Grundy Colorings of Graphs and Reverse Mathematics

Jim Schmerl UConn

December 11, 2008

3

• All graphs are "countable".

< 🗇 🕨

- All graphs are "countable".
- A coloring is a function $f : V(G) \longrightarrow \omega$, where $x \sim y \implies f(x) \neq f(y)$.

イロト 不得下 イヨト イヨト

- 31

- All graphs are "countable".
- A coloring is a function $f: V(G) \longrightarrow \omega$, where $x \sim y \implies f(x) \neq f(y)$.
- The chromatic number of G is χ(G), the least n such that there is a coloring f : V → n.

イロト 不得下 イヨト イヨト

- 31

There are lots of theorems in graph theory that look like:

If G has ..., then $\chi(G) \leq n$.

Image: A math a math

There are lots of theorems in graph theory that look like:

If G has ..., then
$$\chi(G) \leq n$$
.

$G \in \mathbf{K} \implies \chi(G) \leq n$.

Or

(日) (周) (三) (三)

3

There are lots of theorems in graph theory that look like:

If G has ..., then
$$\chi(G) \leq n$$
.

$$G \in \mathbf{K} \implies \chi(G) \leq n$$
.

Or simply

Or

 $\chi(\mathbf{K}) \leq n$.

where
$$\chi(\mathbf{K}) = \sup\{\chi(G) : G \in \mathbf{K}\}.$$

Image: A math a math

э

• K is closed under isomorphism;

- K is closed under isomorphism;
- K is closed under induced subgraphs;

< 🗗 🕨

- K is closed under isomorphism;
- K is closed under induced subgraphs;
- K is closed under disjoint unions;

___ ▶

- K is closed under isomorphism;
- K is closed under induced subgraphs;
- K is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K} . (Suggests WKL₀.)

4/9

- K is closed under isomorphism;
- K is closed under induced subgraphs;
- K is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K} . (Suggests WKL₀.)

Such a class **K** is natural.

4/9

- K is closed under isomorphism;
- K is closed under induced subgraphs;
- K is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K} . (Suggests WKL₀.)

Such a class **K** is natural.

Equivalently, **K** is natural iff $\mathbf{K} = \mathbf{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

- K is closed under isomorphism;
- K is closed under induced subgraphs;
- K is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K} . (Suggests WKL₀.)

Such a class **K** is natural.

Equivalently, **K** is natural iff $\mathbf{K} = \mathbf{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

If $\mathcal{M} \models \mathsf{RCA}_0$, it makes sense to refer to natural $\mathbf{K} \in \mathcal{M}$.

- K is closed under isomorphism;
- K is closed under induced subgraphs;
- K is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K} . (Suggests WKL₀.)

Such a class **K** is natural.

Equivalently, **K** is natural iff $\mathbf{K} = \mathbf{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

If $\mathcal{M} \models \mathsf{RCA}_0$, it makes sense to refer to natural $\mathbf{K} \in \mathcal{M}$.

If $\mathbf{K} \in \mathcal{M}$, then \mathbf{K}^{st} is the (real-world) natural class $Forb(\mathcal{F})$, where \mathcal{F} is the set of standard finite graphs not in \mathbf{K} . We will be very sloppy and not distinguish \mathbf{K} and \mathbf{K}^{st} .

- 4 同 6 4 日 6 4 日 6

- K is closed under isomorphism;
- K is closed under induced subgraphs;
- K is closed under disjoint unions;
- $G \in \mathbf{K}$ if each finite induced subgraph is in \mathbf{K} . (Suggests WKL₀.)

Such a class **K** is natural.

Equivalently, **K** is natural iff $\mathbf{K} = \mathbf{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite, connected graphs. Here, \mathcal{F} is the set of forbidden graphs, which are those finite embeddable graphs in any $G \in \mathbf{K}$.

If $\mathcal{M} \models \mathsf{RCA}_0$, it makes sense to refer to natural $\mathbf{K} \in \mathcal{M}$.

If $K \in \mathcal{M}$, then K^{st} is the (real-world) natural class $Forb(\mathcal{F})$, where \mathcal{F} is the set of standard finite graphs not in K. We will be very sloppy and not distinguish K and K^{st} .

In practice, (but it's not a theorem)

$$\chi(\mathbf{K}) = n < \omega \implies \mathsf{WKL}_0 \vdash \chi(\mathbf{K}) = n$$
.

- 2

<ロ> (日) (日) (日) (日) (日)

I is the class of interval graphs – those representable by intervals, with two intervals being adjacent iff they intersect.

< A >

I is the class of interval graphs – those representable by intervals, with two intervals being adjacent iff they intersect.

Let $\mathbf{I}_n = \{ G \in \mathbf{I} : \omega(G) \leq n \}.$

< 🗗 🕨

I is the class of interval graphs – those representable by intervals, with two intervals being adjacent iff they intersect.

Let $\mathbf{I}_n = \{ G \in \mathbf{I} : \omega(G) \leq n \}.$

I and all I_n are natural classes.

I is the class of interval graphs – those representable by intervals, with two intervals being adjacent iff they intersect.

Let $\mathbf{I}_n = \{ G \in \mathbf{I} : \omega(G) \leq n \}.$

I and all I_n are natural classes.

It's easy to prove that $\chi(\mathbf{I}_n) = n$. Same proof shows that $WKL_0 \vdash \chi(\mathbf{I}_n) = n$. In fact, $WKL_0 \vdash \forall x (\chi(\mathbf{I}_x) = x)$.

<ロ> (日) (日) (日) (日) (日)

For graph G and $n < \omega$, there is a game with 2 players:

< (17) × <

For graph G and $n < \omega$, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

< 67 ▶

For graph G and $n < \omega$, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n.

For graph G and $n < \omega$, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n. Painter wins iff he has constructed a coloring of G.

For graph G and $n < \omega$, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, $\chi_{OL}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{OL}(\mathbf{K}) = \sup\{\chi_{OL}(G) : G \in \mathbf{K}\}$.

For graph G and $n < \omega$, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, $\chi_{OL}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{OL}(\mathbf{K}) = \sup\{\chi_{OL}(G) : G \in \mathbf{K}\}$. Obviously, $\chi(\mathbf{K}) \leq \chi_{OL}(\mathbf{K})$, and for "most" \mathbf{K} , $\chi(\mathbf{K}) < \chi_{OL}(\mathbf{K})$.

For graph G and $n < \omega$, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, $\chi_{OL}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{OL}(\mathbf{K}) = \sup\{\chi_{OL}(G) : G \in \mathbf{K}\}$. Obviously, $\chi(\mathbf{K}) \leq \chi_{OL}(\mathbf{K})$, and for "most" \mathbf{K} , $\chi(\mathbf{K}) < \chi_{OL}(\mathbf{K})$.

In practice, (but it's not a theorem)

$$\chi_{\mathsf{OL}}(\mathbf{K}) \leq n < \omega \implies \mathsf{RCA}_0 \vdash \chi(\mathbf{K}) \leq n.$$

For graph G and $n < \omega$, there is a game with 2 players:

Presenter presents the graph one vertex at a time.

Painter colors each vertex as it is presented with a color < n. Painter wins iff he has constructed a coloring of G.

The On-Line chromatic number of G, $\chi_{OL}(G)$, is the least n for which Painter has a winning strategy. Let $\chi_{OL}(\mathbf{K}) = \sup\{\chi_{OL}(G) : G \in \mathbf{K}\}$. Obviously, $\chi(\mathbf{K}) \leq \chi_{OL}(\mathbf{K})$, and for "most" \mathbf{K} , $\chi(\mathbf{K}) < \chi_{OL}(\mathbf{K})$.

In practice, (but it's not a theorem)

$$\chi_{\mathsf{OL}}(\mathbf{K}) \leq n < \omega \implies \mathsf{RCA}_0 \vdash \chi(\mathbf{K}) \leq n.$$

For example, Kierstead & Trotter showed that $\chi(\mathbf{I}_n) = 3n - 2$, and it easily follows from their proof that

$$\mathsf{RCA}_0 \vdash \forall x \ge 1[\chi(\mathbf{I}_x) \le 3x - 2].$$

- 3

イロト 不得下 イヨト イヨト

However, there is a reversal [see my paper in Simpson's 2001].

THEOREM: $n < \chi_{OL}(\mathbf{K}) \implies \mathsf{RCA}_0 \vdash [\chi(\mathbf{K}) \le n \to \mathsf{WKL}_0]$.

Image: A math a math

3

However, there is a reversal [see my paper in Simpson's 2001].

Theorem:
$$n < \chi_{\mathsf{OL}}(\mathsf{K}) \implies \mathsf{RCA}_0 \vdash [\chi(\mathsf{K}) \le n \to \mathsf{WKL}_0]$$
.

For example, if $2 \le n < \omega$, then the following are equivalent over RCA₀:

- WKL₀;
- $\chi(\mathbf{I}_n) = n;$
- $\chi(\mathbf{I}_n) \neq 3n-2.$

3

7/9

- 3

(日) (周) (三) (三)

Equivalently, its the least n for which First Fit is a winning strategy for **Painter**.

Image: A math a math

Equivalently, its the least n for which First Fit is a winning strategy for **Painter**.

Obviously, $\chi_{OL}(G) \leq \Gamma(G)$.

8/9

Equivalently, its the least n for which First Fit is a winning strategy for **Painter**.

Obviously, $\chi_{OL}(G) \leq \Gamma(G)$.

Let $\Gamma(\mathbf{K}) = \sup\{\Gamma(G) : G \in \mathbf{K}\}.$

< A > < 3

Equivalently, its the least n for which First Fit is a winning strategy for **Painter**.

Obviously, $\chi_{OL}(G) \leq \Gamma(G)$.

```
Let \Gamma(\mathbf{K}) = \sup\{\Gamma(G) : G \in \mathbf{K}\}.
```

For example, $4n - 9 \leq \Gamma(\mathbf{I}_n) \leq 8n$.

Define $\gamma(G)$, $\gamma(\mathbf{K})$ similarly with "smallest" instead of "largest"

イロト 不得下 イヨト イヨト

- 3

Equivalently, its the least n for which First Fit is a winning strategy for **Painter**.

Obviously, $\chi_{OL}(G) \leq \Gamma(G)$.

```
Let \Gamma(\mathbf{K}) = \sup\{\Gamma(G) : G \in \mathbf{K}\}.
```

For example, $4n - 9 \leq \Gamma(\mathbf{I}_n) \leq 8n$.

Define $\gamma(G)$, $\gamma(\mathbf{K})$ similarly with "smallest" instead of "largest" Easily, $\chi(G) = \gamma(G) \leq \Gamma(G)$, and for all $n < \omega$,

$$\mathsf{RCA}_0 \vdash \forall G[\chi(G) \leq n \to \gamma(G) = \chi(G)].$$

イロト 不得下 イヨト イヨト 二日

THEOREM: $n < \Gamma(\mathbf{K}) \implies \mathsf{RCA}_0 \vdash [\gamma(\mathbf{K}) \le n \to \mathsf{ACA}_0]$.

- 34

<ロ> (日) (日) (日) (日) (日)

THEOREM: $n < \Gamma(\mathbf{K}) \implies \mathsf{RCA}_0 \vdash [\gamma(\mathbf{K}) \le n \to \mathsf{ACA}_0]$.

For example, if $2 \le n < \omega$, then there is c_n , $4n - 9 \le c_n \le 8n$, such that the following are equivalent over RCA₀:

- ACA₀;
- $\gamma(\mathbf{I}_n) = n;$
- $\gamma(\mathbf{I}_n) \neq c_n$.

3

< A > < 3