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1 Introduction

Doppler tomography is applied for
imaging of liquid or gas �ows, ultrasound diagnostic, optics, plasma physics etc.
Physical background:

N Doppler spectroscopy (projection of ion velocity),
N Zeeman e¤ect polarimetry (projection of the poloidal magnetic �eld),
N Doppler e¤ect in moving medium:

1.1 Travel time measurements

c - the sound speed,
v - the local velocity of the medium,
s = 0, s = S are the positions of the source and the receiver,
T - the travel time:

T =

Z S

0

ds

c (x) + (�; v (x))
;

If jvj << c; then

T �
Z S

0

ds

c (x)
�
Z S

0

(�; v (x)) ds

c2 (x)
:

If c (x) = c; then Z S

0

(�; v (x)) ds � S

c
� T:
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2 Di¤erential forms and integrals

H Let f =
P
fi1:::ikdxi1 ^ ::: ^ dxik be a k-di¤erential form in V �= R3; k = 0; 1; 2; 3:

0-form a = a (x) ;
1-form f = f1 (x) dx1 + f2 (x) dx2 + f3 (x) dx3;
2-form g = g12 (x) dx1 ^ dx2 + g23 (x) dx2 ^ dx3 + g31 (x) dx3 ^ dx1;
3-form h = h123 (x) dx1 ^ dx2 ^ dx3:
Exterior di¤erential: f = da; g = df; h = dg; dd= 0:
Coordinateless notations:
f (x; �) = f1 (x) �1 + f2 (x) �2 + f3 (x) �3; x; � = (�1; �2; �3) 2 V;
g(x; �; �) = 1

2
[g12 (�1�2 � �2�1) + g23 (�2�3 � �3�2) + g31 (�3�1 � �1�3)] ;

h(x; �; �; �) = 1
6
:::

Doppler transform: 7
H A function a de�ned on V is fast decreasing, if a (x) = O

�
jxj�q

�
; as jxj ! 1 in V for

q = 0; 1; 2; ::::
H Sm is the space of 1-forms f such that the function f (x; �) is fast decreasing as well as all

x-derivatives up to the order m for any �xed �:
For a 1-form f 2 S0 the integral

R (�) =

Z
�

f

is de�ned for any oriented curve � in V:
We have R (da; �) = 0 for any fast decreasing function a:
N A vector �eld v = (v1; v2; v3) is replaced by the 1-form f = v1dx1 + v2dx2 + v3dx3; so thatZ

(�; v) ds =

Z
�

f

Write R (x; �) = R (� (x; �)) ; where � (x; �) = fy = x+ t�; t � 0g; that is

R (x; �) =

Z 1

0

f (x+ s�; �) ds; x; � 2 V:

We have R (x; t�) = sgnt R (x; �) for any t > 0:
The sum L (x; �) = R (x; �) � R (x;��) is equal to the integral of f over the line � (x; �) =

fy = x+ t�; t 2 Rg :
N The Doppler transform R (x; �) is invariant with respect to the gauge transformation f + da,

where a an arbitrary ast decreasing function, since R (da) = 0.
N The di¤erential df of a 1-form f is gauge invariant.
Inversion problem: to recover the form df from knowledge of integrals R (f;�) on a n-dimensional

manifold � of rays � in Vn:
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2.1 The case n = 2

Norton, Braun-Hauck, Juhlin, Sparr-Stråhlén,...Howard-Wells,...Osman-Prince,...
Proposition For an arbitrary 1-form f 2 S1 on a Euclidean plane V and any x 2 V; � 2 Vnf0g

L (x; �) =

Z
�(x;�)

Fds = @p

Z
H!;p

df; (1)

where H is the half-plane such that @H = � (x; �) :
J Apply the Cauchy-Green formula. I

Hw,p

N Write df = FdS; where dS is the area element and F is a fast decreasing function in V:

@p

Z
H!;p

df = @p

Z
H!;p

FdS =

Z
�(x;�)

Fds

The right-hand side equals to the Radon transform of the function F:

2.2 The case n = 3

N In the 3D case the complete 4D-data of line integrals are redundant.
The variety of lines that are parallel to either of two given planes has dimension 3; a reconstruction

can be done by reduction to 2D case: Schuster, Vertgeim (2000) .
3D case: Vertgeim, Denisjuk.
Let � � V - the set of sources.
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Stability condition: for any point q 2 supp f and any plane H through q there is at least one
point p 2 H \ �:

This condition is su¢ cient for a reconstruction, if the �rst derivatives of R (�) are known for all
rays � with sources on �: In particular, the reconstruction is possible on any chord of a curve �:
Notations: Fix a Euclidean structure in V; denote Hp;!

:
= fy 2 V; h!; yi = pg for any !; j!j = 1

and p 2 R:
For any vector � 6= 0 the directional derivatives are

a� (x) = (�; da (x)) ; R� (x; �) = (�; dxR (x; �)) ; @;�R (x; �) = (�; d�R (x; �)) :

Proposition. Let f be a 1-form of the class S3: For an arbitrary plane H an arbitrary point y 2 H
and any vector � parallel to H we have

@p

Z
H

df (x; �; !) dH (x) =

Z
S

@�;!!R (y; �) d' (�) ; (2)

where dH is the Euclidean area element on H,
d' is the angular measure on the unit circle S � H:

Theorem. Let f be a 1-form of the class S2 and � � V be a set such that any hyperplane H
that meets the support of f meets also �.
The form df can be reconstructed from data of �rst derivatives of the integral R (x; �) for rays � (x; �) ;
x 2 �; j�j = 1:
J For arbitrary vectors �; � 2 V and a plane H we set

IH (�; �) = @p

Z
H

df (x; �; �) dH
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The function I can be determined from the given integral data. If both vectors �; � are parallel to H;
the equation IH (�; �) = 0 follows from partial integration. If � parallel to H and � = ! it is known
by the formula (2) applied to a point y 2 H \ �.
For arbitrary vectors (�; �), we can write � = a! + �0; and � = b� + �0 for some numbers a and b;

where �0; �0 are parallel to H:
If a = b = 0; then IH (�; �) = 0:
Suppose that a 6= 0: We have the equation

IH (�; �) = IH (�
0; �) = IH (�

0; a!) = aIH (�
0; !) ;

where the right-hand side is known.
The form df can be reconstructed from data of integrals IH (�; �) by means of the classical formula

of Lorentz:

df (x) = � 1

8�2

Z
j!j=1

@2p

Z
H!;p

df (y) dH

�����
p=h!;xi

d!:

We only need to know these integrals for hyperplanes H that meet the support of df. Otherwise the
integral vanishes.

3 Range conditions

3.1 Line integrals of functions

The function

J (x; �) =

Z 1

�1
� (x+ r�) dr

is called X-ray (or the John) transform of � 2 S0, where x; � 2 V: It ful�ls J (x; t�) = t�1J (x; �) ; t 6= 0
and the John equations �

@2

@�i@xj
� @2

@�j@xi

�
J (x; �) = 0; i; j = 1; 2; 3: (3)

The inverse statement John(1938):
Theorem Any smooth fast decreasing function J (x; �) that satis�es these conditions is equal to

X-ray transform of a function � 2 S1:
Remark: Given a curve � in V3; the variety � of lines � that meet � is characteristic for the

John equation. In the chart x3 = �3 = 1 the system is reduced to the only equation�
@2

@�1@x2
� @2

@�2@x1

�
J (x; �) = 0
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A 3-variety � the equation � (x1; x2; �1; �2) = 0 is characteristic for the John equation if

@�

@x1

@�

@�2
� @�

@x2

@�

@�1
= 0:

3.2 Integrals of forms

The line integrals L = L (x; �) of a 1-form f ful�l the homogeneity condition L (x; t�) = �L (x; �) for
�t > 0 and the system of equations�

@2

@�i@xj
� @2

@�j@xi

�2
L (x; �) = 0; i; j = 1; 2; 3; (4)

The same equations hold at a point x for the ray integrals R (x; �) provided the form f vanishes
in a neighborhood of the point x:
H The inverse statement is due to Gelfand-Gindikin-Graev(1980,2000):
Theorem An arbitrary smooth function L (x; �) that decreases fast as jx� �j ! 1 with all

derivatives that ful�ls (4), is equal to the line transform of a 1-form f with coe¢ cients in the Schwartz
space (and vice versa).
The variety � of lines � that touch a curve � is a "double" characteristic for (4). The "initial"

data on � are the functions and its �rst derivatives.

4 Rays tangent to a surface

The variety � of rays tangent to a surface S is characteristic for the John equation and double
characteristic for (4). A simple reconstruction formula for the Doppler transform is as follows:
Theorem Let S be a smooth surface in an oriented Euclidean space V;
H be a plane nowhere tangent to S: For an arbitrary f 2 S3 we have

@p

Z
H

df (x; �; !) dH =

Z
C

[�@�;!!R (y; y
0)� [�; !; y0] R!! (y; y0)] ds;

where
(i) y = y (s) ; 0 � s � s� is the equation of the curve C

:
= S \H such that jy0j = 1; y0 = @y=@s;

(ii) � = [y0; y00; !] > 0 is the curvature of C,
(iii) supp f \H is contained in the image of the map Y : (0; s�) � (0;1) ! H; (s; r) 7! y (s) +

ry0 (s) :
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H

S

supp f

Rays tangent to the curve S \H
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