Reconstruction in Doppler tomography

Victor Palamodov
Tel Aviv University

BIRS
29 October 2009

1 Introduction

Doppler tomography is applied for imaging of liquid or gas flows, ultrasound diagnostic, optics, plasma physics etc.
Physical background:
© Doppler spectroscopy (projection of ion velocity),
© Zeeman effect polarimetry (projection of the poloidal magnetic field),
© Doppler effect in moving medium:

1.1 Travel time measurements

c - the sound speed,
v - the local velocity of the medium,
$s=0, s=S$ are the positions of the source and the receiver,
T - the travel time:

$$
T=\int_{0}^{S} \frac{\mathrm{~d} s}{c(x)+(\theta, v(x))},
$$

If $|v| \ll c$, then

$$
T \approx \int_{0}^{S} \frac{\mathrm{~d} s}{c(x)}-\int_{0}^{S} \frac{(\theta, v(x)) \mathrm{d} s}{c^{2}(x)}
$$

If $c(x)=c$, then

$$
\int_{0}^{S}(\theta, v(x)) \mathrm{d} s \approx \frac{S}{c}-T
$$

2 Differential forms and integrals

$\boldsymbol{\text { Let }} \mathrm{f}=\sum f_{i_{1} \ldots i_{k}} \mathrm{~d} x_{i_{1}} \wedge \ldots \wedge \mathrm{~d} x_{i_{k}}$ be a k-differential form in $\mathbf{V} \cong \mathrm{R}^{\mathbf{3}}, k=0,1,2,3$.
0-form $a=a(x)$;
1-form $\mathrm{f}=f_{1}(x) \mathrm{d} x_{1}+f_{2}(x) \mathrm{d} x_{2}+f_{3}(x) \mathrm{d} x_{3}$;
2-form $\mathrm{g}=g_{12}(x) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}+g_{23}(x) \mathrm{d} x_{2} \wedge \mathrm{~d} x_{3}+g_{31}(x) \mathrm{d} x_{3} \wedge \mathrm{~d} x_{1}$;
3 -form $\mathrm{h}=h_{123}(x) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}$.
Exterior differential: $\mathrm{f}=\mathrm{d} a, \mathrm{~g}=\mathrm{df}, \mathrm{h}=\mathrm{dg} ; \mathrm{dd}=0$.
Coordinateless notations:
$\mathrm{f}(x ; \theta)=f_{1}(x) \theta_{1}+f_{2}(x) \theta_{2}+f_{3}(x) \theta_{3}, x, \theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \mathbf{V}$,
$\mathrm{g}(x, \theta, \eta)=\frac{1}{2}\left[g_{12}\left(\theta_{1} \eta_{2}-\theta_{2} \eta_{1}\right)+g_{23}\left(\theta_{2} \eta_{3}-\theta_{3} \eta_{2}\right)+g_{31}\left(\theta_{3} \eta_{1}-\theta_{1} \eta_{3}\right)\right]$, $\mathrm{h}(x, \theta, \eta, \xi)=\frac{1}{6} \ldots$
Doppler transform:
$\boldsymbol{\nabla}$ A function a defined on \mathbf{V} is fast decreasing, if $a(x)=O\left(|x|^{-q}\right)$, as $|x| \rightarrow \infty$ in \mathbf{V} for $q=0,1,2, \ldots$.
$\boldsymbol{\nabla} \mathrm{S}_{m}$ is the space of 1-forms f such that the function $\mathrm{f}(x ; \theta)$ is fast decreasing as well as all x-derivatives up to the order m for any fixed θ.

For a 1 -form $\mathrm{f} \in \mathrm{S}_{0}$ the integral

$$
\mathrm{R}(\rho)=\int_{\rho} \mathrm{f}
$$

is defined for any oriented curve ρ in \mathbf{V}.
We have $\mathrm{R}(\mathrm{d} a, \lambda)=0$ for any fast decreasing function a.
Δ A vector field $v=\left(v_{1}, v_{2}, v_{3}\right)$ is replaced by the 1 -form $\mathrm{f}=v_{1} \mathrm{~d} x_{1}+v_{2} \mathrm{~d} x_{2}+v_{3} \mathrm{~d} x_{3}$, so that

$$
\int(\theta, v) \mathrm{d} s=\int_{\lambda} \mathrm{f}
$$

Write $\mathrm{R}(x, \theta)=\mathrm{R}(\rho(x, \theta))$, where $\rho(x, \theta)=\{y=x+t \theta, t \geq 0\}$, that is

$$
\mathrm{R}(x ; \theta)=\int_{0}^{\infty} \mathrm{f}(x+s \theta ; \theta) \mathrm{d} s, \quad x, \theta \in \mathbf{V}
$$

We have $\mathrm{R}(x, t \theta)=\operatorname{sgn} t \mathrm{R}(x, \theta)$ for any $t>0$.
The sum $\mathrm{L}(x, \theta)=\mathrm{R}(x, \theta)-\mathrm{R}(x,-\theta)$ is equal to the integral of f over the line $\lambda(x, \theta)=$ $\{y=x+t \theta, t \in \mathrm{R}\}$.
© The Doppler transform $\mathrm{R}(x, \theta)$ is invariant with respect to the gauge transformation $\mathrm{f}+\mathrm{d} a$, where a an arbitrary ast decreasing function, since $\mathrm{R}(\mathrm{d} a)=0$.
Δ The differential df of a 1 -form f is gauge invariant.
Inversion problem: to recover the form df from knowledge of integrals $\mathrm{R}(\mathrm{f}, \rho$) on a n-dimensional manifold Λ of rays ρ in \mathbf{V}^{n}.

2.1 The case $n=2$

Norton, Braun-Hauck, Juhlin, Sparr-Stråhlén,...Howard-Wells,...Osman-Prince,...
Proposition For an arbitrary 1-form $\mathrm{f} \in \mathrm{S}_{1}$ on a Euclidean plane \mathbf{V} and any $x \in \mathbf{V}, \theta \in \mathbf{V} \backslash\{0\}$

$$
\begin{equation*}
\mathrm{L}(x, \theta)=\int_{\lambda(x, \theta)} \mathrm{Fd} s=\partial_{p} \int_{H_{\omega, p}} \mathrm{df}, \tag{1}
\end{equation*}
$$

where H is the half-plane such that $\partial H=\lambda(x, \theta)$.
< Apply the Cauchy-Green formula.

© Write $\mathrm{df}=F \mathrm{~d} S$, where $\mathrm{d} S$ is the area element and F is a fast decreasing function in \mathbf{V}.

$$
\partial_{\mathbf{p}} \int_{H_{\omega, \mathbf{p}}} \mathrm{df}=\partial_{p} \int_{H_{\omega, \mathbf{p}}} F \mathrm{~d} S=\int_{\lambda(x, \theta)} F \mathrm{~d} s
$$

The right-hand side equals to the Radon transform of the function F.

2.2 The case $n=3$

© In the 3D case the complete 4D-data of line integrals are redundant.
The variety of lines that are parallel to either of two given planes has dimension 3; a reconstruction can be done by reduction to 2D case: Schuster, Vertgeim (2000).

3D case: Vertgeim, Denisjuk.
Let $\Gamma \subset \mathbf{V}$ - the set of sources.

Stability condition: for any point $q \in \operatorname{supp} \mathrm{f}$ and any plane H through q there is at least one point $p \in H \cap \Gamma$.

This condition is sufficient for a reconstruction, if the first derivatives of $R(\rho)$ are known for all rays ρ with sources on Γ. In particular, the reconstruction is possible on any chord of a curve Γ.

Notations: Fix a Euclidean structure in \mathbf{V}, denote $H_{p, \omega} \doteq\{y \in \mathbf{V} ;\langle\omega, y\rangle=p\}$ for any $\omega,|\omega|=1$ and $p \in \mathrm{R}$.

For any vector $\xi \neq 0$ the directional derivatives are

$$
a_{\xi}(x)=(\xi, \mathrm{d} a(x)), \mathrm{R}_{\xi}(x ; \theta)=\left(\xi, \mathrm{d}_{x} \mathrm{R}(x ; \theta)\right), \partial_{; \xi} \mathrm{R}(x ; \theta)=\left(\xi, \mathrm{d}_{\theta} \mathrm{R}(x ; \theta)\right)
$$

Proposition. Let f be a 1-form of the class S_{3}. For an arbitrary plane H an arbitrary point $y \in H$ and any vector ξ parallel to H we have

$$
\begin{equation*}
\partial_{\mathbf{p}} \int_{H} \operatorname{df}(x ; \xi, \omega) \mathrm{d} H(x)=\int_{S} \partial_{\xi ; \omega \omega} \mathrm{R}(y ; \theta) \mathrm{d} \varphi(\theta) \tag{2}
\end{equation*}
$$

where $\mathrm{d} H$ is the Euclidean area element on H,
$\mathrm{d} \varphi$ is the angular measure on the unit circle $S \subset H$.
Theorem. Let f be a 1-form of the class S_{2} and $\Gamma \subset \mathbf{V}$ be a set such that any hyperplane H that meets the support of f meets also Γ.
The form df can be reconstructed from data of first derivatives of the integral $\mathrm{R}(x, \theta)$ for rays $\rho(x, \theta)$, $x \in \Gamma,|\theta|=1$.
« For arbitrary vectors $\eta, \xi \in \mathbf{V}$ and a plane H we set

$$
\mathrm{I}_{H}(\eta, \xi)=\partial_{\mathbf{p}} \int_{H} \mathrm{df}(x ; \eta, \xi) \mathrm{d} H
$$

The function I can be determined from the given integral data. If both vectors η, ξ are parallel to H, the equation $\mathrm{I}_{H}(\eta, \xi)=0$ follows from partial integration. If η parallel to H and $\xi=\omega$ it is known by the formula (2) applied to a point $y \in H \cap \Gamma$.

For arbitrary vectors (η, ξ), we can write $\xi=a \omega+\xi^{\prime}$, and $\eta=b \xi+\eta^{\prime}$ for some numbers a and b, where $\xi^{\prime}, \eta^{\prime}$ are parallel to H.

If $a=b=0$, then $\mathrm{I}_{H}(\eta, \xi)=0$.
Suppose that $a \neq 0$. We have the equation

$$
\mathrm{I}_{H}(\eta, \xi)=\mathrm{I}_{H}\left(\eta^{\prime}, \xi\right)=\mathrm{I}_{H}\left(\eta^{\prime}, a \omega\right)=a \mathrm{I}_{H}\left(\eta^{\prime}, \omega\right)
$$

where the right-hand side is known.
The form df can be reconstructed from data of integrals $I_{H}(\eta, \xi)$ by means of the classical formula of Lorentz:

$$
\operatorname{df}(x)=-\left.\frac{1}{8 \pi^{2}} \int_{|\omega|=\mathbf{1}} \partial_{p}^{2} \int_{H_{\omega, \mathbf{p}}} \operatorname{df}(y) \mathrm{d} H\right|_{\mathbf{p}=\langle\omega, \mathbf{x}\rangle} \mathrm{d} \omega
$$

We only need to know these integrals for hyperplanes H that meet the support of df. Otherwise the integral vanishes.

3 Range conditions

3.1 Line integrals of functions

The function

$$
\mathrm{J}(x, \theta)=\int_{-\infty}^{\infty} \phi(x+r \theta) \mathrm{d} r
$$

is called X-ray (or the John) transform of $\phi \in \mathrm{S}_{0}$, where $x, \theta \in \mathbf{V}$. It fulfils $\mathrm{J}(x, t \theta)=t^{-1} \mathrm{~J}(x, \theta), t \neq 0$ and the John equations

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial \theta_{i} \partial x_{j}}-\frac{\partial^{2}}{\partial \theta_{j} \partial x_{i}}\right) \mathrm{J}(x, \theta)=0, i, j=1,2,3 \tag{3}
\end{equation*}
$$

The inverse statement John (1938):
Theorem Any smooth fast decreasing function $\mathrm{J}(x, \theta)$ that satisfies these conditions is equal to X-ray transform of a function $\phi \in \mathrm{S}_{\infty}$.

Remark: Given a curve Γ in \mathbf{V}^{3}, the variety Λ of lines λ that meet Γ is characteristic for the John equation. In the chart $x_{3}=\theta_{3}=1$ the system is reduced to the only equation

$$
\left(\frac{\partial^{2}}{\partial \theta_{1} \partial x_{2}}-\frac{\partial^{2}}{\partial \theta_{2} \partial x_{1}}\right) \mathrm{J}(x, \theta)=0
$$

A 3-variety Λ the equation $\Phi\left(x_{1}, x_{2}, \theta_{1}, \theta_{2}\right)=0$ is characteristic for the John equation if

$$
\frac{\partial \Phi}{\partial x_{1}} \frac{\partial \Phi}{\partial \theta_{2}}-\frac{\partial \Phi}{\partial x_{2}} \frac{\partial \Phi}{\partial \theta_{1}}=0
$$

3.2 Integrals of forms

The line integrals $\mathrm{L}=\mathrm{L}(x, \theta)$ of a 1-form f fulfil the homogeneity condition $\mathrm{L}(x, t \theta)= \pm \mathrm{L}(x, \theta)$ for $\pm t>0$ and the system of equations

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial \theta_{i} \partial x_{j}}-\frac{\partial^{2}}{\partial \theta_{j} \partial x_{i}}\right)^{2} \mathrm{~L}(x, \theta)=0, i, j=1,2,3 \tag{4}
\end{equation*}
$$

The same equations hold at a point x for the ray integrals $\mathrm{R}(x, \theta)$ provided the form f vanishes in a neighborhood of the point x.

च The inverse statement is due to Gelfand-Gindikin-Graev (1980,2000):
Theorem An arbitrary smooth function $\mathrm{L}(x, \theta)$ that decreases fast as $|x \times \theta| \rightarrow \infty$ with all derivatives that fulfils (4), is equal to the line transform of a 1-form f with coefficients in the Schwartz space (and vice versa).

The variety Λ of lines λ that touch a curve Γ is a "double" characteristic for (4). The "initial" data on Λ are the functions and its first derivatives.

4 Rays tangent to a surface

The variety Λ of rays tangent to a surface S is characteristic for the John equation and double characteristic for (4). A simple reconstruction formula for the Doppler transform is as follows:

Theorem Let S be a smooth surface in an oriented Euclidean space V,
H be a plane nowhere tangent to S. For an arbitrary $f \in \mathrm{~S}_{3}$ we have

$$
\partial_{\mathbf{p}} \int_{H} \mathrm{df}(x ; \theta, \omega) \mathrm{d} H=\int_{\mathbf{C}}\left[\kappa \partial_{\theta ; \omega \omega} \mathrm{R}\left(y ; y^{\prime}\right)-\left[\theta, \omega, y^{\prime}\right] \mathrm{R}_{\omega \omega}\left(y ; y^{\prime}\right)\right] \mathrm{d} s,
$$

where
(i) $y=y(s), 0 \leq s \leq s$. is the equation of the curve $\mathbf{C} \doteq S \cap H$ such that $\left|y^{\prime}\right|=1, y^{\prime}=\partial y / \partial s$,
(ii) $\kappa=\left[y^{\prime}, y^{\prime \prime}, \omega\right]>0$ is the curvature of \mathbf{C},
(iii) supp $f \cap H$ is contained in the image of the map $Y:(0, s) \times(0, \infty) \rightarrow H,(s, r) \mapsto y(s)+$ $r y^{\prime}(s)$.

Rays tangent to the curve $S \cap H$

5 Some references

H. Braun and A. Hauck, Tomographic reconstruction of vector fields, IEEE Trans. Signal Process., 39 (1991), 464-471.
A. Denisjuk, Inversion of the X-ray transform for 3D symmetric tensor fields with sources on a curve, Inverse problems, 22 (2006), 399-411.
I. M. Gelfand, S. G. Gindikin and M. I. Graev, Selected Topics in Integral Geometry, AMS Providence, Rhode Island, 2003.
P. Grangeat, Mathematical framework of cone-beam 3D-reconstruction via the first derivative of the Radon transform, Lecture Notes in Math., 1497 (1990), 66-97.
J. Howard, Vector tomography applications in plasma diagnostics, Plasma Phys. Controled Fusion, 38 (1996), 489-503.
S. J. Norton, Tomographic reconstruction of 2-D vector fields: application for flow imaging, Geophys. J., 97 (1988), 161-168.
N. F. Osman and J. L. Prince, 3D vector tomography on bounded domains, Inverse Problems, 14 (1998), 185-196.
T. Schuster, An efficient mollifier method for three-dimensional vector tomography: convergence and implementation, Inverse problems, 17 (2001), 739-766.
H. Sielschott, Measurement of horizontal flow in a large scale furnace using acoustic vector tomography, Flow. Meas. Instrum., 8 (1997), 191-197.
V. A. Sharafutdinov, Slice-by-slice reconstruction algorithm for vector tomography with incomplete data, Inverse Problems, 23 (2007), pp. 2603-2627.
G. Sparr, K. Stråhlén, K. Lindström and H. Persson, Doppler tomography for vector fields, Inverse problems, 11 (1995), pp. 1051-1061.
L. B. Vertgeim, Integral geometry problems for symmetric tensor fields with incomplete data, J. Inverse Ill-Posed Probl., 8(3) (2000), 355-364.
P. N. Wells, M. Halliwell, R. Skidmore, A. J. Webb and J. P. Woodcock, Tumour detection by ultrasonic. Doppler blood-flow signals, Ultrasonics, 15 (1977), 231-232.
V.P. Palamodov Reconstruction of a differential form from Doppler transform. SIAM J. Math. Anal., 41, (2009), 1713-1720.

