Electron Microscope Tomography

Todd Quinto
www.tufts.edu/~equinto
Tufts University
BIRS Workshop Mathematical Methods in Emerging Modalities of Medical Imaging

In single-axis tilt electron tomography (ET), one rotates the object on one axis, $\pm 60^{\circ}$ from vertical in $1-2^{\circ}$ increments.

In single-axis tilt electron tomography (ET), one rotates the object on one axis, $\pm 60^{\circ}$ from vertical in $1-2^{\circ}$ increments. One also can do multi-axis tilt ET and "slant hole ET."

In single-axis tilt electron tomography (ET), one rotates the object on one axis, $\pm 60^{\circ}$ from vertical in $1-2^{\circ}$ increments.
One also can do multi-axis tilt ET and "slant hole ET."

Practical Issues:

(1) Dose is small leading to very noisy data (a few hundred e^{-}counts per pixel)!
(2) The sample can warp and optical distortions can occur during data acquisition [A. Lawrence, et al.].

In single-axis tilt electron tomography (ET), one rotates the object on one axis, $\pm 60^{\circ}$ from vertical in $1-2^{\circ}$ increments.
One also can do multi-axis tilt ET and "slant hole ET."

Practical Issues:

(1) Dose is small leading to very noisy data (a few hundred e^{-}counts per pixel)!
(2) The sample can warp and optical distortions can occur during data acquisition [A. Lawrence, et al.].
(3) For small objects, the electron beams travel along lines.

In single-axis tilt electron tomography (ET), one rotates the object on one axis, $\pm 60^{\circ}$ from vertical in $1-2^{\circ}$ increments.
One also can do multi-axis tilt ET and "slant hole ET."

Practical Issues:

(1) Dose is small leading to very noisy data (a few hundred e^{-}counts per pixel)!
(2) The sample can warp and optical distortions can occur during data acquisition [A. Lawrence, et al.].
(3) For small objects, the electron beams travel along lines.
(4) For large electron beams, electrons far from the central axis travel over curves [ibid.].

The Model

f is the density or scattering potential of an object γ is a line or curve over which electrons travel.

The X-ray Transform:

$$
\text { ET Data } \sim \mathcal{P} f(\gamma):=\int_{\boldsymbol{x} \in \gamma} f(\boldsymbol{x}) d s
$$

The Model and Goal

f is the density or scattering potential of an object
γ is a line or curve over which electrons travel.
The X-ray Transform:

$$
\text { ET Data } \sim \mathcal{P} f(\gamma):=\int_{\boldsymbol{x} \in \gamma} f(\boldsymbol{x}) d s
$$

The Goal: Recover a picture of the object including boundaries, molecule shapes,..., from ET data over a finite number of lines (curves).

Limited Angle ROI CT: data over lines or curves in a limited angular range and passing through a small region (ET!).

Limited Angle ROI CT: data over lines or curves in a limited angular range and passing through a small region (ET!).
Local algorithms for lines: [Planar: Kuchment, Q, 3-D cone beam: Louis, Maaß, Anastasio, Katsevich, Yee, 3-D parallel beam: QÖ, QBC], based on Lambda CT [Smith, Vainberg].

Limited Angle ROI CT: data over lines or curves in a limited angular range and passing through a small region (ET!).
Local algorithms for lines: [Planar: Kuchment, Q, 3-D cone beam: Louis, Maaß, Anastasio, Katsevich, Yee, 3-D parallel beam: QÖ, QBC], based on Lambda CT [Smith, Vainberg].

- Warning: In general, f is not determined by limited angle ROI data on lines, even with continuous data!

Limited Angle ROI CT: data over lines or curves in a limited angular range and passing through a small region (ET!).
Local algorithms for lines: [Planar: Kuchment, Q, 3-D cone beam: Louis, Maaß, Anastasio, Katsevich, Yee, 3-D parallel beam: QÖ, QBC], based on Lambda CT [Smith, Vainberg].

- Warning: In general, f is not determined by limited angle ROI data on lines, even with continuous data!
- We will use microlocal analysis to determine which boundaries are visible and develop an algorithm to reconstruct these features.

Limited Angle ROI CT: data over lines or curves in a limited angular range and passing through a small region (ET!).
Local algorithms for lines: [Planar: Kuchment, Q, 3-D cone beam: Louis, Maaß, Anastasio, Katsevich, Yee, 3-D parallel beam: QÖ, QBC], based on Lambda CT [Smith, Vainberg].

- Warning: In general, f is not determined by limited angle ROI data on lines, even with continuous data!
- We will use microlocal analysis to determine which boundaries are visible and develop an algorithm to reconstruct these features.
- This is a regularization method (reconstruct only what's visible).

Linear Electron Paths

Now show reconstructions for small samples ($\sim 100 \times 100 \mathrm{~nm}$). We use a model that assumes electrons travel over lines, and our ELT algorithm is based on Lambda CT.

This is joint with Ozan Öktem (Comsol and Royal Institute of Technology, Stockholm) and Ulf Skoglund (Karolinska Institute, Stockholm).

Supported by: NSF, The Wenner Gren Stiftelserna, Tufts, Sidec and the University of Stockholm.

Comparison Using In Situ Nephrin [QÖ 2008]

In situ kidney sample, 200 kV TEM single-axis tilt data, uniform sampling, tilt angles every 2° between -60° and $60^{\circ}, 418 \mathrm{e}^{-} /$pixel total dose. $70 \mathrm{~nm}^{3}$ ROI. Data are assumed to be on lines.

ELT reconstruction

Sidec's original low-pass FBP reconstruction

TMV Data

High-dose electron micrograph of Tobacco Mosaic Virus (TMV). The middle inset is the ROI and the two on the right are high-dose (top) and low-dose images of the ROI.

3-D Comparison Using TMV [QSÖ 2009]

TMV sample, 300 kV TEM single-axis tilt data, uniform sampling, tilt angles every 2° between -62° and $62^{\circ}, 407 \mathrm{e}^{-} /$pixel total dose. $115 \mathrm{~nm}^{3} \mathrm{ROI}$.

ELT reconstruction
Karolinska's optimized FBP reconstruction

2-D Comparison Using TMV [QSÖ 2009]

TMV sample, 300 kV TEM single-axis tilt data, uniform sampling, tilt angles every 2° between -62° and $62^{\circ}, 407 \mathrm{e}^{-} /$pixel total dose. $115 \mathrm{~nm} \times 115 \mathrm{~nm} \times 1.15 \mathrm{~nm}$ ROI.

ELT reconstruction

Karolinska's optimized FBP reconstruction

Curvilinear Electron Paths

We now develop a Radon transform that integrates over curves and provide reconstructions on simulated data.

Much integral geometric work has been done for X-ray transforms [Greenleaf and Uhlmann, Cormack, Gelfand et al., Finch, Globevnik, Krishnan, Kuchment, Kunyansky, Kurusa, Palamodov, Romanov, Stefanov ...]

The very new theoretical work is joint with Hans Rullgård.

Supported by: NSF and Tufts

In large electron microscopes one can take images of about 8,000 nm square.

In large-field ET the electrons travel over curvilinear paths [A. Lawrence et al.].

NCMR Helical Distortions

The Mathematical Setup

The curvilinear paths: For each angle $\theta \in] a, b[$, the curves are defined by the smooth map (a projection in some global coordinates)

$$
\boldsymbol{p}_{\theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad \boldsymbol{p}_{\theta}(\boldsymbol{x})=\boldsymbol{y}
$$

where \boldsymbol{y} is the point on the detector plane and the electron beam through \boldsymbol{x} for tilt θ.

Curves: $(\theta, \boldsymbol{y}) \in Y=] a, b\left[\times \mathbb{R}^{2} \quad \gamma_{\theta, \boldsymbol{y}}=\boldsymbol{p}_{\theta}^{-1}(\{\boldsymbol{y}\}) \cong\right.$ a line
Curvilinear X-ray Transform: $\mathcal{P}_{\boldsymbol{p}} f(\theta, \boldsymbol{y})=\int_{\boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}} f(x) d s$

The Mathematical Setup

The curvilinear paths: For each angle $\theta \in] a, b[$, the curves are defined by the smooth map (a projection in some global coordinates)

$$
\boldsymbol{p}_{\theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad \boldsymbol{p}_{\theta}(\boldsymbol{x})=\boldsymbol{y}
$$

where \boldsymbol{y} is the point on the detector plane and the electron beam through \boldsymbol{x} for tilt θ.

Curves: $(\theta, \boldsymbol{y}) \in Y=] a, b\left[\times \mathbb{R}^{2} \quad \gamma_{\theta, \boldsymbol{y}}=\boldsymbol{p}_{\theta}^{-1}(\{\boldsymbol{y}\}) \cong\right.$ a line
Curvilinear X-ray Transform: $\mathcal{P}_{\boldsymbol{p}} f(\theta, \boldsymbol{y})=\int_{\boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}} f(x) d s$
Backprojection Set: $\boldsymbol{S}_{\boldsymbol{x}}=\left\{(\theta, \boldsymbol{y}) \mid x \in \gamma_{\theta, \boldsymbol{y}}\right\}$, all curves containing \boldsymbol{x} Backprojection Operator:
$\mathcal{P}_{\boldsymbol{p}}^{*} g(\boldsymbol{x})=\int_{(\theta, \boldsymbol{y}) \in S_{\boldsymbol{x}}} g(\theta, \boldsymbol{y}) d \theta=\int_{\theta \in] a, b[} g\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x})\right) d \theta$.
If $S_{\boldsymbol{x}}$ cannot be made compact, one cuts off near the ends of $] a, b[$.

Example

Helical electron paths with pitch 20π.

Notation: $\partial_{\boldsymbol{x}}$ is the gradient in \boldsymbol{x} and similarly for $\partial_{\boldsymbol{y}}$ and ∂_{θ}, $\xi \boldsymbol{d} \boldsymbol{x}=\xi_{1} \boldsymbol{d} \boldsymbol{x}_{1}+\xi_{2} \boldsymbol{d} \boldsymbol{x}_{2}+\xi_{3} \boldsymbol{d} \boldsymbol{x}_{3}$ and $\eta \boldsymbol{d} \boldsymbol{y}=\eta_{1} \boldsymbol{d} \boldsymbol{y}_{1}+\eta_{2} \boldsymbol{d} \boldsymbol{y}_{2}$.

The Mathematical Assumptions

Notation: $\partial_{\boldsymbol{x}}$ is the gradient in \boldsymbol{x} and similarly for $\partial_{\boldsymbol{y}}$ and ∂_{θ}, $\xi \boldsymbol{d} \boldsymbol{x}=\xi_{1} \boldsymbol{d} \boldsymbol{x}_{1}+\xi_{2} \boldsymbol{d} \boldsymbol{x}_{2}+\xi_{3} \boldsymbol{d} \boldsymbol{x}_{3}$ and $\eta \boldsymbol{d} \boldsymbol{y}=\eta_{1} \boldsymbol{d} \boldsymbol{y}_{1}+\eta_{2} \boldsymbol{d} \boldsymbol{y}_{2}$.

Our Assumptions:

(1) $(\boldsymbol{x}, \theta) \mapsto \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \mathbb{R}^{2}$ is C^{∞} and is a fiber map in \boldsymbol{x} with fibers diffeomorphic to lines. So, the matrix $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})$ has maximal rank (two).
(2) The maps $Y \ni(\theta, \boldsymbol{y}) \mapsto \gamma_{\theta, \boldsymbol{y}}$ and $\mathbb{R}^{3} \ni \boldsymbol{x} \mapsto S_{\boldsymbol{x}}$ are one-to-one.
(3) The 4×3 matrix $\binom{\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})}{\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})}$ has maximal rank (three).

- Geometric Meaning

Wavefront Set

Definition

Let $\left(\boldsymbol{x}_{0}, \xi_{0} d \boldsymbol{x}\right) \in T^{*}\left(\mathbb{R}^{n}\right), \xi_{0} \neq 0$. The function f is in C^{∞} at \boldsymbol{x}_{0} in direction ξ_{0} if there is a cut-off function φ near \boldsymbol{x}_{0} such that

$$
\begin{equation*}
\mathcal{F}(\varphi f)(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\boldsymbol{x} \in \mathbb{R}^{n}} e^{-i \boldsymbol{x} \cdot \xi} \varphi(\boldsymbol{x}) f(\boldsymbol{x}) d x \tag{1}
\end{equation*}
$$

is rapidly decreasing in some open cone from the origin, V, containing ξ_{0}.

Wavefront Set

Definition

Let $\left(\boldsymbol{x}_{0}, \xi_{0} \boldsymbol{d x}\right) \in T^{*}\left(\mathbb{R}^{n}\right), \xi_{0} \neq 0$. The function f is in C^{∞} at \boldsymbol{x}_{0} in direction ξ_{0} if there is a cut-off function φ near \boldsymbol{x}_{0} such that

$$
\begin{equation*}
\mathcal{F}(\varphi f)(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\boldsymbol{x} \in \mathbb{R}^{n}} e^{-i \boldsymbol{x} \cdot \xi} \varphi(\boldsymbol{x}) f(\boldsymbol{x}) d x \tag{1}
\end{equation*}
$$

is rapidly decreasing in some open cone from the origin, V, containing ξ_{0}.
On the other hand, $\left(x_{0}, \xi_{0} d \boldsymbol{x}\right) \in \mathrm{WF}(f)$ if f is not rapidly decreasing at \boldsymbol{x}_{0} in direction ξ_{0} (sim. for $T^{*} Y$)

Wavefront Set

Definition

Let $\left(\boldsymbol{x}_{0}, \xi_{0} d \boldsymbol{x}\right) \in T^{*}\left(\mathbb{R}^{n}\right), \xi_{0} \neq 0$. The function f is in C^{∞} at x_{0} in direction ξ_{0} if there is a cut-off function φ near \boldsymbol{x}_{0} such that

$$
\begin{equation*}
\mathcal{F}(\varphi f)(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\boldsymbol{x} \in \mathbb{R}^{n}} e^{-i \boldsymbol{x} \cdot \xi} \varphi(\boldsymbol{x}) f(\boldsymbol{x}) d x \tag{1}
\end{equation*}
$$

is rapidly decreasing in some open cone from the origin, V, containing ξ_{0}.
On the other hand, $\left(x_{0}, \xi_{0} d x\right) \in \mathrm{WF}(f)$ if f is not rapidly decreasing at \boldsymbol{x}_{0} in direction ξ_{0} (sim. for $T^{*} Y$)

Example

$f=1$ inside a disk in $\mathbb{R}^{2}, f=0$ outside. What is $\operatorname{WF}(f)$?

The Microlocal Setup

Set of Points: \mathbb{R}^{3},
Set of Curves: $Y=\left\{(\theta, \boldsymbol{y}) \mid \boldsymbol{y} \in \mathbb{R}^{2}, \theta \in\right] a, b[\}$
Incidence Relation: $Z=\left\{(\theta, \boldsymbol{y} ; \boldsymbol{x}) \in Y \times \mathbb{R}^{3} \mid \boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}\right\}$ [Gelfand, Helgason]

Double Fibration:

where the projections, π 's, are fiber maps.

The Microlocal Setup

Set of Points: \mathbb{R}^{3},
Set of Curves: $Y=\left\{(\theta, \boldsymbol{y}) \mid \boldsymbol{y} \in \mathbb{R}^{2}, \theta \in\right] a, b[\}$
Incidence Relation: $Z=\left\{(\theta, \boldsymbol{y} ; \boldsymbol{x}) \in Y \times \mathbb{R}^{3} \mid \boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}\right\}$ [Gelfand, Helgason]

Double Fibration:

where the projections, π 's, are fiber maps.

$$
\gamma_{\theta, \boldsymbol{y}}=\pi_{R}\left(\pi_{L}^{-1}(\{(\theta, \boldsymbol{y})\})\right) \quad S_{\boldsymbol{x}}=\pi_{L}\left(\pi_{R}^{-1}(\{\boldsymbol{x}\})\right)
$$

\mathcal{P}_{p} as a FIO

We prove that $\mathcal{P}_{\boldsymbol{p}}$ is an elliptic Fourier integral operator with canonical relation $\mathcal{C}=\left(N^{*}(Z) \backslash \mathbf{0}\right)^{\prime}$. The properties of the FIO $\mathcal{P}_{\boldsymbol{p}}$ and $\mathcal{P}_{\boldsymbol{p}}^{*}$ are determined by the microlocal diagram:

\mathcal{P}_{p} as a FIO

We prove that $\mathcal{P}_{\boldsymbol{p}}$ is an elliptic Fourier integral operator with canonical relation $\mathcal{C}=\left(\mathcal{N}^{*}(Z) \backslash \mathbf{0}\right)^{\prime}$. The properties of the FIO $\mathcal{P}_{\boldsymbol{p}}$ and $\mathcal{P}_{\boldsymbol{p}}^{*}$ are determined by the microlocal diagram:

In particular, if Π_{L} were an injective immersion, (the Bolker Assumption) $\mathcal{P}_{\boldsymbol{p}}^{*} \mathcal{P}_{\boldsymbol{p}}$ would be an elliptic Ψ DO (in visible directions).

\mathcal{P}_{p} as a FIO

We prove that $\mathcal{P}_{\boldsymbol{p}}$ is an elliptic Fourier integral operator with canonical relation $\mathcal{C}=\left(\mathcal{N}^{*}(Z) \backslash \mathbf{0}\right)^{\prime}$. The properties of the FIO $\mathcal{P}_{\boldsymbol{p}}$ and $\mathcal{P}_{\boldsymbol{p}}^{*}$ are determined by the microlocal diagram:

In particular, if Π_{L} were an injective immersion, (the Bolker Assumption) $\mathcal{P}_{\boldsymbol{p}}^{*} \mathcal{P}_{\boldsymbol{p}}$ would be an elliptic Ψ DO (in visible directions). The extent to which Π_{L} doesn't satisfy the Bolker Assumption determines how far $\mathcal{P}_{\boldsymbol{p}}^{*} \mathcal{P}_{\boldsymbol{p}}$ is from being a standard elliptic Ψ DO [Guillemin,.... Admissible Case: Greenleaf, UhImann, Felea, Finch, Lan, Stefanov,....]

Theorem (QR 2009)

Under our assumptions $\mathcal{P}_{\boldsymbol{p}}$ is an elliptic Fourier integral operator associated to the canonical relation $\mathcal{C}=\left(N^{*} Z \backslash \mathbf{0}\right)^{\prime}$

$$
\begin{array}{r}
\mathcal{C}=\left\{\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right)\right. \\
\mid \theta \in] a, b\left[, \eta \in \mathbb{R}^{2} \backslash \mathbf{0}, \boldsymbol{x} \in \mathbb{R}^{3}\right\}
\end{array}
$$

Π_{L} is not injective. Cmpaiviy conditions
Π_{L} is an immersion above each (θ, \boldsymbol{y}) except on a one-dimensional set of covectors. \quad Immersion Conditions

Theorem (QR 2009)

Under our assumptions $\mathcal{P}_{\boldsymbol{p}}$ is an elliptic Fourier integral operator associated to the canonical relation $\mathcal{C}=\left(N^{*} Z \backslash \mathbf{0}\right)^{\prime}$

$$
\begin{array}{r}
\mathcal{C}=\left\{\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right)\right. \\
\mid \theta \in] a, b\left[, \eta \in \mathbb{R}^{2} \backslash \mathbf{0}, \boldsymbol{x} \in \mathbb{R}^{3}\right\}
\end{array}
$$

Π_{L} is not injective.
Π_{L} is an immersion above each (θ, \boldsymbol{y}) except on a one-dimensional set of covectors. \rightarrow Immersion Conditions
These conditions describe how Π_{L} does not satisfy the Bolker Assumption.

Theorem (QR 2009)

Under our assumptions $\mathcal{P}_{\boldsymbol{p}}$ is an elliptic Fourier integral operator associated to the canonical relation $\mathcal{C}=\left(N^{*} Z \backslash \mathbf{0}\right)^{\prime}$

$$
\begin{array}{r}
\mathcal{C}=\left\{\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right)\right. \\
\mid \theta \in] a, b\left[, \eta \in \mathbb{R}^{2} \backslash \mathbf{0}, \boldsymbol{x} \in \mathbb{R}^{3}\right\}
\end{array}
$$

Π_{L} is not injective.
Π_{L} is an immersion above each (θ, \boldsymbol{y}) except on a one-dimensional set of covectors. - Immersion Conditions

These conditions describe how Π_{L} does not satisfy the Bolker Assumption.

Proof.

$\mathcal{P}_{\boldsymbol{p}}$ has Schwartz kernel I_{Z}, integration over Z. By results of Guillemin, \mathcal{C} is the canonical relation for $I_{Z} . \Pi_{L}$ and Π_{R} don't map to the zero section, so $\mathcal{P}_{\boldsymbol{p}}$ is a FIO associated to \mathcal{C}. Now, study Π_{L}.

Theorem (Microlocal Regularity Theorem, QR 2009)

Let \mathcal{P}_{p} be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{3}\right)$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \boldsymbol{y}. Then,

$$
\begin{aligned}
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right) \\
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{R}\left(\Pi_{L}^{-1}\left(\Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right)\right)\right)
\end{aligned}
$$

Theorem (Microlocal Regularity Theorem, QR 2009)

Let \mathcal{P}_{p} be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{3}\right)$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \boldsymbol{y}. Then,

$$
\begin{aligned}
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right) \\
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{R}\left(\Pi_{L}^{-1}\left(\Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right)\right)\right)
\end{aligned}
$$

When the Bolker Assumption holds globally enough above a singularity of $f,\left(x_{0}, \xi_{0} d \boldsymbol{x}\right) \in \mathrm{WF}(f) \cap \Pi_{R}(\mathcal{C})$, that singularity will be visible in $\mathcal{P}_{\boldsymbol{p}} f$ and then in $\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}} f$ (see [QR 2009] for a description depending on supp f and the geometry of \mathcal{C}).

Theorem (Microlocal Regularity Theorem, QR 2009)

Let $\mathcal{P}_{\boldsymbol{p}}$ be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{3}\right)$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \boldsymbol{y}. Then,

$$
\begin{aligned}
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right) \\
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{R}\left(\Pi_{L}^{-1}\left(\Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right)\right)\right)
\end{aligned}
$$

When the Bolker Assumption holds globally enough above a singularity of $f,\left(x_{0}, \xi_{0} d \boldsymbol{x}\right) \in \mathrm{WF}(f) \cap \Pi_{R}(\mathcal{C})$, that singularity will be visible in $\mathcal{P}_{\boldsymbol{p}} f$ and then in $\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}} f$ (see [QR 2009] for a description depending on supp f and the geometry of \mathcal{C}).

- Any backprojection algorithm can add singularities to the reconstruction.

Theorem (Microlocal Regularity Theorem, QR 2009)

Let $\mathcal{P}_{\boldsymbol{p}}$ be a curvilinear Radon transform that satisfies our assumptions. Let $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{3}\right)$. Let D be a pseudodifferential operator on \mathbb{R}^{2} acting on \boldsymbol{y}. Then,

$$
\begin{aligned}
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right) \\
\mathrm{WF}\left(\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}}(f)\right) & \subset \Pi_{R}\left(\Pi_{L}^{-1}\left(\Pi_{L}\left(\Pi_{R}^{-1} \mathrm{WF}(f)\right)\right)\right)
\end{aligned}
$$

When the Bolker Assumption holds globally enough above a singularity of $f,\left(x_{0}, \xi_{0} \boldsymbol{d x}\right) \in \mathrm{WF}(f) \cap \Pi_{R}(\mathcal{C})$, that singularity will be visible in $\mathcal{P}_{\boldsymbol{p}} f$ and then in $\mathcal{P}_{p}^{*} D \mathcal{P}_{\boldsymbol{p}} f$ (see [QR 2009] for a description depending on supp f and the geometry of \mathcal{C}).

- Any backprojection algorithm can add singularities to the reconstruction.
- However, backprojection algorithms can show singularities of $f \rightarrow$.

What Does It All Mean for ET?

Our algorithm: $\Lambda_{p} f=\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}} f$ where $D=D(\theta, \boldsymbol{x})$ is a second order PDO with symbol zero on images under Π_{L} of covectors on which Π_{L} is not an immersion.

```
Description of D(0,x)
```


What Does It All Mean for ET?

Our algorithm: $\Lambda_{p} f=\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}} f$ where $D=D(\theta, \boldsymbol{x})$ is a second order PDO with symbol zero on images under Π_{L} of covectors on which Π_{L} is not an immersion.

```
Description of D(0,x)
```

- Our choice of D suppresses some added singularities.

What Does It All Mean for ET?

Our algorithm: $\Lambda_{p} f=\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}} f$ where $D=D(\theta, \boldsymbol{x})$ is a second order PDO with symbol zero on images under Π_{L} of covectors on which Π_{L} is not an immersion.

Description of $D(\theta, x)$

- Our choice of D suppresses some added singularities.
- For admissible complexes (e.g., for ET on lines) the added singularities are suppressed by this differential operator everywhere (noninjectivity $=$ nonimmersion).

What Does It All Mean for ET?

Our algorithm: $\Lambda_{p} f=\mathcal{P}_{\boldsymbol{p}}^{*} D \mathcal{P}_{\boldsymbol{p}} f$ where $D=D(\theta, \boldsymbol{x})$ is a second order PDO with symbol zero on images under Π_{L} of covectors on which Π_{L} is not an immersion.

Description of $D(\theta, x)$

- Our choice of D suppresses some added singularities.
- For admissible complexes (e.g., for ET on lines) the added singularities are suppressed by this differential operator everywhere (noninjectivity \equiv nonimmersion).
- For nonadmissible complexes, added singularities from far away can show up the reconstruction even if one uses the clever D.

Helix with Pitch 20 , cross-section in $x y$-plane

One ball of radius 0.5. 70 angles in $[0, \pi]$ and a 201×201 detector grid on $[-1,1]^{2} . x_{1}$ axis is vertical!

Derivative \perp bad direction

Derivative in bad direction

Helix with Pitch , cross-section in $x y$-plane

One ball of radius $0.5 . \theta \in[0,2 \pi]$, full angular data, rotating on the x_{1} axis. x_{1} axis is vertical!

Derivative \perp bad direction

Derivative in bad direction

Summary

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.

Summary

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen D suppresses added singularities from nearby and far away [QÖ 2008]. Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.

Summary

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen D suppresses added singularities from nearby and far away [QÖ 2008]. Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.
- With small pitch, the singularities from far away influence the reconstruction.

Summary

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen D suppresses added singularities from nearby and far away [QÖ 2008]. Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.
- With small pitch, the singularities from far away influence the reconstruction.
- We have a related algorithm for slant-hole SPECT [QBC 2008]. Rieder, Schuster and I have developed a related algorithm for Sonar.

Summary

- Our algorithm is a generalization of the algorithm in [QÖ 2008, QSÖ 2009] for linear electron paths.
- With linear electron paths, the well-chosen D suppresses added singularities from nearby and far away [QÖ 2008]. Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.
- With small pitch, the singularities from far away influence the reconstruction.
- We have a related algorithm for slant-hole SPECT [QBC 2008]. Rieder, Schuster and I have developed a related algorithm for Sonar.

Thanks for your attention!

Geometric Interpretation of Rank Assumption

If the rank assumption doesn't hold, then $\binom{\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})}{\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)}$ has rank two.

Geometric Interpretation of Rank Assumption

If the rank assumption doesn't hold, then $\binom{\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})}{\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)}$ has rank two. span $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})$ is the normal plane to $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x})}$ at \boldsymbol{x}.

Geometric Interpretation of Rank Assumption

If the rank assumption doesn't hold, then $\binom{\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})}{\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)}$ has rank two. span $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})$ is the normal plane to $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x})}$ at \boldsymbol{x}.

If the rank is two, then $\operatorname{span}\left(\partial_{\theta}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right)\right)$ is a subset of the normal plane, span $\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right)$.

Geometric Interpretation of Rank Assumption

If the rank assumption doesn't hold, then $\binom{\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})}{\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)}$ has rank two. span $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})$ is the normal plane to $\gamma_{\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x})}$ at \boldsymbol{x}.

If the rank is two, then $\operatorname{span}\left(\partial_{\theta}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right)\right)$ is a subset of the normal plane, span ($\left.\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right)$.

So, the tangent plane doesn't "change" as θ is changed infinitesimally.
This means that, infinitesimally, one does not see a full three-dimensional set of cotangent vectors at \boldsymbol{x} from the data as from data $\mathcal{P}_{\boldsymbol{p}} f$, one sees only covectors conormal to $\gamma_{\theta, \boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x})}$ at $\left.\boldsymbol{x}\right)$.
, Back

Theorem (QR 2009)

Π_{L} is not injective. Let $(\theta, \boldsymbol{y}) \in Y$ and $\eta \in \mathbb{R}^{2} \backslash \mathbf{0}$. Covectors in \mathcal{C} map to the same point under Π_{L} iff they are of the form
$\lambda_{j}:=\left(\theta, \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}_{j}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right) \boldsymbol{d} \boldsymbol{x}\right)$ for $j=0,1$, where

$$
\begin{gather*}
\boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)=\boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{1}\right) \tag{2}\\
\eta \cdot\left(\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)-\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{1}\right)\right)=\mathbf{0} \tag{3}
\end{gather*}
$$

Theorem (QR 2009)

Π_{L} is not injective. Let $(\theta, \boldsymbol{y}) \in Y$ and $\eta \in \mathbb{R}^{2} \backslash \mathbf{0}$. Covectors in \mathcal{C} map to the same point under Π_{L} iff they are of the form
$\lambda_{j}:=\left(\theta, \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}_{j}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right) \boldsymbol{d} \boldsymbol{x}\right)$ for $j=0,1$, where

$$
\begin{gather*}
\boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)=\boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{1}\right) \tag{2}\\
\eta \cdot\left(\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)-\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{1}\right)\right)=\mathbf{0} \tag{3}
\end{gather*}
$$

Remark

Condition (2) means that \boldsymbol{x}_{0} and \boldsymbol{x}_{1} both lie on the same curve, $\gamma_{\theta, \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)}$.

Theorem (QR 2009)

Π_{L} is not injective. Let $(\theta, \boldsymbol{y}) \in Y$ and $\eta \in \mathbb{R}^{2} \backslash \mathbf{0}$. Covectors in \mathcal{C} map to the same point under Π_{L} iff they are of the form
$\lambda_{j}:=\left(\theta, \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}_{j}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{j}\right) \boldsymbol{d} \boldsymbol{x}\right)$ for $j=0,1$, where

$$
\begin{gather*}
\boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)=\boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{1}\right) \tag{2}\\
\eta \cdot\left(\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)-\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{1}\right)\right)=\mathbf{0} \tag{3}
\end{gather*}
$$

Remark

Condition (2) means that \boldsymbol{x}_{0} and \boldsymbol{x}_{1} both lie on the same curve, $\gamma_{\theta, \boldsymbol{p}_{\theta}}\left(\boldsymbol{x}_{0}\right)$.
Generically, condition (3) will mean that η is perpendicular to $\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)-\partial_{\theta} \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)$. In all cases, for all \boldsymbol{x}_{0} and \boldsymbol{x}_{1} in $\gamma_{\theta, \boldsymbol{p}_{\theta}\left(\boldsymbol{x}_{0}\right)}$ there are points for which this condition holds.

Theorem (QR 2009)

Π_{L} is not an immersion. Let

$$
\lambda:=\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\mathbf{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right) \in \mathcal{C} .
$$

Π_{L} is not an immersion at λ iff

$$
\begin{equation*}
\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right) . \tag{4}
\end{equation*}
$$

For each (θ, \boldsymbol{x}) there is a one-dimensional set of such covectors λ.

Theorem (QR 2009)

Π_{L} is not an immersion. Let

$$
\lambda:=\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right) \in \mathcal{C} .
$$

Π_{L} is not an immersion at λ iff

$$
\begin{equation*}
\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right) . \tag{4}
\end{equation*}
$$

For each (θ, \boldsymbol{x}) there is a one-dimensional set of such covectors λ.

Proof.

This follows from the expression for $\Pi_{L}: \mathcal{C} \rightarrow T^{*} Y$ and that $\binom{\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})}{\partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x})}$ is assumed to have maximal rank (three) and $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}$ has maximal rank (two).

Description of $D(\theta, \boldsymbol{x})$

For each (θ, \boldsymbol{y}) and $\boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}$, we choose a unit tangent vector \boldsymbol{v} to $\gamma_{\theta, \boldsymbol{y}}$ at \boldsymbol{x} and we let

$$
\eta_{0}=\left(\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^{t} \quad D=D(\theta, \boldsymbol{x})=\left(\partial_{\eta_{0}}\right)^{2}
$$

where D operators on the \boldsymbol{y} coordinate.

Description of $D(\theta, \boldsymbol{x})$

For each (θ, \boldsymbol{y}) and $\boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}$, we choose a unit tangent vector \boldsymbol{v} to $\gamma_{\theta, \boldsymbol{y}}$ at \boldsymbol{x} and we let

$$
\eta_{0}=\left(\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^{t} \quad D=D(\theta, \boldsymbol{x})=\left(\partial_{\eta_{0}}\right)^{2}
$$

where D operators on the \boldsymbol{y} coordinate.
The covectors above $\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), \boldsymbol{x}\right)$

$$
\lambda:=\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right) \in \mathcal{C} .
$$

on which Π_{L} is not an injective immersion are those for which η satisfies

$$
\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right)
$$

Description of $D(\theta, \boldsymbol{x})$

For each (θ, \boldsymbol{y}) and $\boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}$, we choose a unit tangent vector \boldsymbol{v} to $\gamma_{\theta, \boldsymbol{y}}$ at \boldsymbol{x} and we let

$$
\eta_{0}=\left(\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^{t} \quad D=D(\theta, \boldsymbol{x})=\left(\partial_{\eta_{0}}\right)^{2}
$$

where D operators on the \boldsymbol{y} coordinate.
The covectors above $\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), \boldsymbol{x}\right)$

$$
\lambda:=\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right) \in \mathcal{C} .
$$

on which Π_{L} is not an injective immersion are those for which η satisfies

$$
\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right)
$$

Since $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}=0$, for such $\eta,\left(\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right) \boldsymbol{v}=0$,

Description of $D(\theta, \boldsymbol{x})$

For each (θ, \boldsymbol{y}) and $\boldsymbol{x} \in \gamma_{\theta, \boldsymbol{y}}$, we choose a unit tangent vector \boldsymbol{v} to $\gamma_{\theta, \boldsymbol{y}}$ at \boldsymbol{x} and we let

$$
\eta_{0}=\left(\partial_{\theta} \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)^{t} \quad D=D(\theta, \boldsymbol{x})=\left(\partial_{\eta_{0}}\right)^{2}
$$

where D operators on the \boldsymbol{y} coordinate.
The covectors above $\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}), \boldsymbol{x}\right)$

$$
\lambda:=\left(\theta, \boldsymbol{p}_{\theta}(\boldsymbol{x}),-\eta \cdot \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \theta+\eta \cdot \boldsymbol{d} \boldsymbol{y} ; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}\right) \in \mathcal{C} .
$$

on which Π_{L} is not an injective immersion are those for which η satisfies

$$
\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right)
$$

Since $\partial_{\boldsymbol{x}} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}=0$, for such $\eta,\left(\eta \cdot \partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x})\right) \boldsymbol{v}=0$,so $\eta \cdot\left(\partial_{\boldsymbol{x}} \partial_{\theta} \boldsymbol{p}_{\theta}(\boldsymbol{x}) \boldsymbol{v}\right)=0$, and so $\eta \perp \eta_{0}$.

