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Graphs look like G = (V (G ),∼G ), where ∼G is the adjacency relation.

All graphs are “countable”.

A coloring is a function f : V (G ) −→ ω, where
x ∼ y =⇒ f (x) 6= f (y).

The chromatic number of G is χ(G ), the least n such that there is a
coloring f : V −→ n.
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There are lots of theorems in graph theory that look like:

If G has . . . . , then χ(G ) ≤ n.

Or

G ∈ K =⇒ χ(G ) ≤ n .

Or simply

χ(K) ≤ n .

where χ(K) = sup{χ(G ) : G ∈ K}.
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Without loss, we can assume that

K is closed under isomorphism;

K is closed under induced subgraphs;

K is closed under disjoint unions;

G ∈ K if each finite induced subgraph is in K. (Suggests WKL0.)

Such a class K is natural.

Equivalently, K is natural iff K = Forb(F), where F is a set of finite,
connected graphs. Here, F is the set of forbidden graphs, which are those
finite embeddable graphs in any G ∈ K.

If M |= RCA0, it makes sense to refer to natural K ∈M.

If K ∈M, then Kst is the (real-world) natural class Forb(F), where F is
the set of standard finite graphs not in K. We will be very sloppy and not
distinguish K and Kst.

In practice, (but it’s not a theorem)

χ(K) = n < ω =⇒ WKL0 ` χ(K) = n .
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Example

I is the class of interval graphs – those representable by intervals, with two
intervals being adjacent iff they intersect.

Let In = {G ∈ I : ω(G ) ≤ n}.

I and all In are natural classes.

It’s easy to prove that χ(In) = n. Same proof shows that
WKL0 ` χ(In) = n. In fact, WKL0 ` ∀x

(
χ(Ix) = x

)
.
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On-Line Coloring

For graph G and n < ω, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.
Painter wins iff he has constructed a coloring of G .

The On-Line chromatic number of G , χOL(G ), is the least n for which
Painter has a winning strategy. Let χOL(K) = sup{χOL(G ) : G ∈ K} .
Obviously, χ(K) ≤ χOL(K), and for “most” K, χ(K) < χOL(K).

In practice, (but it’s not a theorem)

χOL(K) ≤ n < ω =⇒ RCA0 ` χ(K) ≤ n.

For example, Kierstead & Trotter showed that χ(In) = 3n − 2, and it
easily follows from their proof that

RCA0 ` ∀x ≥ 1[χ(Ix) ≤ 3x − 2].
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However, there is a reversal [see my paper in Simpson’s 2001].

Theorem: n < χOL(K) =⇒ RCA0 `
[
χ(K) ≤ n→WKL0

]
.

For example, if 2 ≤ n < ω, then the following are equivalent over RCA0:

WKL0;

χ(In) = n;

χ(In) 6= 3n − 2.
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The Grundy number of G is Γ(G ) = the largest n such that there is an
onto Grundy coloring f : V (G ) −→ n.

Equivalently, its the least n for which First Fit is a winning strategy for
Painter.

Obviously, χOL(G ) ≤ Γ(G ).

Let Γ(K) = sup{Γ(G ) : G ∈ K}.

For example, 4n − 9 ≤ Γ(In) ≤ 8n.

Define γ(G ), γ(K) similarly with “smallest” instead of “largest”

Easily, χ(G ) = γ(G ) ≤ Γ(G ), and for all n < ω,

RCA0 ` ∀G [χ(G ) ≤ n→ γ(G ) = χ(G )].
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Theorem: n < Γ(K) =⇒ RCA0 `
[
γ(K) ≤ n→ ACA0

]
.

For example, if 2 ≤ n < ω, then there is cn, 4n − 9 ≤ cn ≤ 8n, such that
the following are equivalent over RCA0:

ACA0;

γ(In) = n;

γ(In) 6= cn.
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