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Photoacoustic Example

In-vivo ligation of the Ramus interventricularis anterior (= LAD)

to induce myocardial infarction: 30min ligation, 120min

reperfusion

Figure: Tomograph, Probe, Experiment



Photoacoustic

Figure: Photoacoustic Imaging, Histology

Grossauer, Holutta, Jaschke, Nuster, Paltauf, S.

No physical quantity.



Impedance–Acoustic Idea

Physical principle:

1. Induce electrical current

2. Induced current induces thermal heating

3. Induced heating produces ultrasound waves

Reconstruction:

1. Photoacoustic reconstruction 3→ 2
2. Conductivity reconstruction 2→ 1



Modeling Equations: Electric Potential

B ⊂ Rn domain of interest – body, S surface.
I Time dependent voltage F (x , t) = f (x)

√
g(t) on S .

I Induced electric potential U(x , t) = u(x)
√
g(t) on B.

u is quasi-static electric potential.

I g ∼ amount of applied electrical power.

Modeling assumption: Electric potential reaches its state of

equilibrium immediately



Joule’s Law

Relation between

Rate of absorbed electrical power density Q̇(x , t) and the electric
potential

Q̇(x , t) = σ(x)|∇u(x)|2g(t).
where u solves quasi-static equation

∇ · (σ(x)∇u(x)) = 0 in B,

u(x)|S = f (x) on S .



Rate of change of temperature:

Ṫ (x , t) =
1

ρ(x , t)c(x)
Q̇(x , t),

I c(x) is the specific heat capacity
I ρ(x , t) is the mass density

Model assumption is valid if current is only applied for a short

time – we can neglect thermal diffusion.

⇒ Pulsed voltage (which is proportional to g).



Physical Quantities

I (Robinson, Richardson, Green and Preece) The specific heat
capacity and density of breast fat: c = 2.43J/(gK) and
ρ = 0.934g/cm3

I cube of 1cm side-length: 0, 934g. Electrical resistance
R = σ−1length/area = 250Ohm.

I Specific electrical conductivity in adipose tissue:
σ = 0.4/(Ohmm).

I Pulse of ∆t = 1µs with σ|∇u| = I = 3A
I Resulting temperature change: ∆T = 0.99mK.

Temperature change seems large enough to produce ultrasound

waves.

Physical parameters in accordance with high frequency surgery.



Linearized Expansion Equation

Change of temperature is related to change of density and to the

change of pressure:

β(x)Ṫ (x , t) =
1

v2s
ṗ(x , t)− ρ̇(x , t),

I vs is the speed of sound,
I β(x) is the thermal expansion coefficient,
I change of density is related to velocity

ρ̇(x , t) = −ρ0∇ · v(x , t) .

I Euler equation: ρ0v̇(x , t) = −∇p(x , t).



Combination

of the equations for rate of changes of pressure and change of

density yields:

1

v2s
p̈(x , t)−∆p(x , t) =

β(x)

ρ0c(x)
σ(x)|∇u(x)|2ġ(t).



Summary

Take g = δ (impulse), then

∇ · (σ∇u(x)) = 0 in B,

u(x)|S = f on S ,

and
p̈(x , t)−∆p(x , t) = 0 in Rn,

p(x , 0) = σ(x)|∇u(x)|2χB(x) in Rn,
ṗ(x , 0) = 0 in Rn .



Reconstruction algorithm for σ

I Time reversal algorithm p → ũ,

ũ(x) := σ(x)|∇u(x)|2 .

Not the emphasize of this talk.

I Reconstruct σ from ũ with an iteration method.

Similar problems derived for different measurement setups by

[Ammari et al, Nachman et al].



Formal Newton Algorithm

uσ solves

∇ · (σ∇u) = 0, u|S = f .

Directional derivative of u with respect to σ:

vτ := lim
h→0
uσ+hτ − uσ

h

is the solution of

∇ · (σ∇vτ ) = −∇ · (τ∇uσ), vτ |S = 0.



2 Step Newton
Let

E = σ|∇uσ|2
be the reconstructed energy density and

E ′(σ)τ = τ |∇uσ|2 + 2σ∇uσ · ∇vτ .
σn ≈ σ̂ (true solution), then a Newton-step consists in solving

E ′(σn)∆ = E − σn|∇uσn |2

and the update σn+1 = σn + ∆.
Computationally expensive inversion of E ′(σ) ⇒

E ′(σ)τ = (Mσ + Pσ)τ,

with

Mστ := τ |∇uσ|2 and Pστ := 2σ∇uσ · ∇vτ .
Multiplication operator can be inverted computationally easily, but

maybe has to be regularized.



Iterative Method, similarly to Ammari et al.

Given E , f , and σn,

I calculate ∇uσn ,
I set τ := E

|∇uσn |2 − σn,
I calculate the solution vτ of the linearized problem,
I update σn+1 := E−2σ∇uσn ·∇vτ

|∇uσn |2 .



Data and Photoacoustic Back-Projection T = 4

Figure: Exact conductivity, σ|∇uσ|2, reconstructed at T = 4



Reconstruction

Figure: Exact and reconstructed conductivity σ
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