_D(\Omega)$ with $\operatorname{supp} f \subset \mathcal{K}$, then f = 0.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for flat geometry by Finch et al.

It is worth mentioning that without Condition A, one can recover f on the reachable part of \mathcal{K} . Of course, one cannot recover anything outside it, by finite speed of propagation. Thus, up to replacing < with \leq ,

Stability

Heuristic arguments for stability: To be able to recover f from Λf on \mathcal{G} in a stable way, we should be able to recover all singularities. In other words, we should require that

Condition B

 $\forall (x,\xi) \in S^*\mathcal{K}, \ (\tau_{\sigma}(x,\xi),\gamma_{x,\xi}(\tau_{\sigma}(x,\xi)) \in \mathcal{G} \text{ for either } \sigma = + \text{ or } \sigma = - \text{ (or both)}.$

We show next that this is an "if and only if" condition (up to replacing an open set by a closed one, as before) for stability. Actually, we show a bit more.

Proposition 1

Assume formally $T = \infty$. Then $\Lambda = \Lambda_+ + \Lambda_-$, where Λ_\pm are elliptic Fourier Integral Operators of zeroth order with canonical relations given by the graphs of the maps

$$(y,\xi)\mapsto \left(\tau_{\pm}(y,\xi),\gamma_{y,\pm\xi}(\tau_{\pm}(y,\xi)),|\xi|,\dot{\gamma}'_{y,\pm\xi}(\tau_{\pm}(y,\xi))\right),$$

where $|\xi|$ is the norm in the metric $c^{-2}g$, and the prime in $\dot{\gamma}'$ stands for the tangential projection of $\dot{\gamma}$ on $T\partial\Omega$.

Stability

Heuristic arguments for stability: To be able to recover f from Λf on \mathcal{G} in a stable way, we should be able to recover all singularities. In other words, we should require that

Condition B

 $\forall (x,\xi) \in S^*\mathcal{K}, \ (\tau_{\sigma}(x,\xi),\gamma_{x,\xi}(\tau_{\sigma}(x,\xi)) \in \mathcal{G} \text{ for either } \sigma = + \text{ or } \sigma = - \text{ (or both)}.$

We show next that this is an "if and only if" condition (up to replacing an open set by a closed one, as before) for stability. Actually, we show a bit more.

Proposition 1

Assume formally $T = \infty$. Then $\Lambda = \Lambda_+ + \Lambda_-$, where Λ_\pm are elliptic Fourier Integral Operators of zeroth order with canonical relations given by the graphs of the maps

$$(y,\xi)\mapsto \left(\tau_{\pm}(y,\xi),\gamma_{y,\pm\xi}(\tau_{\pm}(y,\xi)),|\xi|,\dot{\gamma}'_{y,\pm\xi}(\tau_{\pm}(y,\xi))\right)$$

where $|\xi|$ is the norm in the metric $c^{-2}g$, and the prime in $\dot{\gamma}'$ stands for the tangential projection of $\dot{\gamma}$ on $T\partial\Omega$.

Stability

Heuristic arguments for stability: To be able to recover f from Λf on \mathcal{G} in a stable way, we should be able to recover all singularities. In other words, we should require that

Condition B

 $\forall (x,\xi) \in S^*\mathcal{K}, \ (\tau_{\sigma}(x,\xi),\gamma_{x,\xi}(\tau_{\sigma}(x,\xi)) \in \mathcal{G} \text{ for either } \sigma = + \text{ or } \sigma = - \text{ (or both)}.$

We show next that this is an "if and only if" condition (up to replacing an open set by a closed one, as before) for stability. Actually, we show a bit more.

Proposition 1

Assume formally $T = \infty$. Then $\Lambda = \Lambda_+ + \Lambda_-$, where Λ_{\pm} are elliptic Fourier Integral Operators of zeroth order with canonical relations given by the graphs of the maps

$$(y,\xi)\mapsto ig(au_{\pm}(y,\xi),\gamma_{y,\pm\xi}(au_{\pm}(y,\xi)),|\xi|,\dot{\gamma}_{y,\pm\xi}'(au_{\pm}(y,\xi))ig),$$

where $|\xi|$ is the norm in the metric $c^{-2}g$, and the prime in $\dot{\gamma}'$ stands for the tangential projection of $\dot{\gamma}$ on $T\partial\Omega$.

Let us say that c = 1, and we take measurements on $[0, T] \times \Gamma$, $T > \text{diam}(\Omega)$. Then Condition B is equivalent to the following:

Choose and fix $T > \sup_{\Gamma} s$. Let A be the "time reversal" operator as before (ϕ will be 0 because of χ below). Let $\chi(t) \in C^{\infty}$ be a cutoff equal to 1 near $[0, T(\Omega)]$, and equal to 0 close to t = T.

Theorem 4

 $A\chi\Lambda$ is a zero order classical ΨDO in some neighborhood of K with principal symbol

$$\frac{1}{2}\left(\chi(\gamma_{\mathsf{x},\xi}(\tau_+(\mathsf{x},\xi)))+\chi(\gamma_{\mathsf{x},\xi}(\tau_-(\mathsf{x},\xi)))\right).$$

If G satisfies Condition B, then (a) $A\chi\Lambda$ is elliptic, (b) $A\chi\Lambda$ is a Fredholm operator on $H_D(\mathcal{K})$, and (c) there exists a constant C > 0 so that

 $\|f\|_{H_D(\mathcal{K})} \leq C \|\Lambda f\|_{H^1(\mathcal{G})}.$

(b) follows by building a parametrix, and (c) follows from (b) and from the uniqueness result.

イロン イヨン イヨン イヨン

Choose and fix $T > \sup_{\Gamma} s$. Let A be the "time reversal" operator as before (ϕ will be 0 because of χ below). Let $\chi(t) \in C^{\infty}$ be a cutoff equal to 1 near $[0, T(\Omega)]$, and equal to 0 close to t = T.

Theorem 4

 $A\chi\Lambda$ is a zero order classical ΨDO in some neighborhood of K with principal symbol

$$\frac{1}{2}\left(\chi(\gamma_{x,\xi}(\tau_+(x,\xi)))+\chi(\gamma_{x,\xi}(\tau_-(x,\xi)))\right).$$

If G satisfies Condition B, then (a) $A\chi\Lambda$ is elliptic, (b) $A\chi\Lambda$ is a Fredholm operator on $H_D(\mathcal{K})$, and (c) there exists a constant C > 0 so that

 $\|f\|_{H_D(\mathcal{K})} \leq C \|\Lambda f\|_{H^1(\mathcal{G})}.$

(b) follows by building a parametrix, and (c) follows from (b) and from the uniqueness result.

One can constructively write the problem in the form

Reducing the problem to a Fredholm one

 $(Id - K)f = BA\chi\Lambda f$ with the r.h.s. given,

i.e., B is an explicit operator (a parametrix), where K is compact with 1 not an eigenvalue.

Reconstructing the acoustic speed c

Let f be known first. Linearize A near some background c. Then $\delta \Lambda[f, \delta c]$ is a bilinear form. Then

$\Delta f \neq 0$ on $\operatorname{supp} \delta c$

is a sufficient condition for $\delta \Lambda[f, \cdot]$ to be Fredholm. On the other hand, if $\Delta f = 0$ in an open set inside $\operatorname{supp} \delta c$, then that map, even if it happens to be injective, will be unstable in any pair of Sobolev spaces.

We still do not know if $\delta \Lambda[f, \cdot]$ is injective. If so, one would have local uniqueness and Hölder stability.

The recovery of both f and c is not so clear. Preliminary calculations show that the linearization $\delta\Lambda$ may have a huge kernel. One could try to use more than one measurements but how realistic is that?

イロン イヨン イヨン イヨン

Reconstructing the acoustic speed c

Let f be known first. Linearize A near some background c. Then $\delta\Lambda[f,\delta c]$ is a bilinear form. Then

$$\Delta f \neq 0$$
 on $\operatorname{supp} \delta c$

is a sufficient condition for $\delta \Lambda[f, \cdot]$ to be Fredholm. On the other hand, if $\Delta f = 0$ in an open set inside $\operatorname{supp} \delta c$, then that map, even if it happens to be injective, will be unstable in any pair of Sobolev spaces.

We still do not know if $\delta \Lambda[f, \cdot]$ is injective. If so, one would have local uniqueness and Hölder stability.

The recovery of both f and c is not so clear. Preliminary calculations show that the linearization $\delta\Lambda$ may have a huge kernel. One could try to use more than one measurements but how realistic is that?

・ロト ・個ト ・ヨト ・ヨト

Reconstructing the acoustic speed c

Let f be known first. Linearize A near some background c. Then $\delta\Lambda[f,\delta c]$ is a bilinear form. Then

$$\Delta f \neq 0$$
 on $\operatorname{supp} \delta c$

is a sufficient condition for $\delta \Lambda[f, \cdot]$ to be Fredholm. On the other hand, if $\Delta f = 0$ in an open set inside $\operatorname{supp} \delta c$, then that map, even if it happens to be injective, will be unstable in any pair of Sobolev spaces.

We still do not know if $\delta \Lambda[f, \cdot]$ is injective. If so, one would have local uniqueness and Hölder stability.

The recovery of both f and c is not so clear. Preliminary calculations show that the linearization $\delta\Lambda$ may have a huge kernel. One could try to use more than one measurements but how realistic is that?

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

・ロト ・四ト ・ヨト ・ヨト

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

・ロト ・ 四ト ・ ヨト ・ ヨト

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with supp f_0 non intersecting supp f. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

・ロト ・ 四ト ・ ヨト ・ ヨト

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λ_h , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_h$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f₀ supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

Place a small object with thermoacoustic properties " f_0 " different from the surrounding media. That means: replace f by $f + f_0$ with $\operatorname{supp} f_0$ non intersecting $\operatorname{supp} f$. Take your measurements $\Lambda(f + f_0)$. Subtract Λf from that. Then we get

Λf_0

without the need to alter the patient. Now, from Λf_0 , we can get the travel times from $\partial \operatorname{supp} f$ through Ω . If $\operatorname{supp} f_0$ is small enough, then just measure the first arrival time at each point on the boundary.

Then repeat this with f_0 supported elsewhere, etc. Then recover c from the travel times. Moreover, we do not need to know f for that. Once we know c, we can recover f.

・ロト ・四ト ・ヨト ・ヨト