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Backgrounds

1. Model theoretic non-standard arguments

Within a countable model of WKL0 or ACA0, we can do

non-standard analysis by means of weak saturation, standard part

principle,. . .

• Non-standard arguments for WKL0 (Tanaka)

– existence of Haar measure (Tanaka/Yamazaki)

• Non-standard arguments for ACA0

– Riemann mapping theorem (Y)



Backgrounds

1. Model theoretic non-standard arguments

2. Non-standard arithmetic

Big five systems are characterized by non-standard

arithmetic (Keisler).

We combine 1 and 2 for the following aims:

• Use non-standard arguments to do (standard) analysis

in subsystems of Z2 easily.

• Do Reverse Mathematics for non-standard analysis.

• Characterize subsystems of Z2 from non-standard view

point.



Backgrounds

For the previous aims, we need systems of non-standard

second order arithmetic as the following:

1. Expansions of second order arithmetic and

non-standard arithmetic.

2. We can do analysis in both ‘standard structure’ and

‘non-standard structure’.

3. We can use typical non-standard priciples such as

‘standard part priciple’, ‘transfer principle’,. . .

4. If we prove a ‘standard theorem’ within a ns-system,

then we can find a ‘standard proof’ in (standard)

second order arithmetic.
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Language L˜2
Language of non-standard second order arithmetic (L˜2)

are the following:

s number variables: xs; ys; : : :,

˜ number variables: x˜; y˜; : : :,
s set variables: Xs; Y s; : : :,

˜ set variables: X˜; Y ˜; : : :,
s symbols: 0s; 1s;=s;+s; ´s; <s;2s,

˜ symbols: 0˜; 1˜;=˜;+˜; ´˜; <˜;2˜,
function symbol:

p
.



s-structure and ∗-structure
Ms: range of xs; ys; : : :,

M˜: range of x˜; y˜; : : :,
Ss: range of Xs; Y s; : : :,

S˜: range of X˜; Y ˜; : : :.

V s = (Ms; Ss; 0s; 1s; : : : ): s-L2 structure.

V ˜ = (M˜; S˜; 0˜; 1˜; : : : ): ˜-L2 structure.p
: Ms [ Ss !M˜ [ S˜: embedding.

We usually regard Ms as a subset of M˜.



(Notations)

Let ’ be an L2-formula.

• ’s : L˜2 formula constructed by adding s

to any L2 symbols in ’.

• ’˜ : L˜2 formula constructed by adding ˜

to any L2 symbols in ’.

• x̌s :=
p

(xs).

• X̌s :=
p

(Xs).

We usually omit s and ˜ of relations =;»;2.

We often say “’ holds in V s (in V ˜)” when ’s (’˜)
holds.



Typical axioms of non-standard analysis

emb : “
p

is an injective homomorphism”:

e : 8x˜8ys(x˜ < y̌s ! 9zs(x˜ = žs)):

fst : 8X˜(card(X˜) 2Ms

! 9Y s8xs(xs 2 Y s $ x̌s 2 X˜):
st : 8X˜9Y s8xs(xs 2 Y s $ x̌s 2 X˜):

Σijoverspill(saturation) :

8x˜8X˜(8ys9zs(zs – ys ^ ’(žs; x˜; X˜)˜)
! 9y˜(8ws(y˜ > w̌s) ^ ’(y˜; x˜; X˜)˜))

for any Σij(L2)-formula ’(z; x;X):



Typical axioms of non-standard analysis

Σijequiv : (’s $ ’˜)

for any Σij(L2)-sentence ’:

ΣijTP : 8xs8Xs(’(xs; Xs)s $ ’(x̌s; X̌s)˜)

for any Σij(L2)-formula ’(x;X):



ns-systems

ns-BASIC =(RCA0)
s + emb + e + fst + Σ0

1overspill

+ Σ1
2equiv + Σ0

0TP:

ns-WKL0 =(WKL0)
s + emb + e + st + Σ0

1overspill

+ Σ1
2equiv + Σ0

0TP:

ns-ACA0 =(ACA0)
s + emb + e + st + Σ1

0overspill

+ Σ1
2equiv + Σ1

1TP:

• ns-WKL0 is an extension of WKL0
˜ introduced by

Keisler.

• ns-ACA0 is an extension of ACA0
˜.



ns-systems

We can show the following.

Proposition 1. aa

1. ns-BASIC is a conservative extension of RCA0.

2. ns-WKL0 = ns-BASIC + st.

3. ns-ACA0 = ns-BASIC + st + Σ1
1TP.



Interpretation of ns-ACA0 in ACA0

We interpret L˜2-formulas by forcing relation ‚.

(in ACA0)

For unbounded X and L˜2-formula  , we define

X ‚  $“for any generic ultrafilter G 3 X on S,

(M;S;MM=G; SM=G) j=  ”:

Theorem 2. aa

1. ns-ACA0 ‘  ) ACA0 ‘ (‚  ) for any  2 L˜2.

2. ACA0 ‘ (‚ ’s)$ ’ for any ’ 2 L2.



Interpretation of ns-ACA0 in ACA0

Corollary 3 (conservativity). aa

ns-ACA0 ‘ ’s ) ACA0 ‘ ’ for any ’ 2 L2.

Proof.

By Theorem 2.1, a proof ns-ACA0 ‘ ’s can be

transformed to a proof ACA0 ‘‚ ’s.

Then, by Theorem 2.2, ACA0 ‘ ’. 2



Interpretation of ns-WKL0 in WKL0

Let WKL0
0 := WKL0+“I is a proper cut”+fc > Ig.

(I: a new relation symbol, c: a new constant symbol)

Within WKL0
0, we can define another forcing notion ‚w

for self-embeddings.

Theorem 4. aa

1. ns-WKL0 ‘  ) WKL0
0 ‘ (‚w  )

for any  2 L˜2.

2. WKL0
0 ‘ (‚w ’s)$ ’ for any ’ 2 L2.

Corollary 5 (conservativity). aa

ns-WKL0 ‘ ’s ) WKL0 ‘ ’ for any ’ 2 L2.
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Non-standard analysis in ns-systems

In this section, we show some examples of

non-standard analysis in ns-systems. Our aim is

to find non-standard counterparts of famous

theorems which are equivalent to some

ns-systems.

(We often omit ·̌ for number variables.)



Within ns-BASIC, we can define real numbers, open sets,
continuous functions, complete separable metric spaces,. . . in
both s-structure and ∗-structure.

Definition 1 (ns-BASIC: standard part). Let
α∗ = 〈a∗

i | i ∈ N∗〉 ∈ R∗ and βs = 〈bs
i | i ∈ Ns〉 ∈ Rs.

βs is said to be a standard part of α∗ (st(α) = β) if

∀i ∈ Ns |a∗
i − b

s| < 2
−i in V

∗
.

We write α∗
1 ≈ α∗

2 if st(α∗
1 − α∗

2) = 0. Using overspill, we
can show

∀α
s ∈ Rs∃b

∗ ∈ Q∗
st(b

∗
) = α

s
.



We can do Reverse Mathematics for some typical non-standard
statements.

Theorem 6. The following are equivalent over ns-BASIC.

1. ns-WKL0.
2. For any α∗ ∈ R∗,

∃K
s ∈ Ns |α∗| < K

s → ∃β
s ∈ Rs

st(α
∗
) = β

s
.

Next, we consider compactness of complete separable metric
spaces.

Theorem 7. The following are equivalent over ns-BASIC.

1. ns-WKL0.
2. For any totally bounded complete separable metric space

〈As, ds〉 in V s, there exist A∗ ⊃ As and d∗ ⊃ ds in V ∗,

∀x
∗ ∈ Â

∗∃x
s ∈ Â

s
st(x

∗
) = x

s
.



Proposition 8 (ns-BASIC). Let 〈As, ds〉 ∈ V s and

〈A∗, d∗〉 ∈ V ∗. If ∀x∗ ∈ Â∗∃xs ∈ Âs st(x∗) = xs,
then 〈As, ds〉 is Heine-Borel compact.

Corollary 9. ns-WKL0 ` (Heine-Borel theorem)s.
Thus, WKL0 `Heine-Borel theorem.

Next, we consider continuous functions.

Definition 2 (ns-BASIC). Let f∗ be a continuous function in
V ∗. f∗ is said to be s-continuous if

st(α
∗
) = st(β

∗
) ∈ Rs → st(f

∗
(α

∗
)) = st(f

∗
(β

∗
)) ∈ Rs

.

f ∈ V s is said to be a standard part of f∗ (st(f∗) = f) if

f(st(α
∗
)) = st(f

∗
(α

∗
)).



Theorem 10. The following are equivalent over ns-BASIC.

1. ns-WKL0.
2. If f∗ is an s-continuous continuous function in V ∗, then

there exists a continuous function fs in V s such that
st(f∗) = fs.

3. For any continuous function fs on [0, 1] in V s, there exists
a piecewise linear s-continuous continuous function f∗ on
[0, 1] in V ∗ such that st(f∗) = fs.

Proposition 11 (ns-BASIC). If st(f∗) = fs and
α∗ ≈ β∗ → f∗(α∗) ≈ f∗(β∗), then f is uniformly
continuous.

Corollary 12. ns-WKL0 `(every continuous function on [0, 1] is
uniformly continuous)s.
Thus, WKL0 `(every continuous function on [0, 1] is uniformly
continuous).



Next, we consider sequential compactness. For this, the transfer
principle is very useful.

We usually use Σ0
1TP for reals and Σ1

1TP for continuous
functions, but they are equivalent.

Theorem 13. The following are equivalent over ns-WKL0.

1. ns-ACA0.
2. Σ0

1TP.

3. Σ0
1TP for real numbers in V s.

4. Σ1
1TP for continuous functions in V s.



Theorem 14 (ns-ACA0). aa

1. Let As : Ns → Rs be a real sequence on [0, 1] in V s, and
let H∗ ∈ N∗ \ Ns. Then, st(

√
(As)(H∗)) is an

accumulation value of As.
2. Let Fs be a sequence of continuous functions on [0, 1] in

V s, and let H∗ ∈ N∗ \ Ns. If st(
√

(Fs)(H∗)) exists,
then it is an accumulation value of Fs.

Question: Can we prove the converse?

Proposition 15 (ns-ACA0). If Fs is uniformly bounded and
equicontinuous, then

√
(Fs)(H∗) is s-continuous.

Corollary 16. ns-ACA0 ` (Ascoli’s lemma)s.
Thus, ACA0 `Ascoli’s lemma.
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We will show a version of Riemann mapping theorem within
WKL0 as an example of an application of ns-systems to Reverse
Mathematics.

Theorem 17 (WKL0: RMT for Jordan regions). aa

JRMT: Let γ be a Jordan curve on C and D be the interior of
γ. Then, there exists a biholomorphic map h : ∆(1) → D.

(∆(1) = { z ∈ C : |z| < 1 }.)

Proof.

By Corollary 5, we only need to show ns-WKL0 `(JRMT)s.
Thus, we reason within ns-WKL0.
Let γs be a Jordan curve on Cs. Then, there exists a piecewise
linear Jordan curve γ∗ ∈ V ∗ such that st(γ∗) = γs.
Let D∗ be the interior of γ∗.



Lemma 18 (RCA0: RMT for polygonal regions (Horihata-Y)).
aa

PRMT: Let γ be a piecewise linear Jordan curve on C and D
be the interior of γ. Then, there exists a biholomorphic map
h : ∆(1) → D.

Using this lemma, PRMT holds in V s. Then, by Σ1
2equiv,

PRMT holds in V ∗. Thus, there exists a biholomorphic function
h∗ : ∆(1) → D∗.
By the Schwarz lemma, h∗′ is bouded by Ks

i ∈ Ns on

∆(1 − 2−i) for any i ∈ Ns. Thus, h∗ is s-continuous on
∆(1).
Then we can easily show that hs = st(h∗) is a desired
biholomorphic function in V s.
Hence ns-WKL0 `(JRMT)s. 2



Similarly, we can show the following.

Theorem 19. aa

1. ns-WKL0 `(Jordan curve theorem)s.
Thus, WKL0 `Jordan curve theorem. (Sakamoto-Y)

2. ns-ACA0 `(Riemann mapping theorem)s.
Thus, ACA0 `Riemann mapping theorem.
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ns-system for WWKL0?

We consider the next property.

LMP :8H˜ 2 N˜ n Ns 8T ˜ „ 2<H
∗

st

„
card(fff˜ 2 T ˜ j lh(ff˜) = H˜g)

2H
∗

«
> 0

! 9ff˜ 2 T ˜lh(ff˜) = h˜ ^ ff˜ \ Ns 2 V s:

LMP is a principle for Loeb Measure theory.

Proposition 20. ns-BASIC + LMP ‘ (WWKL0)
s.



ns-system for WWKL0?

Question 1: Is ns-BASIC + LMP a conservative

extension of WWKL0?

Question 2: Let (M;S) j= WWKL0 be a countable

model. Then, is there S̄ « S such that

(M; S̄) j= WKL0 and for any binary tree T 2 S̄,

lim
i!1

card(fff 2 T j lh(ff) = ig)
2i

> 0

! 9f 2 S f is a path of T:

We can show that 2 implies 1.



other ns-systems?

ns-ATR0 =ns-ACA0 + (ATR0)
s + Σ1

2TP?

ns-Π1
1CA0 =ns-ACA0 + (Π1

1CA0)
s

+ Σ1
2TP + Σ1

1overspill?

Question 3: Are there any good principles for

ns-systems? (saturation principles?)
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