Electron Microscope Tomography

Todd Quinto

www.tufts.edu/~equinto Tufts University

BIRS Workshop Mathematical Methods in Emerging Modalities of Medical Imaging

< □ > < 同 > < 回 > < 回

In single-axis tilt electron tomography (ET), one rotates the object on one axis, $\pm 60^{\circ}$ from vertical in $1 - 2^{\circ}$ increments.

A (10) > A (10) > A (10)

Practical Issues:

- Dose is small leading to very noisy data (a few hundred e⁻ counts per pixel)!
- The sample can warp and optical distortions can occur during data acquisition [A. Lawrence, et al.].

Practical Issues:

- Dose is small leading to very noisy data (a few hundred e⁻ counts per pixel)!
- The sample can warp and optical distortions can occur during data acquisition [A. Lawrence, et al.].
- For small objects, the electron beams travel along lines.

Practical Issues:

- Dose is small leading to very noisy data (a few hundred e⁻ counts per pixel)!
- The sample can warp and optical distortions can occur during data acquisition [A. Lawrence, et al.].
- For small objects, the electron beams travel along lines.
- For large electron beams, electrons far from the central axis travel over curves [*ibid*.].

A (10) A (10)

The Model

f is the density or scattering potential of an object γ is a line or curve over which electrons travel.

The X-ray Transform:

ET Data ~
$$\mathcal{P}f(\gamma) := \int_{\boldsymbol{x}\in\gamma} f(\boldsymbol{x}) d\boldsymbol{s}$$

∃ ▶ ∢

< 17 ▶

The Model and Goal

f is the density or scattering potential of an object γ is a line or curve over which electrons travel.

The X-ray Transform:

ET Data ~
$$\mathcal{P}f(\gamma) := \int_{\boldsymbol{x}\in\gamma} f(\boldsymbol{x}) ds$$

The Goal: Recover a picture of the object including boundaries, molecule shapes,..., from ET data over a finite number of lines (curves).

Local algorithms for lines: [*Planar:* Kuchment, Q, *3-D cone beam:* Louis, Maaß, Anastasio, Katsevich, Yee, *3-D parallel beam:* QÖ, QBC], based on Lambda CT [Smith, Vainberg].

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Local algorithms for lines: [*Planar:* Kuchment, Q, *3-D cone beam:* Louis, Maaß, Anastasio, Katsevich, Yee, *3-D parallel beam:* QÖ, QBC], based on Lambda CT [Smith, Vainberg].

• Warning: In general, *f* is not determined by limited angle ROI data on lines, even with continuous data!

A (10) A (10)

Local algorithms for lines: [*Planar:* Kuchment, Q, *3-D cone beam:* Louis, Maaß, Anastasio, Katsevich, Yee, *3-D parallel beam:* QÖ, QBC], based on Lambda CT [Smith, Vainberg].

- Warning: In general, *f* is not determined by limited angle ROI data on lines, even with continuous data!
- We will use microlocal analysis to determine which boundaries are visible and develop an algorithm to reconstruct these features.

A (10) A (10)

Local algorithms for lines: [*Planar:* Kuchment, Q, *3-D cone beam:* Louis, Maaß, Anastasio, Katsevich, Yee, *3-D parallel beam:* QÖ, QBC], based on Lambda CT [Smith, Vainberg].

- Warning: In general, *f* is not determined by limited angle ROI data on lines, even with continuous data!
- We will use microlocal analysis to determine which boundaries are visible and develop an algorithm to reconstruct these features.
- This is a regularization method (reconstruct only what's visible).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear Electron Paths

Now show reconstructions for small samples ($\sim 100 \times 100$ nm). We use a model that assumes electrons travel over lines, and our ELT algorithm is based on Lambda CT.

This is joint with Ozan Öktem (Comsol and Royal Institute of Technology, Stockholm) and Ulf Skoglund (Karolinska Institute, Stockholm).

Supported by: NSF, The Wenner Gren Stiftelserna, Tufts, Sidec and the University of Stockholm.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I. ET With Linear Paths

Comparison Using In Situ Nephrin [QÖ 2008]

In situ kidney sample, 200 kV TEM single-axis tilt data, uniform sampling, tilt angles every 2° between -60° and 60° , 418 e⁻/pixel total dose. 70 nm³ ROI. Data are assumed to be on lines.

ELT reconstruction

Sidec's original low-pass FBP reconstruction

TMV Data

High-dose electron micrograph of Tobacco Mosaic Virus (TMV). The middle inset is the ROI and the two on the right are high-dose (top) and low-dose images of the ROI.

I. ET With Linear Paths

3-D Comparison Using TMV [QSÖ 2009]

TMV sample, 300 kV TEM single-axis tilt data, uniform sampling, tilt angles every 2° between -62° and 62° , 407 e⁻/pixel total dose. 115 nm³ ROI.

ELT reconstruction

Karolinska's optimized FBP reconstruction

I. ET With Linear Paths

2-D Comparison Using TMV [QSÖ 2009]

TMV sample, 300 kV TEM single-axis tilt data, uniform sampling, tilt angles every 2° between -62° and 62° , 407 e⁻/pixel total dose. 115 nm × 115 nm × 1.15 nm ROI.

ELT reconstruction

Karolinska's optimized FBP reconstruction

Curvilinear Electron Paths

We now develop a Radon transform that integrates over curves and provide reconstructions on simulated data.

Much integral geometric work has been done for X-ray transforms [Greenleaf and Uhlmann, Cormack, Gelfand et al., Finch, Globevnik, Krishnan, Kuchment, Kunyansky, Kurusa, Palamodov, Romanov, Stefanov ...]

The very new theoretical work is joint with Hans Rullgård.

Supported by: NSF and Tufts

- A B M A B M

In large electron microscopes one can take images of about 8,000 nm square.

In large-field ET the electrons travel over curvilinear paths [A. Lawrence et al.].

The Mathematical Setup

The curvilinear paths: For each angle $\theta \in]a, b[$, the curves are defined by the smooth map (a projection in some global coordinates)

$$\boldsymbol{\rho}_{ heta}: \mathbb{R}^3
ightarrow \mathbb{R}^2, \ \boldsymbol{\rho}_{ heta}(\boldsymbol{x}) = \boldsymbol{y}$$

where **y** is the point on the detector plane and the electron beam through **x** for tilt θ .

Curves: $(\theta, \mathbf{y}) \in Y =]a, b[\times \mathbb{R}^2 \qquad \gamma_{\theta, \mathbf{y}} = \mathbf{p}_{\theta}^{-1}(\{\mathbf{y}\}) \cong a$ line Curvilinear X-ray Transform: $\mathcal{P}_{\mathbf{p}}f(\theta, \mathbf{y}) = \int_{\mathbf{x} \in \gamma_{\theta, \mathbf{y}}} f(x) ds$

The Mathematical Setup

The curvilinear paths: For each angle $\theta \in]a, b[$, the curves are defined by the smooth map (a projection in some global coordinates)

$$\boldsymbol{p}_{ heta}: \mathbb{R}^3
ightarrow \mathbb{R}^2, \ \boldsymbol{p}_{ heta}(\boldsymbol{x}) = \boldsymbol{y}$$

where **y** is the point on the detector plane and the electron beam through **x** for tilt θ .

Curves:
$$(\theta, \mathbf{y}) \in Y =]a, b[\times \mathbb{R}^2 \qquad \gamma_{\theta, \mathbf{y}} = \mathbf{p}_{\theta}^{-1}(\{\mathbf{y}\}) \cong a$$
 line
Curvilinear X-ray Transform: $\mathcal{P}_{\mathbf{p}}f(\theta, \mathbf{y}) = \int_{\mathbf{x} \in \gamma_{\theta, \mathbf{y}}} f(x) ds$

Backprojection Set: $S_x = \{(\theta, y) | x \in \gamma_{\theta, y}\}$, all curves containing x**Backprojection Operator:**

$$\mathcal{P}_{\boldsymbol{p}}^{*}g(\boldsymbol{x}) = \int_{(\theta, \boldsymbol{y}) \in S_{\boldsymbol{x}}} g(\theta, \boldsymbol{y}) d\theta = \int_{\theta \in]\boldsymbol{a}, \boldsymbol{b}[} g(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x})) d\theta.$$

If $S_{\boldsymbol{x}}$ cannot be made compact, one cuts off near the ends of $]\boldsymbol{a}, \boldsymbol{b}[$.

Example

Helical electron paths with pitch 20π .

æ

< E

< (T) > <

Notation: $\partial_{\mathbf{x}}$ is the gradient in \mathbf{x} and similarly for $\partial_{\mathbf{y}}$ and ∂_{θ} , $\xi d\mathbf{x} = \xi_1 d\mathbf{x}_1 + \xi_2 d\mathbf{x}_2 + \xi_3 d\mathbf{x}_3$ and $\eta d\mathbf{y} = \eta_1 d\mathbf{y}_1 + \eta_2 d\mathbf{y}_2$.

< A > < B > < B

The Mathematical Assumptions

Notation: $\partial_{\mathbf{x}}$ is the gradient in \mathbf{x} and similarly for $\partial_{\mathbf{y}}$ and ∂_{θ} , $\xi d\mathbf{x} = \xi_1 d\mathbf{x}_1 + \xi_2 d\mathbf{x}_2 + \xi_3 d\mathbf{x}_3$ and $\eta d\mathbf{y} = \eta_1 d\mathbf{y}_1 + \eta_2 d\mathbf{y}_2$.

Our Assumptions:

- $(\mathbf{x}, \theta) \mapsto \mathbf{p}_{\theta}(\mathbf{x}) \in \mathbb{R}^2$ is C^{∞} and is a fiber map in \mathbf{x} with fibers diffeomorphic to lines. So, the matrix $\partial_{\mathbf{x}} \mathbf{p}_{\theta}(\mathbf{x})$ has maximal rank (two).
- The maps Y \(\exists (\theta, \mathbf{y}) \mathbf{i} \mathbf{h}_{\theta, \mathbf{y}} \text{ and } \mathbb{R}^3 \(\exists \mathbf{x} \mathbf{m} \mathbf{s} \mathbf{x} \text{ are one-to-one.} \exists \)
 The 4 \times 3 matrix \$\begin{pmatrix} \partial_{\mathbf{x}} \mathbf{p}_{\theta}(\mathbf{x}) \\ \partial_{\mathbf{\theta}} \mathbf{p}_{\mathbf{\theta}}(\mathbf{x}) \end{pmatrix}\$ has maximal rank (three).

< 回 > < 回 > < 回 > -

Wavefront Set

Definition

Let $(\mathbf{x}_0, \xi_0 d\mathbf{x}) \in T^*(\mathbb{R}^n)$, $\xi_0 \neq 0$. The function f is in C^{∞} at \mathbf{x}_0 in direction ξ_0 if there is a cut-off function φ near \mathbf{x}_0 such that

$$\mathcal{F}(\varphi f)(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\boldsymbol{x} \in \mathbb{R}^n} e^{-i\boldsymbol{x} \cdot \xi} \varphi(\boldsymbol{x}) f(\boldsymbol{x}) \, dx \tag{1}$$

is rapidly decreasing in some open cone from the origin, *V*, containing ξ_0 .

Wavefront Set

Definition

Let $(\mathbf{x}_0, \xi_0 d\mathbf{x}) \in T^*(\mathbb{R}^n)$, $\xi_0 \neq 0$. The function f is in C^{∞} at \mathbf{x}_0 in direction ξ_0 if there is a cut-off function φ near \mathbf{x}_0 such that

$$\mathcal{F}(\varphi f)(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\boldsymbol{x} \in \mathbb{R}^n} e^{-i\boldsymbol{x} \cdot \xi} \varphi(\boldsymbol{x}) f(\boldsymbol{x}) \, dx \tag{1}$$

is rapidly decreasing in some open cone from the origin, *V*, containing ξ_0 . On the other hand, $(\mathbf{x}_0, \xi_0 d\mathbf{x}) \in WF(f)$ if *f* is **not** rapidly decreasing at \mathbf{x}_0 in direction ξ_0 (sim. for T^*Y)

Wavefront Set

Definition

Let $(\mathbf{x}_0, \xi_0 d\mathbf{x}) \in T^*(\mathbb{R}^n)$, $\xi_0 \neq 0$. The function f is in C^{∞} at \mathbf{x}_0 in direction ξ_0 if there is a cut-off function φ near \mathbf{x}_0 such that

$$\mathcal{F}(\varphi f)(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\boldsymbol{x} \in \mathbb{R}^n} e^{-i\boldsymbol{x} \cdot \xi} \varphi(\boldsymbol{x}) f(\boldsymbol{x}) \, dx \tag{1}$$

is rapidly decreasing in some open cone from the origin, *V*, containing ξ_0 . On the other hand, $(\mathbf{x}_0, \xi_0 \mathbf{dx}) \in WF(f)$ if *f* is **not** rapidly decreasing at

 x_0 in direction ξ_0 (sim. for T^*Y)

Example

f = 1 inside a disk in \mathbb{R}^2 , f = 0 outside. What is WF(*f*)?

< ロ > < 同 > < 回 > < 回 >

The Microlocal Setup

Set of Points: \mathbb{R}^3 , Set of Curves: $Y = \{(\theta, \mathbf{y}) | \mathbf{y} \in \mathbb{R}^2, \theta \in]a, b[\}$ Incidence Relation: $Z = \{(\theta, \mathbf{y}; \mathbf{x}) \in Y \times \mathbb{R}^3 | \mathbf{x} \in \gamma_{\theta, \mathbf{y}}\}$ [Gelfand, Helgason]

Double Fibration:

where the projections, π 's, are fiber maps.

The Microlocal Setup

Set of Points: \mathbb{R}^3 , Set of Curves: $Y = \{(\theta, \mathbf{y}) | \mathbf{y} \in \mathbb{R}^2, \theta \in]a, b[\}$ Incidence Relation: $Z = \{(\theta, \mathbf{y}; \mathbf{x}) \in Y \times \mathbb{R}^3 | \mathbf{x} \in \gamma_{\theta, \mathbf{y}}\}$ [Gelfand, Helgason]

Double Fibration:

where the projections, π 's, are fiber maps.

$$\gamma_{\theta, \boldsymbol{y}} = \pi_R \left(\pi_L^{-1}(\{(\theta, \boldsymbol{y})\}) \right) \qquad \boldsymbol{S}_{\boldsymbol{x}} = \pi_L \left(\pi_R^{-1}(\{\boldsymbol{x}\}) \right)$$

\mathcal{P}_{p} as a FIO

We prove that \mathcal{P}_{p} is an elliptic Fourier integral operator with canonical relation $\mathcal{C} = (N^{*}(Z) \setminus \mathbf{0})'$. The properties of the FIO \mathcal{P}_{p} and \mathcal{P}_{p}^{*} are determined by the microlocal diagram:

A B > A B >

\mathcal{P}_{p} as a FIO

We prove that \mathcal{P}_{p} is an elliptic Fourier integral operator with canonical relation $\mathcal{C} = (N^{*}(Z) \setminus \mathbf{0})'$. The properties of the FIO \mathcal{P}_{p} and \mathcal{P}_{p}^{*} are determined by the microlocal diagram:

In particular, if Π_L were an injective immersion, (the Bolker Assumption) $\mathcal{P}_p^* \mathcal{P}_p$ would be an elliptic Ψ DO (in visible directions).

\mathcal{P}_{p} as a FIO

We prove that \mathcal{P}_{p} is an elliptic Fourier integral operator with canonical relation $\mathcal{C} = (N^{*}(Z) \setminus \mathbf{0})'$. The properties of the FIO \mathcal{P}_{p} and \mathcal{P}_{p}^{*} are determined by the microlocal diagram:

In particular, if Π_L were an injective immersion, (the Bolker Assumption) $\mathcal{P}_p^* \mathcal{P}_p$ would be an elliptic Ψ DO (in visible directions). The extent to which Π_L doesn't satisfy the Bolker Assumption determines how far $\mathcal{P}_p^* \mathcal{P}_p$ is from being a standard elliptic Ψ DO [Guillemin,.... Admissible Case: Greenleaf, Uhlmann, Felea, Finch, Lan, Stefanov,....]

Under our assumptions \mathcal{P}_p is an elliptic Fourier integral operator associated to the canonical relation $\mathcal{C} = (N^*Z \setminus \mathbf{0})'$

$$egin{aligned} \mathcal{C} &= \{(heta, oldsymbol{p}_{ heta}(oldsymbol{x}), -\eta \cdot \partial_{ heta} oldsymbol{p}_{ heta}(oldsymbol{x}) doldsymbol{ heta} + \eta \cdot oldsymbol{dy}; oldsymbol{x}, \eta \cdot \partial_{oldsymbol{x}} oldsymbol{p}_{ heta}(oldsymbol{x}) doldsymbol{x}) \ &\left| heta \in]oldsymbol{a}, oldsymbol{b}[, \ \eta \in \mathbb{R}^2 \setminus oldsymbol{0}, \ oldsymbol{x} \in \mathbb{R}^3 \} \end{aligned}$$

 Π_L is not injective. Injectivity Conditions Π_L is an immersion above each (θ, \mathbf{y}) except on a one-dimensional set of covectors. Immersion Conditions

Under our assumptions \mathcal{P}_p is an elliptic Fourier integral operator associated to the canonical relation $\mathcal{C} = (N^*Z \setminus \mathbf{0})'$

$$egin{aligned} \mathcal{C} &= \{(heta, oldsymbol{p}_{ heta}(oldsymbol{x}), -\eta \cdot \partial_{ heta} oldsymbol{p}_{ heta}(oldsymbol{x}) doldsymbol{ heta} + \eta \cdot oldsymbol{dy}; oldsymbol{x}, \eta \cdot \partial_{oldsymbol{x}} oldsymbol{p}_{ heta}(oldsymbol{x}) doldsymbol{x}) \ &\left| heta \in]oldsymbol{a}, oldsymbol{b}[, \ \eta \in \mathbb{R}^2 \setminus oldsymbol{0}, \ oldsymbol{x} \in \mathbb{R}^3 \} \end{aligned}$$

 Π_L is not injective. Injectivity Conditions Π_L is an immersion above each (θ, \mathbf{y}) except on a one-dimensional set of covectors. Immersion Conditions These conditions describe how Π_L does not satisfy the Bolker Assumption.

Under our assumptions \mathcal{P}_p is an elliptic Fourier integral operator associated to the canonical relation $\mathcal{C} = (N^*Z \setminus \mathbf{0})'$

$$egin{aligned} \mathcal{C} &= \{(heta, oldsymbol{p}_{ heta}(oldsymbol{x}), -\eta \cdot \partial_{ heta} oldsymbol{p}_{ heta}(oldsymbol{x}) doldsymbol{ heta} + \eta \cdot oldsymbol{dy}; oldsymbol{x}, \eta \cdot \partial_{oldsymbol{x}} oldsymbol{p}_{ heta}(oldsymbol{x}) doldsymbol{x}) \ &\left| heta \in]oldsymbol{a}, oldsymbol{b}[, \ \eta \in \mathbb{R}^2 \setminus oldsymbol{0}, \ oldsymbol{x} \in \mathbb{R}^3 \} \end{aligned}$$

 Π_L is not injective. Injectivity Conditions Π_L is an immersion above each (θ, \mathbf{y}) except on a one-dimensional set of covectors. Immersion Conditions These conditions describe how Π_L does not satisfy the Bolker Assumption.

Proof.

 \mathcal{P}_{p} has Schwartz kernel I_{Z} , integration over Z. By results of Guillemin, \mathcal{C} is the canonical relation for I_{Z} . Π_{L} and Π_{R} don't map to the zero section, so \mathcal{P}_{p} is a FIO associated to \mathcal{C} . Now, study Π_{L} .

Let \mathcal{P}_{p} be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}'(\mathbb{R}^{3})$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \mathbf{y} . Then,

$$\begin{split} \mathrm{WF}(\mathcal{P}_{\boldsymbol{p}}(f)) &\subset \mathsf{\Pi}_{L}\left(\mathsf{\Pi}_{R}^{-1}\mathrm{WF}(f)\right) \\ \mathrm{WF}(\mathcal{P}_{\boldsymbol{p}}^{*}\mathcal{DP}_{\boldsymbol{p}}(f)) &\subset \mathsf{\Pi}_{R}\left(\mathsf{\Pi}_{L}^{-1}\left(\mathsf{\Pi}_{L}\left(\mathsf{\Pi}_{R}^{-1}\mathrm{WF}(f)\right)\right)\right) \end{split}$$

< 回 > < 回 > < 回 > -

Let \mathcal{P}_{p} be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}'(\mathbb{R}^{3})$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \mathbf{y} . Then,

$$WF(\mathcal{P}_{\boldsymbol{p}}(f)) \subset \Pi_{L} \left(\Pi_{R}^{-1} WF(f) \right)$$
$$WF(\mathcal{P}_{\boldsymbol{p}}^{*} \mathcal{D}\mathcal{P}_{\boldsymbol{p}}(f)) \subset \Pi_{R} \left(\Pi_{L}^{-1} \left(\Pi_{L} \left(\Pi_{R}^{-1} WF(f) \right) \right) \right)$$

When the Bolker Assumption holds globally enough above a singularity of f, $(\mathbf{x_0}, \xi_0 \mathbf{dx}) \in WF(f) \cap \Pi_R(\mathcal{C})$, that singularity will be visible in $\mathcal{P}_{\mathbf{p}}f$ and then in $\mathcal{P}_{\mathbf{p}}^* D\mathcal{P}_{\mathbf{p}}f$ (see [QR 2009] for a description depending on supp f and the geometry of \mathcal{C}).

Let \mathcal{P}_{p} be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}'(\mathbb{R}^{3})$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \mathbf{y} . Then,

 $WF(\mathcal{P}_{\boldsymbol{p}}(f)) \subset \Pi_{L} \left(\Pi_{R}^{-1} WF(f) \right)$ $WF(\mathcal{P}_{\boldsymbol{p}}^{*} \mathcal{D}\mathcal{P}_{\boldsymbol{p}}(f)) \subset \Pi_{R} \left(\Pi_{L}^{-1} \left(\Pi_{L} \left(\Pi_{R}^{-1} WF(f) \right) \right) \right)$

When the Bolker Assumption holds globally enough above a singularity of f, $(\mathbf{x_0}, \xi_0 \mathbf{dx}) \in WF(f) \cap \Pi_R(\mathcal{C})$, that singularity will be visible in $\mathcal{P}_{\mathbf{p}}f$ and then in $\mathcal{P}_{\mathbf{p}}^* D\mathcal{P}_{\mathbf{p}}f$ (see [QR 2009] for a description depending on supp f and the geometry of \mathcal{C}).

• Any backprojection algorithm can add singularities to the reconstruction.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathcal{P}_{p} be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}'(\mathbb{R}^{3})$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \mathbf{y} . Then,

$$WF(\mathcal{P}_{\boldsymbol{p}}(f)) \subset \Pi_{L} \left(\Pi_{R}^{-1} WF(f) \right)$$
$$WF(\mathcal{P}_{\boldsymbol{p}}^{*} \mathcal{D}\mathcal{P}_{\boldsymbol{p}}(f)) \subset \Pi_{R} \left(\Pi_{L}^{-1} \left(\Pi_{L} \left(\Pi_{R}^{-1} WF(f) \right) \right) \right)$$

When the Bolker Assumption holds globally enough above a singularity of f, $(\mathbf{x_0}, \xi_0 \mathbf{dx}) \in WF(f) \cap \Pi_R(\mathcal{C})$, that singularity will be visible in $\mathcal{P}_{\mathbf{p}}f$ and then in $\mathcal{P}_{\mathbf{p}}^* D\mathcal{P}_{\mathbf{p}}f$ (see [QR 2009] for a description depending on supp f and the geometry of \mathcal{C}).

- Any backprojection algorithm can add singularities to the reconstruction.
- However, backprojection algorithms can show singularities of $f \rightarrow$.

Our algorithm: $\Lambda_p f = \mathcal{P}_p^* D \mathcal{P}_p f$ where $D = D(\theta, \mathbf{x})$ is a second order PDO with symbol zero on images under Π_L of covectors on which Π_L is not an immersion.

• Description of $D(\theta, \mathbf{x})$

.

Our algorithm: $\Lambda_p f = \mathcal{P}_p^* D \mathcal{P}_p f$ where $D = D(\theta, \mathbf{x})$ is a second order PDO with symbol zero on images under Π_L of covectors on which Π_L is not an immersion.

• Description of $D(\theta, \mathbf{x})$

• Our choice of *D* suppresses *some* added singularities.

Our algorithm: $\Lambda_p f = \mathcal{P}_p^* D \mathcal{P}_p f$ where $D = D(\theta, \mathbf{x})$ is a second order PDO with symbol zero on images under Π_L of covectors on which Π_L is not an immersion.

• Description of $D(\theta, \mathbf{x})$

- Our choice of *D* suppresses *some* added singularities.
- For admissible complexes (e.g., for ET on lines) the added singularities are suppressed by this differential operator everywhere (noninjectivity=nonimmersion).

Our algorithm: $\Lambda_p f = \mathcal{P}_p^* D \mathcal{P}_p f$ where $D = D(\theta, \mathbf{x})$ is a second order PDO with symbol zero on images under Π_L of covectors on which Π_L is not an immersion.

• Description of $D(\theta, \mathbf{x})$

- Our choice of *D* suppresses *some* added singularities.
- For admissible complexes (e.g., for ET on lines) the added singularities are suppressed by this differential operator everywhere (noninjectivity=nonimmersion).
- For nonadmissible complexes, added singularities from far away can show up the reconstruction even if one uses the clever *D*.

Helix with Pitch 20π , cross-section in *xy*-plane

One ball of radius 0.5. 70 angles in $[0, \pi]$ and a 201 × 201 detector grid on $[-1, 1]^2$. x_1 axis is vertical!

Derivative \perp bad direction

Derivative in bad direction

Helix with Pitch π , cross-section in xy-plane

One ball of radius 0.5. $\theta \in [0, 2\pi]$, full angular data, rotating on the x_1 axis. x_1 axis is vertical!

Derivative \perp bad direction

Derivative in bad direction

• Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.

< A > < A > >

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen *D* suppresses added singularities from nearby and far away [QÖ 2008].
 Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen *D* suppresses added singularities from nearby and far away [QÖ 2008].
 Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.
- With small pitch, the singularities from far away influence the reconstruction.

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen *D* suppresses added singularities from nearby and far away [QÖ 2008].
 Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.
- With small pitch, the singularities from far away influence the reconstruction.
- We have a related algorithm for slant-hole SPECT [QBC 2008]. Rieder, Schuster and I have developed a related algorithm for Sonar.

글 🕨 🖌 글

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen *D* suppresses added singularities from nearby and far away [QÖ 2008].
 Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.
- With small pitch, the singularities from far away influence the reconstruction.
- We have a related algorithm for slant-hole SPECT [QBC 2008]. Rieder, Schuster and I have developed a related algorithm for Sonar.

Thanks for your attention!

글 🕨 🖌 글

If the rank assumption doesn't hold, then

$$\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}) \\ \partial_{\boldsymbol{\theta}} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}_{\mathbf{0}}) \end{pmatrix}$$
 has rank two

Todd Quinto (www.tufts.edu/~equinto Electron Microscope Tomography

If the rank assumption doesn't hold, then

$$\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}) \\ \partial_{\boldsymbol{\theta}} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}_{\mathbf{0}}) \end{pmatrix}$$
 has rank two

span $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})$ is the normal plane to $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x})}$ at \boldsymbol{x} .

If the rank assumption doesn't hold, then

$$\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}) \\ \partial_{\boldsymbol{\theta}} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}) \end{pmatrix}$$
 has rank two.

span $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})$ is the normal plane to $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x})}$ at \boldsymbol{x} .

If the rank is two, then span $(\partial_{\theta}(\partial_{\boldsymbol{x}}\boldsymbol{p}_{\theta}(\boldsymbol{x})))$ is a subset of the normal plane, span $(\partial_{\boldsymbol{x}}\boldsymbol{p}_{\theta}(\boldsymbol{x}))$.

If the rank assumption doesn't hold, then $\begin{pmatrix} \partial_{\mathbf{x}} \mathbf{p}_{\theta}(\mathbf{x}) \\ \partial_{\theta} \partial_{\mathbf{x}} \mathbf{p}_{\theta}(\mathbf{x}) \end{pmatrix}$ has rank two.

イロト 不得 トイヨト イヨト

24/314

span $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x})$ is the normal plane to $\gamma_{\boldsymbol{\theta}, \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x})}$ at \boldsymbol{x} .

If the rank is two, then span $(\partial_{\theta}(\partial_{\mathbf{x}} \boldsymbol{p}_{\theta}(\mathbf{x})))$ is a subset of the normal plane, span $(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}))$.

So, the tangent plane doesn't "change" as θ is changed infinitesimally.

This means that, infinitesimally, one does not see a full three-dimensional set of cotangent vectors at x from the data as from data $\mathcal{P}_{p}f$, one sees only covectors conormal to $\gamma_{\theta, p_{\alpha}(\mathbf{x})}$ at \mathbf{x}).

 Π_L is not injective. Let $(\theta, \mathbf{y}) \in Y$ and $\eta \in \mathbb{R}^2 \setminus \mathbf{0}$. Covectors in C map to the same point under Π_L iff they are of the form $\lambda_j := (\theta, \mathbf{p}_{\theta}(\mathbf{x}_j), -\eta \cdot \partial_{\theta} \mathbf{p}_{\theta}(\mathbf{x}_j) \mathbf{d}\theta + \eta \cdot \mathbf{d}\mathbf{y}; \mathbf{x}_j, \eta \cdot \partial_{\mathbf{x}} \mathbf{p}_{\theta}(\mathbf{x}_j) \mathbf{d}\mathbf{x})$ for j = 0, 1, where

$$\boldsymbol{\rho}_{\theta}(\boldsymbol{x}_0) = \boldsymbol{\rho}_{\theta}(\boldsymbol{x}_1) \tag{2}$$

$$\eta \cdot (\partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_{0}) - \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_{1})) = \boldsymbol{0}.$$
(3)

Generically, condition (3) will mean that η is perpendicular to $\partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_0) - \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_0)$. In all cases, for all \boldsymbol{x}_0 and \boldsymbol{x}_1 in $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}_0)}$ there are points for which this condition holds.

э

 Π_L is not injective. Let $(\theta, \mathbf{y}) \in Y$ and $\eta \in \mathbb{R}^2 \setminus \mathbf{0}$. Covectors in C map to the same point under Π_L iff they are of the form $\lambda_j := (\theta, \mathbf{p}_{\theta}(\mathbf{x}_j), -\eta \cdot \partial_{\theta} \mathbf{p}_{\theta}(\mathbf{x}_j) \mathbf{d}\theta + \eta \cdot \mathbf{d}\mathbf{y}; \mathbf{x}_j, \eta \cdot \partial_{\mathbf{x}} \mathbf{p}_{\theta}(\mathbf{x}_j) \mathbf{d}\mathbf{x})$ for j = 0, 1, where

$$\boldsymbol{p}_{\theta}(\boldsymbol{x}_0) = \boldsymbol{p}_{\theta}(\boldsymbol{x}_1) \tag{2}$$

$$\eta \cdot (\partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_0) - \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_1)) = \boldsymbol{0}.$$

Condition (2) means that \boldsymbol{x}_0 and \boldsymbol{x}_1 both lie on the same curve, $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}_0)}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(3)

 Π_L is not injective. Let $(\theta, \mathbf{y}) \in Y$ and $\eta \in \mathbb{R}^2 \setminus \mathbf{0}$. Covectors in C map to the same point under Π_L iff they are of the form $\lambda_j := (\theta, \mathbf{p}_{\theta}(\mathbf{x}_j), -\eta \cdot \partial_{\theta} \mathbf{p}_{\theta}(\mathbf{x}_j) \mathbf{d}\theta + \eta \cdot \mathbf{d}\mathbf{y}; \mathbf{x}_j, \eta \cdot \partial_{\mathbf{x}} \mathbf{p}_{\theta}(\mathbf{x}_j) \mathbf{d}\mathbf{x})$ for j = 0, 1, where

$$\boldsymbol{\rho}_{\theta}(\boldsymbol{x}_0) = \boldsymbol{\rho}_{\theta}(\boldsymbol{x}_1) \tag{2}$$

$$\eta \cdot (\partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_0) - \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_1)) = \boldsymbol{0}.$$

Condition (2) means that x_0 and x_1 both lie on the same curve,

 $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}_{0})}$. Generically, condition (3) will mean that η is perpendicular to $\partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_{0}) - \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}_{0})$. In all cases, for all \boldsymbol{x}_{0} and \boldsymbol{x}_{1} in $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}_{0})}$ there are points for which this condition holds.

э.

(3)

 Π_L is not an immersion. Let

$$\lambda := (\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), -\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\theta + \eta \cdot \boldsymbol{d}\boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\boldsymbol{x}) \in \mathcal{C}.$$

 Π_L is not an immersion at λ iff

$$\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right).$$
(4)

For each (θ, \mathbf{x}) there is a one-dimensional set of such covectors λ .

æ

 Π_1 is not an immersion. Let

$$\lambda := (\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), -\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{\theta} + \eta \cdot \boldsymbol{d} \boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}) \in \mathcal{C}.$$

 Π_{I} is not an immersion at λ iff

$$\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right).$$
(4)

For each (θ, \mathbf{x}) there is a one-dimensional set of such covectors λ .

Proof.

This follows from the expression for $\Pi_L : \mathcal{C} \to T^* Y$ and that $\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}) \\ \partial_{\boldsymbol{x}} \partial_{\boldsymbol{\theta}} \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x}) \end{pmatrix}$ is assumed to have maximal rank (three) and $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{\theta}}$ has maximal rank (two).

イロト イポト イヨト イヨト

For each (θ, \mathbf{y}) and $\mathbf{x} \in \gamma_{\theta, \mathbf{y}}$, we choose a unit tangent vector \mathbf{v} to $\gamma_{\theta, \mathbf{y}}$ at \mathbf{x} and we let

$$\eta_0 = \left(\partial_\theta \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad D = D(\theta, \boldsymbol{x}) = (\partial_{\eta_0})^2$$

where *D* operators on the *y* coordinate.

< 17 > <

For each (θ, \mathbf{y}) and $\mathbf{x} \in \gamma_{\theta, \mathbf{y}}$, we choose a unit tangent vector \mathbf{v} to $\gamma_{\theta, \mathbf{y}}$ at \mathbf{x} and we let

$$\eta_0 = \left(\partial_\theta \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad D = D(\theta, \boldsymbol{x}) = (\partial_{\eta_0})^2$$

where *D* operators on the *y* coordinate. The covectors above $(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), \boldsymbol{x})$

$$\lambda := (\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), -\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\theta + \eta \cdot \boldsymbol{d}\boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\boldsymbol{x}) \in \mathcal{C}.$$

on which Π_{L} is not an injective immersion are those for which η satisfies

$$\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right).$$

For each (θ, \mathbf{y}) and $\mathbf{x} \in \gamma_{\theta, \mathbf{y}}$, we choose a unit tangent vector \mathbf{v} to $\gamma_{\theta, \mathbf{y}}$ at \mathbf{x} and we let

$$\eta_0 = \left(\partial_\theta \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad D = D(\theta, \boldsymbol{x}) = (\partial_{\eta_0})^2$$

where *D* operators on the *y* coordinate. The covectors above $(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), \boldsymbol{x})$

$$\lambda := (\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), -\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\theta + \eta \cdot \boldsymbol{d}\boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\boldsymbol{x}) \in \mathcal{C}.$$

on which Π_L is not an injective immersion are those for which η satisfies

$$\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right).$$

Since $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v} = 0$, for such η , $(\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x})) \boldsymbol{v} = 0$,

For each (θ, \mathbf{y}) and $\mathbf{x} \in \gamma_{\theta, \mathbf{y}}$, we choose a unit tangent vector \mathbf{v} to $\gamma_{\theta, \mathbf{y}}$ at \mathbf{x} and we let

$$\eta_0 = \left(\partial_\theta \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad D = D(\theta, \boldsymbol{x}) = (\partial_{\eta_0})^2$$

where *D* operators on the *y* coordinate. The covectors above $(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), \boldsymbol{x})$

$$\lambda := (\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), -\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\theta + \eta \cdot \boldsymbol{d}\boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d}\boldsymbol{x}) \in \mathcal{C}.$$

on which Π_L is not an injective immersion are those for which η satisfies

$$\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right).$$

Since $\partial_{\boldsymbol{x}}\boldsymbol{p}_{\theta}(\boldsymbol{x})\boldsymbol{v} = 0$, for such η , $(\eta \cdot \partial_{\boldsymbol{x}}\partial_{\theta}\boldsymbol{p}_{\theta}(\boldsymbol{x}))\boldsymbol{v} = 0$, so $\eta \cdot (\partial_{\boldsymbol{x}}\partial_{\theta}\boldsymbol{p}_{\theta}(\boldsymbol{x})\boldsymbol{v}) = 0$, and so $\eta \perp \eta_0$.