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Dynamical Systems

Definition
A dynamical system is a tuple (X ,B, µ,T ) such that:

• B is a σ-algebra on X

• µ is a σ-additive probability (that is, valued in [0, 1]) measure
on B

• The T is a measurable, measure-preserving transformations
on X

We mostly work with the space of L2 functions on (X ,B, µ,T ):
functions f such that f 2 is integrable. These functions form a
Hilbert space.



The Multiple Recurrence Theorem

Theorem
Let (X ,B, µ,T ) be a dynamical system, and let A ∈ B with
µ(A) > 0. Then there is some d such that

µ(
⋂
i≤k

T diA) > 0.

Indeed, the stronger SZ property holds:

Theorem
Let (X ,B, µ,T ) be a dynamical system, and let A ∈ B with
µ(A) > 0. Then there is some d such that

lim inf
N→∞

1

N

∑
d<N

µ(
⋂
i≤k

T diA) > 0.



Weak Mixing

Definition
A dynamical system is weak mixing if for all L2 functions f , g ,

lim
N→∞

1

N

∑
i<N

[∫
fT igdµ−

∫
fdµ

∫
gdµ

]2

= 0.

Theorem
If a dynamical system is weak mixing, multiple recurrence holds.



Compactness

Definition
A function f in a dynamical system is compact (or almost
periodic) if the orbit

{f ,Tf ,T 2f , . . . ,T nf , . . .}

is totally bounded.

Theorem
If χA is compact, multiple recurrence holds for A.



Compact Factors

Theorem
If (X ,B, µ,T ) is not weak mixing, there is a non-trivial compact
function f .

Definition
A factor of a dynamical system (X ,B, µ,T ) is given by a σ-algebra
C ⊆ B closed under T .



The Structure Theorem

Theorem

• A compact extension of an SZ factor is SZ

• A limit of SZ factors is SZ

• A weak mixing extension of an SZ factor is SZ

• If (X ,B, µ,T ) is not weak mixing relative to a factor C then
there is a non-trivial compact extension contained in B

Proof of Multiple Recurrence: Take C to be the maximal factor
formed by compact extensions and limits. This factor is SZ, and
(X ,B, µ,T ) is weak mixing relative to this factor, therefore
(X ,B, µ,T ) is SZ.



Transfinite Induction?

Is it really necessary to use a transfinite induction, and if so, how
far do we really need to go?

On the one hand:

Theorem (Beleznay and Foreman)

For every countable α, there is a measure space such that the
Furstenberg-Zimmer tower has height α.

Determining whether a measure space is equal to the
Furstenberg-Zimmer tower is Π1

1 complete.



Transfinite Induction?

On the other hand:

Theorem (Furstenberg)

The factor Yk is sufficient to calculate the average

lim inf
N→∞

1

N

N∑
n=1

µ(
⋂

i≤k+2

T niA).

Theorem (Host-Kra, Ziegler)

A factor Zk , the “k-step nilpotent factor,” contained in Yk (but,
in general, much smaller) is sufficient to calculate the average

lim
N→∞

1

N

N∑
n=1

µ(
⋂

i≤k+2

T niA).



Formalizing the Proof

With some coding effort, we can formalize Furstenberg’s argument
in the theory ID1.

ID1 is Peano Arithmetic plus an inductive predicate. That is, there
is a set I with the axioms

n ∈ I ↔ A(n, I )

and
∀x [A(x ,P)→ P[x ]]→ ∀x [x ∈ I → P[x ]]

where A(x ,X ) is an arithmetic formula where X appears positively.

This theory is equivalent Π1
1 − CA−0 .



ID1 with Ordinals

We may reformulate ID1 to make the ordinal induction explicit.
We define a type of ordinals and two predicates I (α, n), I (< α, n)
with the axioms

• ¬I (0, n)

• I (< α, n)↔ ∃β < αI (β, n)

• A(n, λx .I (< α, x))↔ I (α, n)

• A(n, λx .∃αI (< α, x))→ I (< Ω, n)



A Dialectica Translation for ID1

Definition
The theory of functionals OR1 contains two base types, N and the
type Ω of well-founded trees of integers, and allows quantifiers
over N.

Theorem (AT)

If φ is provable in ID1, there is an arithmetic formula

φD(α, β)

such that for every well-ordered tree α, there is a term β such that
OR1 proves φD(α, β).



An Example

When we apply this to the tower of compact extensions, we obtain,
for each ordinal α, a factor Cα. A crucial statement is that the
system is weak mixing relative to the limit. That is, for any f , g ,

lim
N→∞

1

N

∑
i<N

∫ [
E (fT ig | Cω1)− E (f | Cω1)T iE (g | Cω1)

]2
dµ = 0.

Formalized in an ordinal version of ID1, this becomes the
statement that for any ε > 0, any f , g , and any ordinal α, there is
some ordinal β above α such that

∃N∀m ≥ N
1

m

∑
i<m

∫ [
E (fT ig | Cβ)− E (f | Cβ)T iE (g | Cβ)

]2
dµ < ε.



An Example

The Dialectica translation applied to this statement tells us that
for every ε > 0, each f , g , and any ordinal functional,
α̂ : N× (Ω→ Ω)→ Ω, there is a function β̂ on ordinals such that

∃N∀j∃γ ∈ [α̂(j , β̂), β̂(α̂(j , β̂))]∀m ≥ N

1

m

∑
i<m

∫ [
E (fT ig | Cγ)− E (f | Cγ)T iE (g | Cγ)

]2
dµ < ε.

The functional β̂ is “relatively constructive.” It is allowed arbitrary
arithmetic operations, but is limited in the sort of ordinal
operations it can make.



Breaking up the Proof

The proof can be broken up into the following pieces:

• For all α, Cα has the SZ property

• C is weak mixing relative to
⋃
α C<α

• Since C is weak mixing relative to
⋃
α C<α, C has the SZ

property

The first part is Π1 on ordinals, and so has no information about
the levels of the hierarchy required.

The third part derives an arithmetic (indeed, Π2) conclusion, so it
amounts to applying these Dialecticized statements to particular
functions α̂.



The Particular Functionals

In this case, it turns out that the particular functions α̂ we begin
with are quite simple (in fact, they are constant), and the
operations β̂ are also fairly simple. In fact, all functionals we
needed are, in a strong sense, already closed below the ordinal ωω.

The example above becomes

Theorem
For every f , ε > 0, and q(n), there is a K such that for every α,
there are p ≤ K , n, and β ∈ [α, α + ωq(K)) with the following
property: for every γ ∈ [β, β + ωq(p)), there is a δ ∈ [γ, γ + ωp)
such that for every m ≥ n,

1

m

∑
i<m

∫ [
E (fT ig | Cδ)− E (f | Cδ)T iE (g | Cδ)

]2
dµ < ε.



Why are the Functionals Weak?

ID1 contains two induction schemes, the usual one on the integers,
and one along the ordinals. It is known that various weakenings of
those schemes give much weaker theories.

In particular, one might think that because the statement that Cα
has the SZ property is arithmetic, and this is the only statement
proven by induction, the proof contains only arithmetic induction
on ordinals. But as an intermediate step, a “stronger”
induction—namely, closure under sums—is used.



A Conjecture

Let φ be arithmetic with ID1 ` φ. Suppose there is an arithmetic
statement ψ such that ID1 ` ∀x [x ∈ I → ψ(x)], and
T + (Cl) ` ∀x [x ∈ I → ψ(x)]→ φ. Then

T + HA(α) ` φ

where α is the proof-theoretic ordinal of T and T + HA(α) adds to
T a predicate computing α levels of the hyperarithmetic hierarchy.



The Furstenberg Correspondence

Theorem (Szemerédi)

For every δ > 0 and every k, there is an N such that whenever
E ⊆ [1,N] such that |E |N ≥ δ, E contains an arithmetic progression
of length k.

Theorem (Furstenberg Multiple Recurrence Theorem)

If (X ,B, µ,T ) is a dynamical system and A is a measurable set
with positive measure then for any k there is some n such that,

µ(A ∩ T nA ∩ · · · ∩ T (k−1)nA) > 0.

Theorem (Furstenberg)

Szemerédi’s Theorem and the Multiple Recurrence Theorem are
equivalent.



The Furstenberg Correspondence

Observe that [1,N] is a dynamical system: take the points to be
the set [1,N], let all sets be measurable, let µ be the density

µ(B) = |B|
N , and let T be the shift n 7→ n + 1 mod N.

The Multiple Recurrence Theorem always holds trivially in such
systems, since if µ(B) > 0, µ(B ∩ T NB ∩ · · · ∩ T (k−1)NB) > 0,
since T NB = B.

Informally, Szemerédi’s Theorem says that the Multiple Recurrence
Theorem holds in finite dynamical systems with bounds (on the
size of n, the “gaps” in the progression) independent of the
cardinality of the system.



The Furstenberg Correspondence

Suppose Szemerédi’s Theorem fails. Then there is a δ, a k , and an
infinite sequence of EN ⊆ [1,N] such that |EN |

N ≥ δ but EN

contains no arithmetic progression of length k .

If we pass to a nonstandard model, we obtain a nonstandard
integer a and a set Ea ⊆ [1, a] such that st( |Ea|

a ) ≥ δ but Ea

contains no arithmetic progression of length k .



Nonstandard Analysis

The internal sets form a finitely additive measure space with the
measure µ◦(A) = st( |A|a ), and it is not hard to check that, together
with the transformation x 7→ x + 1, this is a finitely additive
dynamical system.

The Loeb measure construction tells us that we may extend this to
a σ-algebra, giving us a true dynamical system. We may now
forget about the fact that we used nonstandard analysis and treat
this as any other dynamical system.



Nonstandard Analysis

Applying the Multiple Recurrence Theorem, we find an n such that

µ(Ea ∩ T nEa ∩ · · · ∩ T knEa) > 0.

There must be some point x in this intersection, and so

x ,T nx , . . . ,T knx ∈ Ea.

x is a nonstandard integer, so transfer tells us that, for infinitely
many N, there is an xN such that

xN , xN + n, . . . , xN + kn ∈ EN .

Notice that this is very uniform, more so than we originally
promised: for instance, it would have sufficed if the n given by the
Multiple Recurrence Theorem were nonstandard.



Failure of Ergodicity

After we construct the nonstandard model, there’s no reason we
have to choose x 7→ x + 1 as our transformation. Indeed, we could
take any nonstandard integer b < a, and take T to be the
transformation x 7→ x + b mod a.

Observe that for any finite AN ⊆ [1,N] and every point x , the
average

1

M

∑
i<M

χAN
(x + i)→ µ(AN).

But when we take the correspondant, this may not be true.



Recovering Information

Consider again our nonstandard construction of a dynamical
system as being generated by the internal subsets of [1, a]. [1, a] is
actually a group, so we could obtain (X ,B, µ, {Tg}g∈G ), a
dynamical system acted on by a large group.

Viewed as a group, [1, a] is rather messy (for instance, it is
uncountable). But Tao and Ziegler showed that if we select
countably many elements from [1, a] at random, to obtain
(X ,B, µ,T1, . . . ,Tn, . . .), the average

lim
N→∞

lim
M→∞

1

MN

∑
~i∈[1,M]N

χA(T i1
1 · · ·T

iN
N x) = µ(A).


