On the Strength of Fraissés conjecture..

Antonio Montalbán. University of Chicago

Computability, Reverse Mathematics and Combinatorics, Banff, December 2008

The embeddability relation on Linear Orderings

A linear ordering (a.k.a. total ordering) is a structure $\mathcal{L} = (L, \leq)$, where \leq is a is transitive, reflexive, antisymmetric and $\forall x, y (x \leq y \lor y \leq x)$.

A linear ordering \mathcal{A} embeds into another linear ordering \mathcal{B} if \mathcal{A} is isomorphic to a subset of \mathcal{B} . We write $\mathcal{A} \preceq \mathcal{B}$.

 \mathcal{A} and \mathcal{B} are equimorphic if $\mathcal{A} \preccurlyeq \mathcal{B}$ and $\mathcal{B} \preccurlyeq \mathcal{A}$. We denote this by $\mathcal{A} \sim \mathcal{B}$.

We are interested in properties of linear orderings that are preserved under equimorphisms, of course, from a logic viewpoint.

- 1 Equimorphism types of Linear Orderings
- 2 Computable Mathematics
- Reverse Mathematics
- 4 Lengths of WQOs

Hausdorff rank

Definition:

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $\operatorname{rk}(\mathcal{L})$, the Hausdorff rank of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite.

Examples:
$$\operatorname{rk}(\mathbb{N}) = \operatorname{rk}(\mathbb{Z}) = 1$$
, $\operatorname{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2$, $\operatorname{rk}(\omega^{\alpha}) = \alpha$, $\operatorname{rk}(\mathbb{Q}) = \infty$.

If
$$A \leq B$$
, then $\mathsf{rk}(A) \leq \mathsf{rk}(B)$. So, $A \sim B \Rightarrow \mathsf{rk}(A) = \mathsf{rk}(B)$

Scattered and Indecomposable linear orderings

Two other properties are preserved under equimorphism:

Definition: \mathcal{L} is scattered if $\mathbb{Q} \not \prec \mathcal{L}$.

Observation: A linear ordering \mathcal{L} is scattered

 \Leftrightarrow for some α , \mathcal{L}^{α} is finite

 $\Leftrightarrow \operatorname{rk}(\mathcal{L}) \neq \infty$.

Definition: \mathcal{L} is indecomposable if whenever

 $\mathcal{L} \preccurlyeq \mathcal{A} + \mathcal{B}$, either $\mathcal{L} \preccurlyeq \mathcal{A}$ or $\mathcal{L} \preccurlyeq \mathcal{B}$.

Example: ω , ω^* , ω^2 are indecomposable. \mathbb{Z} is not.

The structure of the scattered linear orderings

Theorem: [Laver '71] Every scattered linear ordering can be written as a finite sum of indecomposable ones.

Theorem: [Fraïssé's Conjecture '48; Laver '71] Every ctble. indecomposable linear ordering can be written as either an ω -sum or an ω^* -sum of indecomposable l.o. of smaller rank.

Theorem: [Fraïssé's Conjecture '48; Laver '71] The scattered linear orderings form a well-quasi-ordering with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Equimorphism types of Linear Orderings

2 Computable Mathematics

Reverse Mathematics

4 Lengths of WQOs

Up to equimorphism, hyperarithmetic is computable.

Obs: If α is an ordinal and $\mathcal{L} \sim \alpha$, then \mathcal{L} is isomorphic to α .

Proof: $\mathcal{L} \preceq \alpha \Rightarrow \mathcal{L}$ is an ordinal and $\mathcal{L} \leqslant \alpha$.

 $\alpha \preccurlyeq \mathcal{L} \Rightarrow \alpha \leqslant \mathcal{L}$ and hence $\mathcal{L} \cong \alpha$.

Theorem

Every hyperarithmetic linear ordering is equimorphic to a computable one.

Lemma

- Every hyperarithmetic scattered l.o. has rank $< \omega_1^{CK}$.
- If $\mathrm{rk}(\mathcal{L}) < \omega_1^{\mathsf{CK}}$ then \mathcal{L} is equimorphic to a computable l.o.

Equimorphism types

Definition: Let \mathbb{L} be the partial ordering of equimorphism types of countable linear orderings, ordered by embeddablity.

Let \mathbb{L}_{α} be the restriction of \mathbb{L} to the linear orderings of rank $< \alpha$.

Theorem

For every ordinal α ,

 \mathbb{L}_{α} is computably presentable $\Leftrightarrow \alpha < \omega_1^{CK}$.

Furthermore, a primitive recursive presentation of \mathbb{L}_{α} can be computed uniformly form $\alpha<\omega_1^{\it CK}$.

Equimorphism types of Linear Orderings

Computable Mathematics

Reverse Mathematics

4 Lengths of WQOs

Fraïssé's Conjecture

```
Theorem [Fraïssé's Conjecture '48; Laver '71]
```

FRA: The countable linear orderings form a

WQO with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. By Laver's original proof.

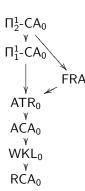
Obs: $FRA \Rightarrow \Pi_2^1 - CA_0$. Because no true Π_2^1 statement does.

Theorem[Shore '93] $FRA \Rightarrow ATR_0$ over RCA_0 .

Furthermore, the statement

"countable well-orderings form a WQO under embeddablity" is equivalent to ATR_0 over RCA_0 .

Conjecture: [Clote '90] [Simpson '99] [Marcone] FRA is equivalent to ATR₀ over RCA₀.



Fraïssé's conjecture again.

Claim

 RCA_0+FRA is the least system where it is possible to develop a reasonable theory of equimorphism types of linear orderings.

Theorem

The following are equivalent over RCA₀

- FRA;
- Every scattered lin. ord. is a finite sum of indecomposables;
- Every indecomposable lin. ord. is either an ω -sum or an ω^* -sum of indecomposable l.o. of smaller rank.
- Jullien's characterization of extendible linear orderings

A Partition theorem

Theorem:[Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \to \mathbb{Q}$ whose image has only one color.

Theorem:[Laver '72]

For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that:

if $\boldsymbol{\mathcal{L}}$ is colored with finitely many colors, there is an embedding

 $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

Theorem

FRA is implied by Laver's Theorem above over RCA_0 .

Conjecture

FRA is equivalent to Laver's Theorem above over RCA₀.

Robust Systems

FRA is a *Robust* system, as the big five, in the sense that small modifications of it are equivalent to it.

Better quasi orderings

Thm:[Laver 71] The scattered linear orderings form a Better quasi ordering under embeddability.

The notion of *Better-quasi-ordering* is stronger than WQO, and enjoys more closer properties.

Marcone studied the reverse mathematics of FRA though the study of Better-quasi-orderings.

For instance he showed that if ATR₀ \vdash FRA, it would need a completely new proof, as some lemmas used in Laver's proof require Π^1_1 -CA₀.

Equimorphism types of Linear Orderings

2 Computable Mathematics

Reverse Mathematics

4 Lengths of WQOs

Well-quasi-orderings

Definition: A *well-quasi-ordering* (*wqo*), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- scattered linear orderings [Laver 71];
- finite graphs [Robertson, Seymour 04].

Length

Obs: Every linearization of a wpo is well-ordered. (A *linearization* of (P, \leq_P) is a linear ordering \leq_L of P such that $x \leq_P y \Rightarrow x \leq_L y$.)

Definition: The *length* of $\mathcal{W} = (W, \leq_W)$ is $o(\mathcal{W}) = \sup\{\operatorname{ordTy}(W, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{W}\}.$

Def: $\mathbb{B}ad(\mathcal{W}) = \{\langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_W x_j)\},$

Note: \mathcal{W} is a wpo $\Leftrightarrow \mathbb{B}\mathrm{ad}(\mathcal{W})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(W) + 1 = \operatorname{rk}(\mathbb{B}\operatorname{ad}(W))$

Friedman's result

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preccurlyeq S$ if there is an embedding : $T \to S$ preserving \leqslant and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geqslant \Gamma_0$. (where Γ_0 the the proof-theoretic ordinal of ATR₀. it's the "least ordinal" that ATR₀ can't prove it's an ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem $\Rightarrow \Gamma_0$ well-ordered. Therefore, ATR₀ cannot imply Kruskal's theorem.

Maximal order types

Theorem: [De Jongh, Parikh 77]

Every wpo W has a linearization of order type o(W).

We call such a linearization, a maximal linearization of W.

This is why o(W) if often called the *maximal order type* of W.

Such linearizations have been found in many of the examples, always by different methods.

Question [Schmidt 1979]:

Is the length of a computable wpo computable?

Computable Length

Q: Is the length, or maximal order type, of a computable wpo, computable?

We mentioned that $o(W) + 1 = \mathsf{rk}(\mathbb{B}\mathrm{ad}(W))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{W}) = \{ \langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_W x_j) \},$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{W})$ is computable and well-founded, it has rank $<\omega_1^{CK}$. So, $o(\mathcal{W})$ is a computable ordinal.

Q: Does every computable wpo have a computable maximal linearization?

A computable maximal linearization

$\mathsf{Theorem}$

Every computable wpo has a computable maximal linearization.

Q: Can we find them uniformly?

$\mathsf{Theorem}$

Let **a** be a Turing degree. TFAE:

- **1** a uniformly computes maximal linearizations of comp. wpos.
- **2** a uniformly computes $0^{(\beta)}$ for every $\beta < \omega_1^{CK}$.

Back to FRA

Def: Let \mathbb{L}_{α} be the partial ordering of linear orderings of Hausdorff rank $< \alpha$, modulo equimorphism.

For countable α , \mathbb{L}_{α} is countable For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable

Obs: FRA is equivalent to " \forall ordinal α (\mathbb{L}_{α} is WQO)".

Question: Given α , what is the length of \mathbb{L}_{α} ?

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$, the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$

Def: ACA⁺ is the system RCA₀+ $\forall X(X^{(\omega)} \ exists)$.

Note: $\epsilon_{\epsilon_{\epsilon...}}$ is the proof-theoretic ordinal of ACA⁺.

(So $\epsilon_{\epsilon_{e...}}$ is the least ordinal that ACA⁺ can't prove is well-ordered.)

Theorem ([Marcone, M 08])

The following are equivalent over ACA+:

- $\epsilon_{\epsilon_{\epsilon}}$ is well-ordered
- L_ω is a WQO

A Conjecture

Conjecture:

The following are equivalent:

- ATR₀⊬ FRA
- There exists $\alpha < \Gamma_0$, s.t. length(\mathbb{L}_{α}) $\geqslant \Gamma_0$.