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Outline

1. Optics, Tomography, and Inverse Transport

2. Photoacoustic effect

3. Inverse transport theory (ITID) for PAT

4. Inverse diffusion theory (IDID) for PAT

5. Inverse scattering theory (IScatID) for TAT.
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Optics and Tomography

Optical tomography consists of sending Photons (typically NIR with

λ ∼ 1µm) into tissues and measuring outgoing densities of photons.

The photon density u(t,x, v) solves the following transport equation

1

c

∂u

∂t
+ v · ∇u+ σ(x)u =

∫
V
k(x, v′, v)u(t,x, v′)dv′,

u(t,x, v) = f(t,x, v), Γ− = {(x, v) ∈ ∂X × V, ν(x) · v < 0}.

Measurements are u(t,x, v) on Γ+, the set of outgoing conditions {(x, v) ∈
∂X × V with v · ν(x) > 0}.

Measurements (without time) are described by the albedo operator:

A : L1(Γ−) → L1(Γ+); u|Γ− 7→ Au|Γ− = u|Γ+
.

Inverse Transport with Boundary Data (ITBD) consists of recon-

structing σ and k from (possibly partial) knowledge of A.
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Geometry of singularities
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Singularities and Inverse Transport

The albedo operator has singularities that can be used to obtain stable

reconstructions of the optical parameters σ and k. Ballistic photons

are more singular than single scattering photons, which are often more

singular than multiply scattered photons.

However, these singularities cannot be measured in many practical

settings because either

(i) ballistic photons of intensity e−
∫
l σ are attenuated too strongly

(ii) or only angularly averaged measurements are available, which

destroy any singularity.

In many practical settings, inverse transport with boundary measurements

results in a severely ill-posed problem, which results in a severe loss of

resolution.
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Summary of stabilities for ITBD

For steady-state angularly averaged measurements, we can reconstruct

the low frequency component of k(x) with logarithmic-type stability

(high frequencies are exponentially unstable: ILL-POSED!).

A similar conclusion holds in this regime when the transport equation is

approximated by a diffusion equation (diffuse optical tomography).

For time dependent (or modulation dependent) angularly averaged mea-

surements, we can reconstruct σ(x) and the spatial component of the

scattering coefficient k(x)φ(v.v′) with φ known, with Hölder stability.

For steady-state angularly dependent measurements, we reconstruct the

Radon transform of σ(x) in a stable way in dimension n ≥ 2. In dimen-

sion n ≥ 3, we reconstruct k(x, v, v′) in a stable way.

For time dependent angularly dependent measurements, the above results

hold for n ≥ 2 without any smallness assumption on k.



Photo-acoustics

We have seen that optical waves suffered from low resolution because

of multiple scattering. However, optical waves are quite useful thanks to

the large contrast of optical absorption between healthy and unhealthy

tissues.

For ultrasound tomography, the opposite is true. Acoustic waves have

very high resolution because they do not scatter. However, they do not

scatter precisely because different tissues have very similar sound speeds.

Ultrasounds is therefore a low-contrast, high-resolution method.

Photo-acoustics combines both waves to offer a large-contrast, high

resolution imaging methodology.

7



Physics of Photo-acoustics

In photo-acoustics, externally generated radiation (low frequency pho-

tons in TAT or high frequency photons in PAT) is sent through tissues.

Absorbed energy then heats up the underlying tissues, which results in

mechanical expansion and generation of acoustic signals.

Such acoustic signals are measured by an array of transducers. They are

then “sent back” (e.g. time reversed) into the (fairly homogeneous as

far as sound speed is concerned) medium on a computer. This allows

one to reconstruct the source of heating, which typically takes the form

H(x) := σa(x)I(x),

where σa is the attenuation coefficient and I(x) is the radiation intensity.

Since I(x) depends on the optical parameters, it is interesting to under-

stand which optical parameters may be reconstructed from knowledge

of H(x) pointwise.
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Experiments in Photo-acoustics
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Experimental results

Courtesy UCL.
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Transport Modeling of PAT

High frequency radiation is modeled by the following evolution equation:

1

c

∂

∂t
u(t, x, v) + Tu(t, x, v) = S(t, x, v), t ∈ R, x ∈ Rn, v ∈ Sn−1

Tu = v · ∇xu+ σ(x, v)u−
∫
Sn−1

k(x, v′, v)u(t, x, v′)dv′.

We define total scattering and intrinsic attenuation as

σs(x, v) =
∫
Sn−1

k(x, v, v′)dv′, σa(x, v) = σ(x, v)− σs(x, v).

Radiation is thus modeled here by a transport equation.
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Acoustic Modeling of PAT

Measurements are modeled by the following wave equation:

1

c2s(x)

∂2p

∂t2
−∆p = β

∂

∂t
H(t, x), where

H(t, x) =
∫
Sn−1

σa(x, v
′)u(t, x, v′)dv′.

The measurements are typically p(t, x) for (t, x) ∈ R+ × ∂X. This is not

enough to reconstruct H(t, x). Modeling based on the fact that light

speed is much larger than sound speed shows that

H(t, x) ∼ δ0(t)H0(x), H0(x) =
∫
Sn−1

σa(x, v)
( ∫

R
u(t, x, v)dt

)
dv.

Also,
∫
R u(t, x, v)dt := u(x, v) solves a steady-state transport equation.

The inverse wave problem is now “well-posed”: we reconstruct H0(x)

from wave measurements on R+ × ∂X.

We assume here this first step DONE (cf. previous talks today).
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Inverse Transport with Internal Data (ITID)

We can recast the transport equation as a boundary value problem

v · ∇xu+ σ(x, v)u−
∫
Sn−1

k(x, v′, v)u(x, v′)dv′ = 0, (x, v) ∈ X × Sn−1

u(x, v) = φ(x, v) (x, v) ∈ Γ− = {(x, v) ∈ ∂X × Sn−1, v · ν(x) < 0},
for all possible illuminations φ and consider the measurement operator

A : L1(Γ−, dξ) → L1(X)

φ(x, v) 7→ Aφ(x) = H(x) :=
∫
Sn−1

σa(x, v)u(x, v)dv.

Recall that σa(x, v) is the intrinsic attenuation coefficient.

Assume A known. What can we reconstruct on σ(x, v) and k(x, v′, v) ?

Joint work with Alexandre Jollivet and Vincent Jugnon.
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Reconstruction of spatial structures

The analysis of singularities of the albedo operator A allows us to obtain

the following stability results assuming the symmetry relations σa(x, v) =

σa(x,−v) and σ(x, v) = σ(x,−v).

Theorem. The spatial structure of attenuation and scattering is stably

reconstructed from knowledge of A:

‖σ − σ̃‖L∞(Sn−1;W−1,1(X)) + ‖σa − σ̃a‖L∞(Sn−1;L1(X))

≤ C ‖A− Ã‖L(L1(Γ−,dξ);L1(X)).

For σ, σ̃ in L∞(Sn−1,W r,p(X)) for p > 1, r > −1, then for −1 ≤ s ≤ r:

‖σ − σ̃‖L∞(Sn−1;W s,p(X)) ≤ C‖A− Ã‖
1
p
r−s
1+r

L(L1(Γ−,dξ);L1(X))
.
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Anisotropy and Henyey-Greenstein (HG) kernels

The full scattering kernel k(x, v′, v) cannot be reconstructed stably. As-

sume that anisotropy is modeled by the HG kernel

k(x, λ) := σs(x)
1− g2(x)

2π(1 + g(x)2 − 2g(x)λ)
, when n = 2,

k(x, λ) := σs(x)
1− g2(x)

4π(1 + g(x)2 − 2g(x)λ)
3
2

, when n ≥ 3,

where g ∈ Cb(X) and 0 ≤ g(x) < 1 for a.e. x ∈ X.

Theorem. The degree of anisotropy g(x) is uniquely and stably deter-

mined by the operator A provided σs(x) > 0 for a.e. x ∈ X.

Summary of Inverse Transport Theory for PAT with multiple illumi-

nations: we can reconstruct three spatial coefficients (attenuation,

scattering, HG kernel) from photo-acoustic measurements.
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Diffusive Regime and PAT

In the often valid regime of large scattering, radiation is best modeled

by

−∇ ·D(x)∇I(x) + σa(x)I(x) = 0 x ∈ X
I(x) = φ(x) x ∈ ∂X,

where I(x) =
∫
Sn−1 u(x, v)dv is the spatial density of photons and D(x) is

the diffusion coefficient.

Recall that H(x) = σa(x)I(x). When D is known, we can solve for I(x)

and get σa(x) (stably if φ is well behaved) from a unique measurement

H(x).

When D(x) is not known, then multiple measurements are necessary

to reconstruct (σa, D).
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Inverse Diffusion with Internal Data (ISID)

Let us assume that the domain X ⊂ Rn has smooth boundary and is

sufficiently convex. Then we have the following result.

Theorem. Assume that (D,σa) and (D̃, σ̃a) are in M with D|∂X = D̃|∂X,

M = {(D,σa) s.t. (
√
D,σa) ∈ Y × Ck+1(X̄), ‖

√
D‖Y + ‖σa‖Ck+1(X̄) ≤M}

and Y = H
n
2+k+2+ε(X) with k ≥ 3. Let d = H and d̃ = H̃ be internal

data as above for the coefficients (D,σa) and (D̃, σ̃a), respectively and

with boundary conditions g = (gj)j=1,2. Then there is an open set of

illuminations g ∈ (Ck,α(∂X))2 such that the following stability holds:

‖D − D̃‖Ck−1(X) + ‖σa − σ̃a‖Ck−1(X) ≤ C‖d− d̃‖(Ck(X))2.

Summary: Two well-chosen measurements suffice to reconstruct

(D,σa) stably. Joint work with Gunther Uhlmann.
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Derivation and reconstructions

Using a standard Liouville change of variables, we reconstruct the pair

of coefficients (µ = σa√
D
, q = −∆

√
D√
D
− σa
D ) from measurements of the form

dk = µuk where uk is solution to (∆ + q)uk = 0 in X with uk = gk on ∂X

for k = 1,2 (ISID). Then we find that

u1∆u2 = u2∆u1,

which after some algebra may be recast as

2(d1∇d2 − d2∇d1) · ∇µ+ (d2∆d1 − d1∆d2)µ = 0.

Since µ is known on ∂X, we obtain a well-posed equation for µ provided

that β := d1∇d2−d2∇d1 is a vector field whose integral curves map any

point x ∈ X to a point x0 ∈ ∂X.

Such “nice” vector fields are constructed by means of appropriate com-

plex geometrical optics solutions for well-chosen illuminations g1,2.
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Numerical simulations in PAT by Kui Ren
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Reconstructions of isotropic attenuation σa(x) and scattering σs(x) from

two measurements in the transport regime.

Left: one of the data H(x) = σa(x)I(x). Middle: reconstruction of σa.

Right: Reconstruction of σs. Real coefficients are square inclusions with

values 0.2 and 12, respectively.
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Low frequency radiation and TAT

When radiation is low-frequency, it is best modeled by the following

system of equations for the electric field E:

1

c2
∂2

∂t2
E + σ(x)µ

∂

∂t
E +∇×∇× E = S(t, x).

Here, σ(x) is the unknown conductivity (attenuation). Assuming a scalar

model for radiation propagation (E replaced by u) and assuming that

S = φ(t)S(x)e−iωct is a short pulse (typically 0.5µs) which is narrow band

(typically 3GHz i.e. 0.3ns period), we can model radiation by

∆u+ k2u+ ikσ(x)u = 0, u = ui + us, ωc = ck,

where ui is a superposition of plane waves eikξ·x with ξ ∈ S2.

The deposited heat is then of the form H(t, x) = σ(x)|u|2(x)φ2(t).
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Modeling measurements and IScatID

The internal data are then of the form H(t, x) = σ(x)|u|2(x)φ2(t).

Acoustic wave propagation is modeled by
1

c2s(x)

∂2p

∂t2
−∆p = β

∂

∂t
H(t, x).

We assume the separation of scales

H(t, x) = H(x)δ0(t), H(x) = σ(x)
∫
R
|u(t, x)|2dt = σ(x)|u(x)|2

∫
R
φ2(t)dt.

We thus consider acoustic signals that propagate at a larger time scale

than the pulse of radiation. A pulse that propagates in the medium in

0.5µs travels 0.75mm at (sound) speed 1.5103m/s. Any spatial scale

below 0.75mm cannot be reconstructed stably in such a setting.

Here, we assume good temporal separation of scales.

The Inverse Scattering problem with Internal Data then becomes:

reconstruct the conductivity σ(x) from knowledge of H(x) = σ(x)|u|2(x),
where u = ui + us solves the above Helmholtz equation.
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IScatID: the problem

We first replace the inverse scattering problem by an inverse boundary

value problem since traces u∂X of solutions to the scattering problem

are dense in H
1
2(∂X) for some smooth ∂X with supp(σ) ⊂ X.

Define q(x) = k2 + ikσ(x) on X and Y = Hp(X) and Z = Hp−1
2(∂X) for

p > n. Let g ∈ Z be given and u ∈ Y solution of

(∆ + q)u = 0, X, u = g ∂X.

The internal data are given by

H(x) = σ(x)|u|2.

The Inverse Scattering problem with Internal data is thus: reconstruct

σ(x) from knowledge of H(x) = σ(x)|u|2(x) above.
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IScatID: the result

Theorem. Let σ and σ̃ be uniformly bounded functions in Y = Hp(X)

for p > n.

Then there is an open set of illuminations g in Z = Hp−1
2(∂X) such

that d(x) = d̃(x) in Y implies that σ(x) = σ̃(x) in Y . Moreover, there

exists a constant C independent of σ and σ̃ such that

‖σ − σ̃‖Y ≤ C‖d− d̃‖Y .

The open set of illuminations g may be replaced by an appropriate open

set of illuminations ui of the initial inverse scattering problem.

The inverse scattering problem with internal data is therefore well posed.
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IScatID: the derivation

The derivation is based on the construction of CGOs. Let ρ ∈ Cn with

|ρ| is large and ρ · ρ = 0. Define q(x) = k2 + ikσ(x) on X appropriately

extended to x ∈ Rn. Then we can write the reconstruction of σ as finding

the unique fixed point to the equation

σ(x) = e−(ρ+ρ̄)·xd(x)−Hg[σ](x) in Y.

The functional Hg[σ] defined as

Hg[σ](x) = σ(x)(ψg(x) + ψg(x) + ψg(x)ψg(x)),

is a contraction map for g in the open set described above, where ψg is

defined as the solution to

(∆ + 2ρ · ∇)ψg = −q(1 + ψg), X, ψg = g ∂X.

We first show that Hg[σ] is a contraction for CGOs g = ψ∂X and then

for illuminations such that g − ψ|∂X is small.
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Numerical simulations in TAT by Kui Ren
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Left: exact attenuation. Middle: H(x) = σ(x)|u|2. Right: Reconstructed

σ (least-square).
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Conclusions

Optical tomography suffers from low resolution and ultrasound imaging

from low contrast. Photo-acoustic tomography offers the potential to

combine high resolution with large contrast.

Assuming that the absorbed heat may be reconstructed accurately by

solving a (well-posed) inverse wave problem, then the inverse problems

in PAT and TAT become inverse problems with internal data.

We have shown uniqueness and stability results for the PAT-TAT problem

in the setting of:

(i) inverse transport in PAT with multiple measurements

(ii) inverse diffusion in PAT with two well-chosen measurements

(iii) inverse scattering in TAT with one well-chosen illumination.


