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Introduction

In single-axis tilt electron tomography (ET), one rotates the object on
one axis, ±60◦ from vertical in 1− 2◦ increments.
One also can do multi-axis tilt ET and “slant hole ET.”

Practical Issues:

1 Dose is small leading to very noisy data (a few hundred e− counts
per pixel)!

2 The sample can warp and optical distortions can occur during
data acquisition [A. Lawrence, et al.].

3 For small objects, the electron beams travel along lines.
4 For large electron beams, electrons far from the central axis travel

over curves [ibid.].
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Introduction The Mathematical Model

The Model and Goal

f is the density or scattering potential of an object
γ is a line or curve over which electrons travel.

The X-ray Transform:

ET Data ∼ Pf (γ) :=

∫
x∈γ

f (x)ds

The Goal: Recover a picture of the object including boundaries,
molecule shapes,..., from ET data over a finite number of lines
(curves).
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Introduction Limited Data Tomography

Limited Angle ROI CT: data over lines or curves in a limited angular
range and passing through a small region (ET!).
Local algorithms for lines: [Planar: Kuchment, Q, 3-D cone beam:
Louis, Maaß, Anastasio, Katsevich, Yee, 3-D parallel beam: QÖ,
QBC], based on Lambda CT [Smith, Vainberg].

Warning: In general, f is not determined by limited angle ROI
data on lines, even with continuous data!
We will use microlocal analysis to determine which boundaries are
visible and develop an algorithm to reconstruct these features.
This is a regularization method (reconstruct only what’s visible).
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I. ET With Linear Paths

Linear Electron Paths

Now show reconstructions for small samples (∼ 100× 100 nm). We
use a model that assumes electrons travel over lines, and our ELT
algorithm is based on Lambda CT.

This is joint with Ozan Öktem (Comsol and Royal Institute of
Technology, Stockholm) and Ulf Skoglund (Karolinska Institute,
Stockholm).

Supported by: NSF, The Wenner Gren Stiftelserna, Tufts, Sidec and
the University of Stockholm.
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I. ET With Linear Paths

Comparison Using In Situ Nephrin [QÖ 2008]

In situ kidney sample, 200 kV TEM single-axis tilt data, uniform
sampling, tilt angles every 2◦ between −60◦ and 60◦, 418 e−/pixel
total dose. 70 nm3 ROI. Data are assumed to be on lines.

ELT reconstruction Sidec’s original low-pass FBP
reconstruction
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I. ET With Linear Paths

TMV Data

High-dose electron micrograph of Tobacco Mosaic Virus (TMV). The
middle inset is the ROI and the two on the right are high-dose (top)
and low-dose images of the ROI.
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I. ET With Linear Paths

3-D Comparison Using TMV [QSÖ 2009]

T MV sample, 300 kV TEM single-axis tilt data, uniform sampling, tilt
angles every 2◦ between −62◦ and 62◦, 407 e−/pixel total dose.
115 nm3 ROI.

ELT reconstruction Karolinska’s optimized FBP
reconstruction
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I. ET With Linear Paths

2-D Comparison Using TMV [QSÖ 2009]

T MV sample, 300 kV TEM single-axis tilt data, uniform sampling, tilt
angles every 2◦ between −62◦ and 62◦, 407 e−/pixel total dose.
115 nm× 115 nm× 1.15 nm ROI.

ELT reconstruction Karolinska’s optimized FBP
reconstruction
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II. ET With Curvilinear Paths

Curvilinear Electron Paths

We now develop a Radon transform that integrates over curves and
provide reconstructions on simulated data.

Much integral geometric work has been done for X-ray transforms
[Greenleaf and Uhlmann, Cormack, Gelfand et al., Finch, Globevnik,
Krishnan, Kuchment, Kunyansky, Kurusa, Palamodov, Romanov,
Stefanov ...]

The very new theoretical work is joint with Hans Rullgård.

Supported by: NSF and Tufts
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II. ET With Curvilinear Paths

In large electron microscopes one can take images of about 8,000 nm
square.

In large-field ET the electrons travel over curvilinear paths [A.
Lawrence et al.].

Helical Distortions

Focus is changed in steps so focal 
plane moves through object.  Note 
effects due to Helical trajectories 
and differential magnification.
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II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

The Mathematical Setup

The curvilinear paths: For each angle θ ∈]a,b[, the curves are
defined by the smooth map (a projection in some global coordinates)

pθ : R3 → R2, pθ(x) = y

where y is the point on the detector plane and the electron beam
through x for tilt θ.

Curves: (θ,y) ∈ Y =]a,b[×R2 γθ,y = pθ
−1({y}) ∼= a line

Curvilinear X-ray Transform: Ppf (θ,y) =

∫
x∈γθ,y

f (x)ds

Backprojection Set: Sx = {(θ,y)
∣∣x ∈ γθ,y}, all curves containing x

Backprojection Operator:

P∗pg(x) =

∫
(θ,y)∈Sx

g(θ,y)dθ =

∫
θ∈]a,b[

g (θ,pθ(x)) dθ.

If Sx cannot be made compact, one cuts off near the ends of ]a,b[.
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II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

Example
Helical electron paths with pitch 20π.
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II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

The Mathematical Assumptions

Notation: ∂x is the gradient in x and similarly for ∂y and ∂θ,
ξdx = ξ1dx1 + ξ2dx2 + ξ3dx3 and ηdy = η1dy1 + η2dy2.

Our Assumptions:

1 (x , θ) 7→ pθ(x) ∈ R2 is C∞ and is a fiber map in x with fibers
diffeomorphic to lines. So, the matrix ∂xpθ(x) has maximal rank
(two).

2 The maps Y 3 (θ,y) 7→ γθ,y and R3 3 x 7→ Sx are one-to-one.

3 The 4× 3 matrix
(
∂xpθ(x)
∂θ∂xpθ(x)

)
has maximal rank (three).

Geometric Meaning
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II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

Wavefront Set

Definition
Let (x0, ξ0dx) ∈ T ∗(Rn), ξ0 6= 0. The function f is in C∞ at x0 in
direction ξ0 if there is a cut-off function ϕ near x0 such that

F(ϕ f )(ξ) =
1

(2π)n/2

∫
x∈Rn

e−ix ·ξϕ(x) f (x) dx (1)

is rapidly decreasing in some open cone from the origin, V , containing
ξ0.
On the other hand, (x0, ξ0dx) ∈WF(f ) if f is not rapidly decreasing at
x0 in direction ξ0 (sim. for T ∗Y )

Example

f = 1 inside a disk in R2, f = 0 outside. What is WF(f )?
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II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

The Microlocal Setup

Set of Points: R3,
Set of Curves: Y = {(θ,y)

∣∣y ∈ R2, θ ∈]a,b[}
Incidence Relation: Z = {(θ,y ; x) ∈ Y × R3

∣∣x ∈ γθ,y} [Gelfand,
Helgason]

Double Fibration:
Z

πL↙ ↘πR

Y R3

where the projections, π’s, are fiber maps.

γθ,y = πR

(
π−1

L ({(θ,y)})
)

Sx = πL

(
π−1

R ({x})
)

Todd Quinto ( www.tufts.edu/∼equinto Tufts University)Electron Microscope Tomography October 28, 2009 16 / 314



II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

The Microlocal Setup

Set of Points: R3,
Set of Curves: Y = {(θ,y)

∣∣y ∈ R2, θ ∈]a,b[}
Incidence Relation: Z = {(θ,y ; x) ∈ Y × R3

∣∣x ∈ γθ,y} [Gelfand,
Helgason]

Double Fibration:
Z

πL↙ ↘πR

Y R3

where the projections, π’s, are fiber maps.

γθ,y = πR

(
π−1

L ({(θ,y)})
)

Sx = πL

(
π−1

R ({x})
)

Todd Quinto ( www.tufts.edu/∼equinto Tufts University)Electron Microscope Tomography October 28, 2009 16 / 314



II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

Pp as a FIO

We prove that Pp is an elliptic Fourier integral operator with canonical
relation C = (N∗(Z ) \ 0)′. The properties of the FIO Pp and P∗p are
determined by the microlocal diagram:

C
ΠL↙ ↘ΠR

T ∗(Y ) \ 0 T ∗(R3) \ 0
In particular, if ΠL were an injective immersion, (the Bolker
Assumption) P∗pPp would be an elliptic ΨDO (in visible directions).
The extent to which ΠL doesn’t satisfy the Bolker Assumption
determines how far P∗pPp is from being a standard elliptic ΨDO
[Guillemin,.... Admissible Case: Greenleaf, Uhlmann, Felea, Finch,
Lan, Stefanov,....]
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II. ET With Curvilinear Paths The Main Theorems

Theorem (QR 2009)
Under our assumptions Pp is an elliptic Fourier integral operator
associated to the canonical relation C = (N∗Z \ 0)′

C = {(θ,pθ(x),−η · ∂θpθ(x)dθ + η · dy ; x , η · ∂xpθ(x)dx)∣∣θ ∈]a,b[, η ∈ R2 \ 0, x ∈ R3}

ΠL is not injective. Injectivity Conditions

ΠL is an immersion above each (θ,y) except on a one-dimensional set
of covectors. Immersion Conditions

These conditions describe how ΠL does not satisfy the Bolker
Assumption.

Proof.
Pp has Schwartz kernel IZ , integration over Z . By results of Guillemin,
C is the canonical relation for IZ . ΠL and ΠR don’t map to the zero
section, so Pp is a FIO associated to C. Now, study ΠL.
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II. ET With Curvilinear Paths The Main Theorems

Theorem (Microlocal Regularity Theorem, QR 2009)
Let Pp be a curvilinear Radon transform that satisfies our
assumptions. Let f ∈ E ′(R3). Let D be a pseudodifferential operator on
R2 acting on y . Then,

WF(Pp(f )) ⊂ ΠL

(
Π−1

R WF(f )
)

WF(P∗pDPp(f )) ⊂ ΠR

(
Π−1

L

(
ΠL

(
Π−1

R WF(f )
)))

When the Bolker Assumption holds globally enough above a
singularity of f , (x0, ξ0dx) ∈WF(f ) ∩ ΠR(C), that singularity will be
visible in Ppf and then in P∗pDPpf (see [QR 2009] for a description
depending on supp f and the geometry of C).

Any backprojection algorithm can add singularities to the
reconstruction.
However, backprojection algorithms can show singularities of f →.
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visible in Ppf and then in P∗pDPpf (see [QR 2009] for a description
depending on supp f and the geometry of C).

Any backprojection algorithm can add singularities to the
reconstruction.
However, backprojection algorithms can show singularities of f →.
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II. ET With Curvilinear Paths The Main Theorems

What Does It All Mean for ET?

Our algorithm: Λpf = P∗pDPpf where D = D(θ,x) is a second order
PDO with symbol zero on images under ΠL of covectors on which ΠL is
not an immersion.

Description of D(θ, x)

Our choice of D suppresses some added singularities.
For admissible complexes (e.g., for ET on lines) the added
singularities are suppressed by this differential operator
everywhere (noninjectivity≡nonimmersion).
For nonadmissible complexes, added singularities from far away
can show up the reconstruction even if one uses the clever D.
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II. ET With Curvilinear Paths First reconstructions

Helix with Pitch 20π, cross-section in xy -plane

One ball of radius 0.5. 70 angles in [0, π] and a 201× 201 detector grid
on [−1,1]2. x1 axis is vertical!

Derivative ⊥ bad direction Derivative in bad direction
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II. ET With Curvilinear Paths First reconstructions

Helix with Pitch π, cross-section in xy -plane

One ball of radius 0.5. θ ∈ [0,2π], full angular data, rotating on the x1
axis. x1 axis is vertical!

Derivative ⊥ bad direction Derivative in bad direction
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II. ET With Curvilinear Paths End

Summary

Our algorithm is a generalization of the algorithm in [QÖ 2008,
QSÖ 2009] for linear electron paths.
With linear electron paths, the well-chosen D suppresses added
singularities from nearby and far away [QÖ 2008].
Similar results hold for cone beam CT: Katsevich, Anastasio, Yee.
With small pitch, the singularities from far away influence the
reconstruction.
We have a related algorithm for slant-hole SPECT [QBC 2008].
Rieder, Schuster and I have developed a related algorithm for
Sonar.

Thanks for your attention!
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II. ET With Curvilinear Paths The Mathematics of Curvilinear ET

Geometric Interpretation of Rank Assumption

If the rank assumption doesn’t hold, then
(

∂xpθ(x)
∂θ∂xpθ(x0)

)
has rank two.

span ∂xpθ(x) is the normal plane to γθ,pθ(x) at x .

If the rank is two, then span
(
∂θ
(
∂xpθ(x)

))
is a subset of the normal

plane, span
(
∂xpθ(x)

)
.

So, the tangent plane doesn’t “change” as θ is changed infinitesimally.

This means that, infinitesimally, one does not see a full
three-dimensional set of cotangent vectors at x from the data as from
data Ppf , one sees only covectors conormal to γθ,pθ(x) at x).

Back
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II. ET With Curvilinear Paths The Main Theorems

Theorem (QR 2009)

ΠL is not injective. Let (θ,y) ∈ Y and η ∈ R2 \ 0. Covectors in C map to
the same point under ΠL iff they are of the form
λj := (θ,pθ(x j),−η · ∂θpθ(x j)dθ + η · dy ; x j , η · ∂xpθ(x j)dx) for j = 0,1,
where

pθ(x0) = pθ(x1) (2)
η · (∂θpθ(x0)− ∂θpθ(x1)) = 0. (3)

Remark
Condition (2) means that x0 and x1 both lie on the same curve,
γθ,pθ(x0).
Generically, condition (3) will mean that η is perpendicular to
∂θpθ(x0)− ∂θpθ(x0). In all cases, for all x0 and x1 in γθ,pθ(x0) there are
points for which this condition holds.

Back
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II. ET With Curvilinear Paths The Main Theorems

Theorem (QR 2009)
ΠL is not an immersion. Let

λ := (θ,pθ(x),−η · ∂θpθ(x)dθ + η · dy ; x , η · ∂xpθ(x)dx) ∈ C.

ΠL is not an immersion at λ iff

η · ∂x∂θpθ(x) ∈ span (∂xpθ(x)) . (4)

For each (θ,x) there is a one-dimensional set of such covectors λ.

Proof.
This follows from the expression for ΠL : C → T ∗Y and that(
∂xpθ(x)
∂x∂θpθ(x)

)
is assumed to have maximal rank (three) and ∂xpθ has

maximal rank (two).

Back
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II. ET With Curvilinear Paths The Main Theorems

Description of D(θ, x)

For each (θ,y) and x ∈ γθ,y , we choose a unit tangent vector v to γθ,y
at x and we let

η0 =
(
∂θ∂xpθ(x)v

)t D = D(θ,x) = (∂η0)2

where D operators on the y coordinate.
The covectors above (θ,pθ(x),x)

λ := (θ,pθ(x),−η · ∂θpθ(x)dθ + η · dy ; x , η · ∂xpθ(x)dx) ∈ C.

on which ΠL is not an injective immersion are those for which η
satisfies

η · ∂x∂θpθ(x) ∈ span (∂xpθ(x)) .

Since ∂xpθ(x)v = 0, for such η, (η · ∂x∂θpθ(x))v = 0 ,so
η · (∂x∂θpθ(x)v) = 0 , and so η ⊥ η0. Back
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