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Graphs look like G = (V(G),~¢), where ~ is the adjacency relation.
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Graphs look like G = (V(G),~¢), where ~ is the adjacency relation.

@ All graphs are “countable”.

@ A coloring is a function f : V(G) — w, where
x~y = f(x)#f(y)
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Graphs look like G = (V(G),~¢), where ~ is the adjacency relation.

@ All graphs are “countable”.

@ A coloring is a function f : V(G) — w, where
X~y = f(x)#f(y).

@ The chromatic number of G is x(G), the least n such that there is a
coloring f : V — n.
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There are lots of theorems in graph theory that look like:
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There are lots of theorems in graph theory that look like:

If G has . ..., then x(G) <n.

GeK = x(G)<n.
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There are lots of theorems in graph theory that look like:

If G has . ..., then x(G) <n.

GeK = x(G)<n.

Or simply

X(K) <n.

where x(K) = sup{x(G) : G € K}.
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Without loss, we can assume that

o K is closed under isomorphism;

o K is closed under induced subgraphs;

o K is closed under disjoint unions;

e G € K if each finite induced subgraph is in K. (Suggests WKLy.)
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Without loss, we can assume that

o K is closed under isomorphism;

o K is closed under induced subgraphs;

o K is closed under disjoint unions;

e G € K if each finite induced subgraph is in K. (Suggests WKLy.)

Such a class K is natural.
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Without loss, we can assume that

o K is closed under isomorphism;

K is closed under induced subgraphs;

K is closed under disjoint unions;

G € K if each finite induced subgraph is in K. (Suggests WKLy.)

Such a class K is natural.

Equivalently, K is natural iff K = Forb(F), where F is a set of finite,
connected graphs. Here, F is the set of forbidden graphs, which are those
finite embeddable graphs in any G € K.
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Without loss, we can assume that

o K is closed under isomorphism;

K is closed under induced subgraphs;

K is closed under disjoint unions;

G € K if each finite induced subgraph is in K. (Suggests WKLy.)

Such a class K is natural.

Equivalently, K is natural iff K = Forb(F), where F is a set of finite,
connected graphs. Here, F is the set of forbidden graphs, which are those
finite embeddable graphs in any G € K.

If M = RCAy, it makes sense to refer to natural K € M.
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Without loss, we can assume that

o K is closed under isomorphism;

K is closed under induced subgraphs;

K is closed under disjoint unions;

G € K if each finite induced subgraph is in K. (Suggests WKLy.)

Such a class K is natural.

Equivalently, K is natural iff K = Forb(F), where F is a set of finite,
connected graphs. Here, F is the set of forbidden graphs, which are those
finite embeddable graphs in any G € K.

If M = RCAy, it makes sense to refer to natural K € M.

If K € M, then K5t is the (real-world) natural class Forb(F), where F is
the set of standard finite graphs not in K. We will be very sloppy and not
distinguish K and K*t.
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Without loss, we can assume that

o K is closed under isomorphism;

K is closed under induced subgraphs;

K is closed under disjoint unions;

G € K if each finite induced subgraph is in K. (Suggests WKLy.)

Such a class K is natural.

Equivalently, K is natural iff K = Forb(F), where F is a set of finite,
connected graphs. Here, F is the set of forbidden graphs, which are those
finite embeddable graphs in any G € K.

If M = RCAy, it makes sense to refer to natural K € M.

If K € M, then K5t is the (real-world) natural class Forb(F), where F is
the set of standard finite graphs not in K. We will be very sloppy and not
distinguish K and K*t.

In practice, (but it's not a theorem)

X(K)=n<w = WKLo F y(K)=n.
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Example

| is the class of interval graphs — those representable by intervals, with two
intervals being adjacent iff they intersect.
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Example

| is the class of interval graphs — those representable by intervals, with two
intervals being adjacent iff they intersect.

Let I, ={G €1:w(G) < n}.
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Example

| is the class of interval graphs — those representable by intervals, with two

intervals being adjacent iff they intersect.
Let I, ={G €1:w(G) < n}.

I and all I, are natural classes.
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Example

| is the class of interval graphs — those representable by intervals, with two

intervals being adjacent iff they intersect.
Let I, ={G €1:w(G) < n}.
I and all I,, are natural classes.

It's easy to prove that x(l,) = n. Same proof shows that
WKLo F x(I,) = n. In fact, WKLg F Vx(x(lx) = x).
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:

Presenter presents the graph one vertex at a time.
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:
Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:
Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.
Painter wins iff he has constructed a coloring of G.
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:
Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.
Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, xoL(G), is the least n for which
Painter has a winning strategy. Let yoL(K) = sup{xoL(G): G € K} .
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:
Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.
Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, xoL(G), is the least n for which
Painter has a winning strategy. Let yoL(K) = sup{xoL(G): G € K} .

Obviously, x(K) < xor(K), and for “most” K, x(K) < xoL(K).
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:
Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.
Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, xoL(G), is the least n for which
Painter has a winning strategy. Let yoL(K) = sup{xoL(G): G € K} .

Obviously, x(K) < xor(K), and for “most” K, x(K) < xoL(K).
In practice, (but it's not a theorem)

xoL(K) <n<w = RCAp I x(K) < n.
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On-Line Coloring

For graph G and n < w, there is a game with 2 players:
Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.
Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, xoL(G), is the least n for which
Painter has a winning strategy. Let yoL(K) = sup{xoL(G): G € K} .

Obviously, x(K) < xor(K), and for “most” K, x(K) < xoL(K).
In practice, (but it's not a theorem)
xoL(K) <n<w = RCAp I x(K) < n.

For example, Kierstead & Trotter showed that x(l,) = 3n— 2, and it
easily follows from their proof that

RCAo FVx > 1[x(lx) < 3x —2].
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However, there is a reversal [see my paper in Simpson’s 2001].

THEOREM: n < xoL(K) = RCAgF [x(K) < n— WKLg] .
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However, there is a reversal [see my paper in Simpson’s 2001].
THEOREM: n < xoL(K) = RCAgF [x(K) < n— WKLg] .

For example, if 2 < n < w, then the following are equivalent over RCAy:
o WKLy;

o x(In) = n;
o x(I,) #3n—-2.
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The Grundy number of G is ['(G) = the largest n such that there is an
onto Grundy coloring f : V(G) — n.
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The Grundy number of G is ['(G) = the largest n such that there is an
onto Grundy coloring f : V(G) — n.

Equivalently, its the least n for which First Fit is a winning strategy for
Painter.
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The Grundy number of G is ['(G) = the largest n such that there is an
onto Grundy coloring f : V(G) — n.

Equivalently, its the least n for which First Fit is a winning strategy for
Painter.

Obviously, xoL(G) < T(G).
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The Grundy number of G is ['(G) = the largest n such that there is an
onto Grundy coloring f : V(G) — n.

Equivalently, its the least n for which First Fit is a winning strategy for
Painter.

Obviously, xoL(G) < T(G).

Let M(K) = sup{l'(G) : G € K}.
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The Grundy number of G is ['(G) = the largest n such that there is an
onto Grundy coloring f : V(G) — n.

Equivalently, its the least n for which First Fit is a winning strategy for
Painter.

Obviously, xoL(G) < T(G).
Let [(K) = sup{l'(G) : G € K}.
For example, 4n —9 < T(l,) < 8n.

Define 4(G), ~v(K) similarly with “smallest” instead of “largest”
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The Grundy number of G is ['(G) = the largest n such that there is an
onto Grundy coloring f : V(G) — n.

Equivalently, its the least n for which First Fit is a winning strategy for
Painter.

Obviously, xoL(G) < T(G).
Let [(K) = sup{l'(G) : G € K}.
For example, 4n —9 < T(l,) < 8n.

Define 4(G), ~v(K) similarly with “smallest” instead of “largest”
Easily, x(G) = ~v(G) <T(G), and for all n < w,

RCA¢ - VG[x(G) < n— ~(G) = x(G)].
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THEOREM: n < [(K) = RCAg I [v(K) < n — ACA]
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THEOREM: n < [(K) = RCAg - [v(K) < n— ACA] .

For example, if 2 < n < w, then there is ¢,, 4n — 9 < ¢, < 8n, such that
the following are equivalent over RCAg:

) ACAo;
o y(ln) = n;
e (1) # cn.
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