# Current Density Impedance Imaging

## Adrian I. Nachman University of Toronto

Banff Oct. 2009



## 1. CDI M. Joy, G. Scott, R. Henkelman

## 2. CDII (two currents) with M. Joy, A. Ma, K. Hasanov.

## 3. CDII (magnitude of one current) with A. Tamasan and A. Timonov.

Partially supported by MITACS, NSERC, CITO, Phillips Heartstream, ORDCF, FMI.

## • • • • 1. How do you make a CD image using an MR imager?

- The imager yields an array of complex numbers related to the nuclear magnetization at points inside the object.
- The magnitude, *m*, forms the standard MR image .
- An applied low-frequency current creates a magnetic field which affects the phase image.



Magnitude MR Image Phase Image • • • • LF CDI is based on Ampere's law  $\mathbf{J} = \nabla \times \mathbf{B} / \mu_0$ Where **B** is the magnetic field

produced by the current density **J** 

Bz

Μ

• The phase  $\theta$  depends linearly on the magnetic field component  $B_7$  produced by the current density J and the duration of the current pulseT<sub>C</sub>.  $\theta = \gamma B_Z T_C$ 

where 
$$\vec{\mathbf{B}} = \begin{pmatrix} B_X & B_Y & B_Z \end{pmatrix}$$

• To measure  $B_x$  and  $B_y$  we rotate the object. (Seo et al. use only  $B_7$ )



 2. CDII (Current Density Impedance Imaging)

$$\nabla \ln(\sigma) = \begin{pmatrix} \nabla \times \mathbf{J}_2 \bullet (\mathbf{J}_1 \times \mathbf{J}_2) \end{pmatrix} \frac{\mathbf{J}_1}{|\mathbf{J}_1 \times \mathbf{J}_2|^2} \\ - (\nabla \times \mathbf{J}_1 \bullet (\mathbf{J}_1 \times \mathbf{J}_2)) \frac{\mathbf{J}_2}{|\mathbf{J}_1 \times \mathbf{J}_2|^2} \\ + (\nabla \times \mathbf{J}_1 \bullet \mathbf{J}_2) \frac{\mathbf{J}_1 \times \mathbf{J}_2}{|\mathbf{J}_1 \times \mathbf{J}_2|^2} \end{pmatrix}$$

where  $\sigma$  = electrical conductivity.

Independently discovered by J. Y. Lee (2004)

## Experimental Verification



An agar + TX151 gel in saline "popsicle" phantom



Reconstructed currents

## Depth Resolution in CDII



Distance from electrodes from 30 to 80 mm.
Average conductivity contrast ratio 1.21
Validated with careful direct bench measurements
Resolution is maintained with depth.



## CDII of a LIVE piglet (Very Preliminary Results !)

CDI study
 not geared
 towards CDII !





MRI image 2 mm resolution CDI -Two current vector fields

- 4mm resolution (to cut down acquisition time)
- Motion artefacts
- No averaging
- Conductivity range
- 0.8 -->2.0 s/m





CDII overlaid on MRI (slice 39, two different times)



## Slice 40 Slice 41 Slice 42













3. What if we only measure
 one current, in fact only its
 magnitude [J] ?

Motivation:

- Cuts down acquisition time.
- Math turns out to be beautiful: this brings Minimal Surfaces, Geometric Measure Theory into the field of Inverse Problems.
- Opens up the possibility of another physical approach to obtain such data directly.

#### Equipotential surfaces = minimal surfaces (in 2D geodesics)

**Theorem 1 (N-Tamasan-Timonov '07)** If  $u \in C^1(\Omega)$  is an electric potential with current density J, |J| > 0, then the level sets  $\Sigma_c = \{x : u(x) = c\}$  are surfaces of zero mean curvature in the conformal metric  $g = |J|^{2/(n-1)}I$ ; They are critical surfaces for the functional

(1) 
$$E(\Sigma) = \int_{\Sigma} |J| dS,$$

where dS is the Euclidean surface measure.

## Example of non-uniqueness in the Dirichlet Problem (Sternberg& Ziemer)

$$\nabla \cdot \left( |\nabla u(x)|^{-1} \nabla u(x) \right) = 0, \ x \in D \equiv unit \ disk,$$
$$u(x) = (x_1)^2 - (x_2)^2, \ x \in \partial D.$$

One parameter family of viscosity solutions:

$$u^{\lambda}(x) = \begin{cases} 2(x_1)^2 - 1, & if \quad |x_1| \ge \sqrt{\frac{1+\lambda}{2}}, \ |x_2| \le \sqrt{\frac{1-\lambda}{2}}, \\ \lambda, & if \quad |x_1| \le \sqrt{\frac{1+\lambda}{2}}, \ |x_2| \le \sqrt{\frac{1-\lambda}{2}}, \\ 1 - 2(x_2)^2, & if \quad |x_1| \le \sqrt{\frac{1+\lambda}{2}}, \ |x_2| \ge \sqrt{\frac{1-\lambda}{2}}. \end{cases}$$

## **Consider a minimization problem instead!**

$$\min\left\{\int_{\Omega}|J(x)|\cdot|\nabla u(x)|dx:\ u|_{\partial\Omega}=f\right\}$$

• Formally the Euler-Lagrange equation is

$$\nabla \cdot \left(\frac{|J|}{|\nabla u|} \nabla u\right) = 0.$$

• In the SZ example only  $u^0$  (for  $\lambda = 0$ ) is a minimizer of  $\int_{\Omega} |\nabla u(x)| dx$ .

Note:  $u^0$  cannot come from a conductivity  $(|J| \equiv 1)$ .

The voltage potential  $u_0$  is a minimizer for F[u]

$$\nabla \cdot \sigma \nabla u_0 = 0, \ u_0|_{\partial \Omega} = f, \ a = \sigma |\nabla u_0|, \ \nu = \text{outer normal at } \partial \Omega,$$
  
and  $\Lambda_{\sigma} = \text{Dirichlet-to-Neumann map:}$ 

$$\begin{split} F[u] &= \int_{\Omega} a |\nabla u| dx = \int_{\Omega} \sigma |\nabla u_0| \cdot |\nabla u| dx \geq \int_{\Omega} \sigma |\nabla u_0 \cdot \nabla u| dx \\ &\geq \int_{\Omega} \sigma \nabla u_0 \cdot \nabla u dx = \int_{\partial \Omega} \sigma \frac{\partial u_0}{\partial \nu} u ds = \langle \Lambda_{\sigma} f, f \rangle. \end{split}$$

The lower bound is achieved when  $u = u_0$ .

**Definition: admissible pair**  $(f, a) \in H^{1/2}(\partial \Omega) \times L^2(\Omega)$ 

 $\exists \sigma(x) \text{ with } 0 < c_{-} \leq \sigma(x) \leq \sigma_{+}, \text{ such that, if } u_{\sigma} \text{ is weak solution}$ 

$$\nabla \cdot \sigma \nabla u_{\sigma} = 0, \ u_{\sigma}|_{\partial \Omega} = f,$$

then

$$|\sigma \nabla u| = a.$$

 $\sigma$  = generating conductivity for the pair (f, a)

u =corresponding potential.

Note:

- the pair (f, |J|) for ideal measurements is admissible;
- But  $((x_1)^2 (x_2)^2|_{\partial D}, 1)$  is not admissible.

### A characterization of admissibility

 $\Omega \subset \mathbb{R}^n$  a domain and  $(f, |J|) \in H^{1/2}(\partial \Omega) \times L^2(\Omega)$ .

• If (f, |J|) is admissible, say generated by some conductivity  $\sigma_0$ and with  $u_0$  is the corresponding voltage potential, then

 $u_0 \in argmin\left\{F[u]: \ u \in H^1(\Omega), \ u|_{\partial\Omega} = f\right\}$ 

and  $|J|/|\nabla u_0| \in L^{\infty}_+(\Omega)$ .

• Conversely, if  $u_0 \in argmin \{F[u]: u \in H^1(\Omega), u|_{\partial\Omega} = f\}$  and  $|J|/|\nabla u_0| \in L^{\infty}_+(\Omega)$ , then (f, |J|) is admissible.

#### **Unique determination**

#### Theorem 2 (N-Tamasan-Timonov '09)

 $\Omega \subset \mathbb{R}^n = domain with connected, C^{1,\alpha}$ -boundary  $(f, |J|) \in C^{1,\alpha}(\partial \Omega) \times C^{\alpha}(\overline{\Omega}) = admissible pair, |J| > 0 a.e. in \Omega.$ Then  $\min \int_{\Omega} |J| |\nabla u| dx$ 

over 
$$\left\{ u \in W^{1,1}(\Omega) \bigcap C(\overline{\Omega}), |\nabla u| > 0 \ a.e., \ u|_{\partial\Omega} = f \right\}$$

has a unique solution, say  $u_0$ ;

 $\sigma = |J|/|\nabla u_0|$  is the unique conductivity generating (f, |J|).

**Remark** There is also a corresponding stability result (Nashed-Tamasan' 09).

### A minimization algorithm

$$\min F[u] = \min \int_{\Omega} a(x) |\nabla u(x)| dx.$$

Let  $\Omega \subset \mathbb{R}^n$ . For  $u_{n-1} \in H^1(\Omega)$  given with  $\frac{a}{|\nabla u_{n-1}|} \in L^{\infty}_+(\Omega)$  define

$$\sigma_n = \frac{a}{|\nabla u_{n-1}|}$$

and construct  $u_n$  as the unique solution to

$$\nabla \cdot \sigma_n \nabla u_n = 0,$$
$$u_n|_{\partial \Omega} = f.$$

#### Sufficient conditions for the iterations to make sense

 $\Omega$  be a  $C^{1,\alpha}$  simply connected domain in  $\mathbb{R}^2$ ,

 $a \in C^{\alpha}(\overline{\Omega}), a > 0,$ 

 $f \in C^{1,\alpha}(\partial \Omega)$ , almost-two-to-one.

Then

- $u_n \in C^{1,\alpha}(\overline{\Omega}), \sigma_n := a/|\nabla u_{n-1}| \in C^{\alpha}(\overline{\Omega}).$
- $F[u_n] = \int_{\Omega} a |\nabla u_n| dx > 0$  is decreasing,
- $\lim_{n\to\infty} F[u_n] = \lim_{n\to\infty} \langle \Lambda_{\sigma_n} f, f \rangle;$
- $\lim_{n \to \infty} \int_{\Omega} \sigma_n |\nabla u_{n-1} \nabla u_n|^2 dx = 0$
- $\lim_{n \to \infty} \int_{\Omega} a |\nabla u_n \nabla u_{n-1}| dx = 0.$

### A sufficient condition for being a minimizing sequence

A uniform upper bound:  $\sigma_n \leq M, \forall n$ .

Then

$$\lim_{n \to \infty} F[u_n] = \min\{\int_{\Omega} a |\nabla u| dx : u \in H^1(\Omega), \ u|_{\partial\Omega} = f\}.$$





Figure 1: One slice: += initial approximation,  $\Box=$  5 iter.,  $\diamond=$  50 iter., and \*= 100 iter (indistinguishable from the simulated conductivity)

#### Local uniqueness from partial data

**Theorem 3** (N-Tamasan-Timonov '09) Let  $\Omega \subset \mathbb{R}^2$  be simply connected. For i = 1, 2 let  $\sigma_i \in C^{\alpha}(\Omega)$  and  $u_i$  be  $\sigma_i$ -harmonic with  $u_i|_{\partial\Omega} \in C^{1,\alpha}(\partial\Omega)$  almost two-to-one. For a < b let

$$\Omega_{a,b} := \{ x \in \overline{\Omega} : a < u_1(x) < b \}, \ \Gamma := \Omega_{a,b} \bigcap \partial \Omega.$$

Assume  $u_1|_{\Gamma} = u_2|_{\Gamma}$  and  $|J_1| = |J_2|$  in the interior of  $\Omega_{a,b}$ . Then

- (1)  $\{x \in \overline{\Omega} : a < u_2(x) < b\} = \Omega_{a,b},$
- (2)  $u_1 = u_2 \text{ in } \Omega_{a,b}, \text{ and}$
- (3)  $\sigma_1 = \sigma_2 \ in \ \Omega_{a,b}.$

### **Reconstruction from partial data**

- The two-point boundary value problem for geodesics joining equipotential points at the boundary has a unique solution.
- We solve above numerically.
- More accurate than the quasi-iteration, but slower.
- Only requires  $u|_{\Gamma}$  and |J| in the region of interest.