Grundy Colorings of Graphs and Reverse Mathematics

Jim Schmerl
UConn

December 11, 2008

Graphs look like $G=\left(V(G), \sim_{G}\right)$, where \sim_{G} is the adjacency relation.

Graphs look like $G=\left(V(G), \sim_{G}\right)$, where \sim_{G} is the adjacency relation.

- All graphs are "countable".

Graphs look like $G=\left(V(G), \sim_{G}\right)$, where \sim_{G} is the adjacency relation.

- All graphs are "countable".
- A coloring is a function $f: V(G) \longrightarrow \omega$, where

$$
x \sim y \Longrightarrow f(x) \neq f(y)
$$

Graphs look like $G=\left(V(G), \sim_{G}\right)$, where \sim_{G} is the adjacency relation.

- All graphs are "countable".
- A coloring is a function $f: V(G) \longrightarrow \omega$, where

$$
x \sim y \Longrightarrow f(x) \neq f(y)
$$

- The chromatic number of G is $\chi(G)$, the least n such that there is a coloring $f: V \longrightarrow n$.

There are lots of theorems in graph theory that look like:

$$
\text { If } G \text { has } \ldots \text {, . then } \chi(G) \leq n \text {. }
$$

There are lots of theorems in graph theory that look like:

$$
\text { If } G \text { has, then } \chi(G) \leq n \text {. }
$$

Or

$$
G \in \mathbf{K} \Longrightarrow \chi(G) \leq n .
$$

There are lots of theorems in graph theory that look like:

$$
\text { If } G \text { has } \ldots \text {, . . then } \chi(G) \leq n \text {. }
$$

Or

$$
G \in \mathbf{K} \Longrightarrow \chi(G) \leq n .
$$

Or simply

$$
\chi(\mathbf{K}) \leq n .
$$

where $\chi(\mathbf{K})=\sup \{\chi(G): G \in \mathbf{K}\}$.

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;
- \mathbf{K} is closed under disjoint unions;

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;
- \mathbf{K} is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K}. (Suggests $W_{K} L_{0}$.)

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;
- \mathbf{K} is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K}. (Suggests $W_{K L}$.) Such a class \mathbf{K} is natural.

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;
- \mathbf{K} is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K}. (Suggests $W_{K L}$.)

Such a class \mathbf{K} is natural.
Equivalently, \mathbf{K} is natural iff $\mathbf{K}=\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;
- \mathbf{K} is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K}. (Suggests $W_{K L}$.)

Such a class \mathbf{K} is natural.
Equivalently, \mathbf{K} is natural iff $\mathbf{K}=\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

If $\mathcal{M} \models \mathrm{RCA}_{0}$, it makes sense to refer to natural $\mathbf{K} \in \mathcal{M}$.

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;
- \mathbf{K} is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K}. (Suggests $W K L_{0}$.)

Such a class \mathbf{K} is natural.
Equivalently, \mathbf{K} is natural iff $\mathbf{K}=\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

If $\mathcal{M} \equiv \mathrm{RCA}_{0}$, it makes sense to refer to natural $\mathbf{K} \in \mathcal{M}$.
If $\mathbf{K} \in \mathcal{M}$, then $\mathbf{K}^{\text {st }}$ is the (real-world) natural class $\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is the set of standard finite graphs not in K. We will be very sloppy and not distinguish \mathbf{K} and $\mathbf{K}^{\text {st }}$.

Without loss, we can assume that

- \mathbf{K} is closed under isomorphism;
- K is closed under induced subgraphs;
- \mathbf{K} is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K}. (Suggests $W_{K L}$.)

Such a class \mathbf{K} is natural.
Equivalently, \mathbf{K} is natural iff $\mathbf{K}=\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

If $\mathcal{M} \equiv \mathrm{RCA}_{0}$, it makes sense to refer to natural $\mathbf{K} \in \mathcal{M}$.
If $\mathbf{K} \in \mathcal{M}$, then $\mathbf{K}^{\text {st }}$ is the (real-world) natural class $\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is the set of standard finite graphs not in \mathbf{K}. We will be very sloppy and not distinguish \mathbf{K} and $\mathbf{K}^{\text {st }}$.

In practice, (but it's not a theorem)

$$
\chi(\mathbf{K})=n<\omega \Longrightarrow \mathbf{W K L}_{0} \vdash \chi(\mathbf{K})=n
$$

Example

Example

I is the class of interval graphs - those representable by intervals, with two intervals being adjacent iff they intersect.

Example

I is the class of interval graphs - those representable by intervals, with two intervals being adjacent iff they intersect.

Let $\mathbf{I}_{n}=\{G \in \mathbf{I}: \omega(G) \leq n\}$.

Example

I is the class of interval graphs - those representable by intervals, with two intervals being adjacent iff they intersect.

Let $\mathbf{I}_{n}=\{G \in \mathbf{I}: \omega(G) \leq n\}$.
\mathbf{I} and all \mathbf{I}_{n} are natural classes.

Example

I is the class of interval graphs - those representable by intervals, with two intervals being adjacent iff they intersect.

Let $\mathbf{I}_{n}=\{G \in \mathbf{I}: \omega(G) \leq n\}$.
\mathbf{I} and all \mathbf{I}_{n} are natural classes.
It's easy to prove that $\chi\left(\mathbf{I}_{n}\right)=n$. Same proof shows that $\mathrm{WKL}_{0} \vdash \chi\left(\mathbf{I}_{n}\right)=n$. In fact, $\mathrm{WKL}_{0} \vdash \forall x\left(\chi\left(\mathbf{I}_{x}\right)=x\right)$.

On-Line Coloring

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:
Presenter presents the graph one vertex at a time.

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:
Presenter presents the graph one vertex at a time.
Painter colors each vertex as it is presented with a color $<n$.

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:
Presenter presents the graph one vertex at a time.
Painter colors each vertex as it is presented with a color $<n$. Painter wins iff he has constructed a coloring of G.

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:
Presenter presents the graph one vertex at a time.
Painter colors each vertex as it is presented with a color $<n$. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of $G, \chi_{\mathrm{OL}}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{\mathrm{OL}}(\mathbf{K})=\sup \left\{\chi_{\mathrm{OL}}(G): G \in \mathbf{K}\right\}$.

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:
Presenter presents the graph one vertex at a time.
Painter colors each vertex as it is presented with a color $<n$. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of $G, \chi_{\mathrm{OL}}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{\mathrm{OL}}(\mathbf{K})=\sup \left\{\chi_{\mathrm{OL}}(G): G \in \mathbf{K}\right\}$. Obviously, $\chi(\mathbf{K}) \leq \chi_{\mathrm{OL}}(\mathbf{K})$, and for "most" $\mathbf{K}, \chi(\mathbf{K})<\chi_{\mathrm{OL}}(\mathbf{K})$.

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:
Presenter presents the graph one vertex at a time.
Painter colors each vertex as it is presented with a color $<n$. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of $G, \chi_{\mathrm{OL}}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{\mathrm{OL}}(\mathbf{K})=\sup \left\{\chi_{\mathrm{OL}}(G): G \in \mathbf{K}\right\}$. Obviously, $\chi(\mathbf{K}) \leq \chi_{\mathrm{OL}}(\mathbf{K})$, and for "most" $\mathbf{K}, \chi(\mathbf{K})<\chi_{\mathrm{OL}}(\mathbf{K})$.

In practice, (but it's not a theorem)

$$
\chi_{\mathrm{OL}}(\mathbf{K}) \leq n<\omega \Longrightarrow \mathrm{RCA}_{0} \vdash \chi(\mathbf{K}) \leq n .
$$

On-Line Coloring

For graph G and $n<\omega$, there is a game with 2 players:
Presenter presents the graph one vertex at a time.
Painter colors each vertex as it is presented with a color $<n$. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of $G, \chi_{\mathrm{OL}}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{\mathrm{OL}}(\mathbf{K})=\sup \left\{\chi_{\mathrm{OL}}(G): G \in \mathbf{K}\right\}$. Obviously, $\chi(\mathbf{K}) \leq \chi_{\mathrm{OL}}(\mathbf{K})$, and for "most" $\mathbf{K}, \chi(\mathbf{K})<\chi_{\mathrm{OL}}(\mathbf{K})$.

In practice, (but it's not a theorem)

$$
\chi_{\mathrm{OL}}(\mathbf{K}) \leq n<\omega \Longrightarrow \mathrm{RCA}_{0} \vdash \chi(\mathbf{K}) \leq n .
$$

For example, Kierstead \& Trotter showed that $\chi\left(\mathbf{I}_{n}\right)=3 n-2$, and it easily follows from their proof that

$$
\mathrm{RCA}_{0} \vdash \forall x \geq 1\left[\chi\left(\mathbf{I}_{x}\right) \leq 3 x-2\right]
$$

However, there is a reversal [see my paper in Simpson's 2001].
Theorem: $n<\chi \mathrm{OL}(\mathbf{K}) \Longrightarrow \mathrm{RCA}_{0} \vdash\left[\chi(\mathbf{K}) \leq n \rightarrow \mathrm{WKL}_{0}\right]$.

However, there is a reversal [see my paper in Simpson's 2001].
Theorem: $n<\chi_{\mathrm{OL}}(\mathbf{K}) \Longrightarrow \mathrm{RCA}_{0} \vdash\left[\chi(\mathbf{K}) \leq n \rightarrow \mathrm{WKL}_{0}\right]$.
For example, if $2 \leq n<\omega$, then the following are equivalent over RCA_{0} :

- WKL_{0};
- $\chi\left(\mathbf{I}_{n}\right)=n$;
- $\chi\left(\mathbf{I}_{n}\right) \neq 3 n-2$.

The Grundy number of G is $\Gamma(G)=$ the largest n such that there is an onto Grundy coloring $f: V(G) \longrightarrow n$.

The Grundy number of G is $\Gamma(G)=$ the largest n such that there is an onto Grundy coloring $f: V(G) \longrightarrow n$.
Equivalently, its the least n for which First Fit is a winning strategy for Painter.

The Grundy number of G is $\Gamma(G)=$ the largest n such that there is an onto Grundy coloring $f: V(G) \longrightarrow n$.
Equivalently, its the least n for which First Fit is a winning strategy for Painter.

Obviously, $\chi_{\mathrm{OL}}(G) \leq \Gamma(G)$.

The Grundy number of G is $\Gamma(G)=$ the largest n such that there is an onto Grundy coloring $f: V(G) \longrightarrow n$.
Equivalently, its the least n for which First Fit is a winning strategy for Painter.

Obviously, $\chi_{\mathrm{OL}}(G) \leq \Gamma(G)$.
Let $\Gamma(\mathbf{K})=\sup \{\Gamma(G): G \in \mathbf{K}\}$.

The Grundy number of G is $\Gamma(G)=$ the largest n such that there is an onto Grundy coloring $f: V(G) \longrightarrow n$.
Equivalently, its the least n for which First Fit is a winning strategy for Painter.

Obviously, $\chi_{\mathrm{OL}}(G) \leq \Gamma(G)$.
Let $\Gamma(\mathbf{K})=\sup \{\Gamma(G): G \in \mathbf{K}\}$.
For example, $4 n-9 \leq \Gamma\left(\mathbf{I}_{n}\right) \leq 8 n$.
Define $\gamma(G), \gamma(\mathbf{K})$ similarly with "smallest" instead of "largest"

The Grundy number of G is $\Gamma(G)=$ the largest n such that there is an onto Grundy coloring $f: V(G) \longrightarrow n$.
Equivalently, its the least n for which First Fit is a winning strategy for Painter.

Obviously, $\chi_{\mathrm{OL}}(G) \leq \Gamma(G)$.
Let $\Gamma(\mathbf{K})=\sup \{\Gamma(G): G \in \mathbf{K}\}$.
For example, $4 n-9 \leq \Gamma\left(\mathbf{I}_{n}\right) \leq 8 n$.
Define $\gamma(G), \gamma(\mathbf{K})$ similarly with "smallest" instead of "largest" Easily, $\chi(G)=\gamma(G) \leq \Gamma(G)$, and for all $n<\omega$,

$$
\mathrm{RCA}_{0} \vdash \forall G[\chi(G) \leq n \rightarrow \gamma(G)=\chi(G)] .
$$

Theorem: $n<\Gamma(\mathbf{K}) \Longrightarrow \operatorname{RCA}_{0} \vdash\left[\gamma(\mathbf{K}) \leq n \rightarrow \mathrm{ACA}_{0}\right]$.

Theorem: $n<\Gamma(\mathbf{K}) \Longrightarrow \operatorname{RCA}_{0} \vdash\left[\gamma(\mathbf{K}) \leq n \rightarrow \mathrm{ACA}_{0}\right]$.
For example, if $2 \leq n<\omega$, then there is $c_{n}, 4 n-9 \leq c_{n} \leq 8 n$, such that the following are equivalent over RCA_{0} :

- ACA_{0};
- $\gamma\left(\mathbf{I}_{n}\right)=n$;
- $\gamma\left(\mathbf{I}_{n}\right) \neq c_{n}$.

