The Survival Game

Hal Kierstead and Goran Konjevod

Arizona State University

December 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ For $n \in \mathbb{N}$ and sets V,

• For $n \in \mathbb{N}$ and sets V,

$$\blacktriangleright [n] = \{1, \ldots, n\}$$

▶ For $n \in \mathbb{N}$ and sets V,

•
$$[n] = \{1, ..., n\}$$

• $\binom{V}{n} = \{X \subseteq V : |X| = n\}$

▶ For $n \in \mathbb{N}$ and sets V,

▶
$$[n] = \{1, ..., n\}$$

▶ $\binom{V}{n} = \{X \subseteq V : |X| = n\}$

•
$$H = (V, E)$$
 is an *s*-graph, if $E \subseteq {\binom{V}{s}}$

▶ For $n \in \mathbb{N}$ and sets V,

▶
$$[n] = \{1, ..., n\}$$

▶ $\binom{V}{n} = \{X \subseteq V : |X| = n\}$

•
$$H = (V, E)$$
 is an *s*-graph, if $E \subseteq \binom{V}{s}$

• $K_s^t = ([t], {[t] \choose s})$ is the complete *s*-graph on *t* vertices

▶ For $n \in \mathbb{N}$ and sets V,

▶ Players: *Presenter*, *Chooser*.

Players: Presenter, Chooser.

▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Players: Presenter, Chooser.

▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.

▶ Round *i* > 0:

- Players: Presenter, Chooser.
- ▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.
- Round i > 0:
 - Start with $H_{i-1} = (S_{i-1}, E_{i-1})$; construct $H_i = (S_i, E_i)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Players: Presenter, Chooser.

- ▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.
- ▶ Round *i* > 0:
 - Start with $H_{i-1} = (S_{i-1}, E_{i-1})$; construct $H_i = (S_i, E_i)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Presenter plays a *p*-subset $P_i \subseteq S_{i-1}$.

Players: Presenter, Chooser.

- ▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.
- ▶ Round *i* > 0:
 - Start with $H_{i-1} = (S_{i-1}, E_{i-1})$; construct $H_i = (S_i, E_i)$.

- Presenter plays a *p*-subset $P_i \subseteq S_{i-1}$.
- Chooser selects an *s*-subset $X_i \subseteq P_i$.

Players: Presenter, Chooser.

- ▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.
- ▶ Round *i* > 0:
 - Start with $H_{i-1} = (S_{i-1}, E_{i-1})$; construct $H_i = (S_i, E_i)$.

- Presenter plays a *p*-subset $P_i \subseteq S_{i-1}$.
- Chooser selects an *s*-subset $X_i \subseteq P_i$.

$$\bullet S_i := S_{i-1} - (P_i - X_i)$$

- Players: Presenter, Chooser.
- ▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.
- ▶ Round *i* > 0:
 - Start with $H_{i-1} = (S_{i-1}, E_{i-1})$; construct $H_i = (S_i, E_i)$.

- Presenter plays a *p*-subset $P_i \subseteq S_{i-1}$.
- Chooser selects an *s*-subset $X_i \subseteq P_i$.

•
$$S_i := S_{i-1} - (P_i - X_i)$$

$$\blacktriangleright E_i := (E_{i-1} \cup \{X_i\}) - \{X_j \in E_{i-1} : X_j \nsubseteq S_i\}.$$

- Players: Presenter, Chooser.
- ▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.
- Round i > 0:
 - Start with $H_{i-1} = (S_{i-1}, E_{i-1})$; construct $H_i = (S_i, E_i)$.

- Presenter plays a *p*-subset $P_i \subseteq S_{i-1}$.
- Chooser selects an *s*-subset $X_i \subseteq P_i$.

$$S_i := S_{i-1} - (P_i - X_i)$$

•
$$E_i := (E_{i-1} \cup \{X_i\}) - \{X_j \in E_{i-1} : X_j \nsubseteq S_i\}.$$

• Presenter wins if H_i contains a copy of K_s^t for some *i*.

- Players: Presenter, Chooser.
- ▶ Round 0: Presenter fixes an empty *s*-graph $H_0 = (S_0, \emptyset)$.
- ▶ Round *i* > 0:
 - Start with $H_{i-1} = (S_{i-1}, E_{i-1})$; construct $H_i = (S_i, E_i)$.

- Presenter plays a *p*-subset $P_i \subseteq S_{i-1}$.
- Chooser selects an *s*-subset $X_i \subseteq P_i$.

$$S_i := S_{i-1} - (P_i - X_i)$$

•
$$E_i := (E_{i-1} \cup \{X_i\}) - \{X_j \in E_{i-1} : X_j \nsubseteq S_i\}.$$

- Presenter wins if H_i contains a copy of K_s^t for some *i*.
- Otherwise Chooser wins when $|S_i| < t$.

Theorem (HK-Konjevod)

For all positive integers p, s, t, with $s \le p$, Presenter has a winning strategy in the (p, s, t)-survival game.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

Theorem (Grytczuk, Hałuszczak and HK)

For all positive integers p, t Presenter can win the (p, 2, t)-survival game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\exists x \exists y E(x,y) \qquad] \qquad \bullet \bullet \bullet \bullet \quad \cdots$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Method

▶ Start: *H*⁰ has "huge" potential and satisfies

 $\exists \overline{v} (\overline{v} \in E)$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Method

▶ Start: H₀ has "huge" potential and satisfies

 $\exists \overline{v} (\overline{v} \in E)$

▶ If *H* has "LARGE" potential and satisfies

 $\forall \overline{x} \exists y \overline{Q} \overline{z} E(\overline{x} y \overline{z})$

then Presenter can force H with "large" potential satisfying

 $\exists \overline{x} \forall w \overline{Q} \overline{z} E(\overline{x} y \overline{z}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Method

▶ Start: H₀ has "huge" potential and satisfies

 $\exists \overline{v} (\overline{v} \in E)$

▶ If *H* has "LARGE" potential and satisfies

 $\forall \overline{x} \exists y \overline{Q} \overline{z} E(\overline{x} y \overline{z})$

then Presenter can force H with "large" potential satisfying

 $\exists \overline{x} \forall w \overline{Q} \overline{z} E(\overline{x} y \overline{z}).$

So Presenter can force a "big" H' satisfying

 $\forall \overline{v} (\overline{v} \in E).$

• Fix a total ordering < of S_0 .

- Fix a total ordering < of S_0 .
- A partitioned *s*-graph is a structure H = (U, W, E), such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Fix a total ordering < of S_0 .
- A partitioned *s*-graph is a structure H = (U, W, E), such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $(U \cup W, E)$ is an *s*-uniform hypergraph.

- Fix a total ordering < of S_0 .
- A partitioned *s*-graph is a structure H = (U, W, E), such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $(U \cup W, E)$ is an *s*-uniform hypergraph.
- U and W are disjoint subsets of S_0 .

- Fix a total ordering < of S_0 .
- A partitioned *s*-graph is a structure H = (U, W, E), such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $(U \cup W, E)$ is an *s*-uniform hypergraph.
- U and W are disjoint subsets of S_0 .
- $U \cup W$ inherits the order of S_0 .

- Fix a total ordering < of S_0 .
- A partitioned *s*-graph is a structure H = (U, W, E), such that

- $(U \cup W, E)$ is an *s*-uniform hypergraph.
- U and W are disjoint subsets of S_0 .
- $U \cup W$ inherits the order of S_0 .
- U is the universal set and W is the witness set.
- Fix a total ordering < of S_0 .
- A partitioned *s*-graph is a structure H = (U, W, E), such that

- $(U \cup W, E)$ is an *s*-uniform hypergraph.
- U and W are disjoint subsets of S_0 .
- $U \cup W$ inherits the order of S_0 .
- U is the universal set and W is the witness set.
- The order of H is |H| := |U|.

• Fix a total ordering < of S_0 .

- A partitioned *s*-graph is a structure H = (U, W, E), such that
 - $(U \cup W, E)$ is an *s*-uniform hypergraph.
 - U and W are disjoint subsets of S_0 .
 - $U \cup W$ inherits the order of S_0 .
 - U is the universal set and W is the witness set.
- The order of H is |H| := |U|.
- ▶ Define v < v' iff</p>

v < v' and if $v' \in W$ then $\{u \in U : v < u < v'\} = \emptyset$.

• Fix a total ordering < of S_0 .

- A partitioned *s*-graph is a structure H = (U, W, E), such that
 - $(U \cup W, E)$ is an *s*-uniform hypergraph.
 - U and W are disjoint subsets of S_0 .
 - $U \cup W$ inherits the order of S_0 .
 - ► *U* is the universal set and *W* is the witness set.
- The order of H is |H| := |U|.
- ▶ Define v < v' iff</p>

v < v' and if $v' \in W$ then $\{u \in U : v < u < v'\} = \emptyset$.

• Define $\lambda \lessdot v'$ iff if $v' \in W$ then $\{u \in U : u < v'\} = \emptyset$.

• Fix a total ordering < of S_0 .

- A partitioned *s*-graph is a structure H = (U, W, E), such that
 - $(U \cup W, E)$ is an *s*-uniform hypergraph.
 - U and W are disjoint subsets of S_0 .
 - $U \cup W$ inherits the order of S_0 .
 - ► *U* is the universal set and *W* is the witness set.
- The order of H is |H| := |U|.
- ▶ Define v < v' iff</p>

v < v' and if $v' \in W$ then $\{u \in U : v < u < v'\} = \emptyset$.

- Define $\lambda \lessdot v'$ iff if $v' \in W$ then $\{u \in U : u \lt v'\} = \emptyset$.
- For notational convenience, let $\overline{v}_0 = \lambda = v_0$.

Let *H* be a partitioned *s*-graph and $\overline{v}_h \subseteq U \cup W$.

• A basic formula has the form:

$$Q_{h+1}\xi_{h+1}\ldots Q_s\xi_s E(\overline{v}_h,\xi_{h+1},\ldots,\xi_s), \ Q \in \{\forall,\exists\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let *H* be a partitioned *s*-graph and $\overline{v}_h \subseteq U \cup W$.

• A basic formula has the form:

$$Q_{h+1}\xi_{h+1}\ldots Q_s\xi_s E(\overline{v}_h,\xi_{h+1},\ldots,\xi_s), \ Q \in \{\forall,\exists\}.$$

• $H \models E(\overline{v}_h)$ iff s = h and $\overline{v}_h \in E$ and \overline{v}_h is increasing.

Let *H* be a partitioned *s*-graph and $\overline{v}_h \subseteq U \cup W$.

• A basic formula has the form:

$$Q_{h+1}\xi_{h+1}\ldots Q_s\xi_s E(\overline{v}_h,\xi_{h+1},\ldots,\xi_s), \ Q \in \{\forall,\exists\}.$$

► $H \models E(\overline{v}_h)$ iff s = h and $\overline{v}_h \in E$ and \overline{v}_h is increasing. ► $H \models \forall \overline{\xi}_{h+1} \overline{Q\overline{\xi}} E(\overline{v}_h, \overline{\xi}_{h+1}, \overline{\xi})$ iff

for all $u \in U$ such that $u > v_h$ $H \models \overline{Q}\overline{\xi}E(\overline{v}_h, u, \overline{\xi})$.

Let *H* be a partitioned *s*-graph and $\overline{v}_h \subseteq U \cup W$.

• A basic formula has the form:

$$Q_{h+1}\xi_{h+1}\ldots Q_s\xi_s E(\overline{\nu}_h,\xi_{h+1},\ldots,\xi_s), \ Q \in \{\forall,\exists\}.$$

H ⊨ *E*(*v̄*_h) iff *s* = *h* and *v̄*_h ∈ *E* and *v̄*_h is increasing.
 H ⊨ ∀ξ_{h+1}*Q*ξ*E*(*v̄*_h, ξ_{h+1}, ξ̄) iff

for all $u \in U$ such that $u \ge v_h$ $H \models \overline{Q\overline{\xi}}E(\overline{v}_h, u, \overline{\xi})$.

•
$$H \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi})$$
 iff

for some $w \in W$ with $w \geq v_h$ $H \models \overline{Q\overline{\xi}}E(\overline{v}_h, w, \overline{\xi})$.

• A basic sentence φ has the form $\varphi = Q_1 \xi_1 \dots Q_s \xi_s E(\overline{\xi}_s)$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• A basic sentence φ has the form $\varphi = Q_1 \xi_1 \dots Q_s \xi_s E(\overline{\xi}_s)$.

(ロ)、(型)、(E)、(E)、 E) のQの

• There are 2^s basic sentences $\varphi_0, \ldots, \varphi_{2^s-1}$.

• A basic sentence φ has the form $\varphi = Q_1 \xi_1 \dots Q_s \xi_s E(\overline{\xi}_s)$.

(ロ)、(型)、(E)、(E)、 E) のQの

• There are 2^s basic sentences $\varphi_0, \ldots, \varphi_{2^s-1}$.

•
$$\varphi_0 = \exists \xi_1 \dots \exists \xi_s E(\overline{\xi}).$$

- A basic sentence φ has the form $\varphi = Q_1 \xi_1 \dots Q_s \xi_s E(\overline{\xi}_s)$.
- There are 2^s basic sentences φ₀,..., φ_{2^s-1}.

•
$$\varphi_0 = \exists \xi_1 \dots \exists \xi_s E(\overline{\xi}).$$

• If $\varphi_i = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \psi$ then $\varphi_i^+ := \varphi_{i+1} = \exists \overline{\xi}_{\ell} \forall \xi_{\ell+1} \psi$.

- A basic sentence φ has the form $\varphi = Q_1 \xi_1 \dots Q_s \xi_s E(\overline{\xi}_s)$.
- There are 2^s basic sentences $\varphi_0, \ldots, \varphi_{2^s-1}$.

$$\begin{array}{l} \bullet \quad \varphi_0 = \exists \xi_1 \dots \exists \xi_s E(\overline{\xi}). \\ \bullet \quad \text{If } \varphi_i = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \psi \text{ then } \varphi_i^+ := \varphi_{i+1} = \exists \overline{\xi}_{\ell} \forall \xi_{\ell+1} \psi. \\ \bullet \quad \varphi_{2^s-1} = \forall \xi_1 \dots \forall \xi_s E(\overline{\xi}). \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A sentence φ is f-satisfiable if for any n, Presenter has a strategy starting from f(n) vertices, so that some H_i contains a subgraph (V, E) that can be partitioned as {U, W} so that (U, W, E) ⊨ φ and |U| = n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A sentence φ is f-satisfiable if for any n, Presenter has a strategy starting from f(n) vertices, so that some H_i contains a subgraph (V, E) that can be partitioned as {U, W} so that (U, W, E) ⊨ φ and |U| = n.

Argue by induction on r that for every φ_r, there exists a function f_r such that φ_r is f_r-satisfiable.

- A sentence φ is *f*-satisfiable if for any *n*, Presenter has a strategy starting from *f*(*n*) vertices, so that some *H_i* contains a subgraph (*V*, *E*) that can be partitioned as {*U*, *W*} so that (*U*, *W*, *E*) ⊨ φ and |*U*| = *n*.
- Argue by induction on r that for every φ_r, there exists a function f_r such that φ_r is f_r-satisfiable.
- ► The theorem follows: If H ⊨ ∀ξ₁...∀ξ_sE(ξ̄_s) and |U| = t then U induces K^t_s.

- A sentence φ is *f*-satisfiable if for any *n*, Presenter has a strategy starting from *f*(*n*) vertices, so that some *H_i* contains a subgraph (*V*, *E*) that can be partitioned as {*U*, *W*} so that (*U*, *W*, *E*) ⊨ φ and |*U*| = *n*.
- Argue by induction on r that for every φ_r, there exists a function f_r such that φ_r is f_r-satisfiable.
- ► The theorem follows: If $H \models \forall \xi_1 \dots \forall \xi_s E(\overline{\xi}_s)$ and |U| = t then U induces K_s^t .

▶ Base Step: $\varphi_0 = \exists \xi_1 \dots \exists \xi_s E(\overline{\xi})$ is *f*-satisfiable, where f(n) = n + p.

Induction Step

Lemma

If $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \psi$ is f-satisfiable then $\varphi^+ = \exists \overline{\xi}_{\ell} \forall \xi_{\ell+1} \psi$ is F-satisfiable, where F is defined recursively by

$$F(0) = s$$

$$F(j+1) = f(F(j)), \text{ if } j \ge 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Consider
$$\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q} \overline{\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- Consider $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$
- Construct $H_i = (U_i, V_i, E_i), i = 0, \dots, n-1$ such that

$$H_i \models \varphi$$
 and $|U_i| = F(n-i)$ and $U_{i+1}, W_{i+1} \subseteq U_i$.

- Consider $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$
- Construct $H_i = (U_i, V_i, E_i)$, i = 0, ..., n-1 such that

$$H_i \models \varphi$$
 and $|U_i| = F(n-i)$ and $U_{i+1}, W_{i+1} \subseteq U_i$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let $\overline{\mathbf{x}_{\ell}} \in U_n$. Then $H_i \models \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{\mathbf{x}_{\ell}}, \xi_{\ell+1}, \dots, \xi_s)$.

- Consider $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$
- Construct $H_i = (U_i, V_i, E_i), i = 0, \dots, n-1$ such that

$$H_i \models \varphi$$
 and $|U_i| = F(n-i)$ and $U_{i+1}, W_{i+1} \subseteq U_i$.

- ▶ Let $\overline{\mathbf{x}_{\ell}} \in U_n$. Then $H_i \models \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{\mathbf{x}_{\ell}}, \xi_{\ell+1}, \dots, \xi_s)$.
- Let $y_i \in W_i$ such that $H_i \models \overline{Q\xi} E(\overline{x}_{\ell}, \underline{y}_i, \xi_{\ell+2}, \dots, \xi_s)$.

- Consider $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$
- Construct $H_i = (U_i, V_i, E_i)$, i = 0, ..., n-1 such that

$$H_i \models \varphi$$
 and $|U_i| = F(n-i)$ and $U_{i+1}, W_{i+1} \subseteq U_i$.

- Let $\overline{\mathbf{x}_{\ell}} \in U_n$. Then $H_i \models \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{\mathbf{x}_{\ell}}, \xi_{\ell+1}, \dots, \xi_s)$.
- Let $y_i \in W_i$ such that $H_i \models \overline{Q\xi} E(\overline{x}_{\ell}, y_i, \xi_{\ell+2}, \dots, \xi_s)$.
- ▶ (y_i) is strictly increasing, since $x_{\ell} \lt y_i$ in H_i and $y_{i+1} \in U_i$.

- Consider $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$
- Construct $H_i = (U_i, V_i, E_i), i = 0, \dots, n-1$ such that

$$H_i \models \varphi$$
 and $|U_i| = F(n-i)$ and $U_{i+1}, W_{i+1} \subseteq U_i$.

- ▶ Let $\overline{\mathbf{x}_{\ell}} \in U_n$. Then $H_i \models \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{\mathbf{x}_{\ell}}, \xi_{\ell+1}, \dots, \xi_s)$.
- ▶ Let $y_i \in W_i$ such that $H_i \models \overline{Q\xi} E(\overline{x}_{\ell}, y_i, \xi_{\ell+2}, ..., \xi_s)$.
- ▶ (y_i) is strictly increasing, since $x_{\ell} \lt y_i$ in H_i and $y_{i+1} \in U_i$.
- ▶ Let *H*⁺ be induced by

$$U^+ := \{y_i : i = 0, ..., n-1\}$$
 and $W^+ := \bigcup W_i - U^+$.

- Consider $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$
- Construct $H_i = (U_i, V_i, E_i)$, i = 0, ..., n-1 such that

$$H_i \models \varphi$$
 and $|U_i| = F(n-i)$ and $U_{i+1}, W_{i+1} \subseteq U_i$.

- ▶ Let $\overline{\mathbf{x}_{\ell}} \in U_n$. Then $H_i \models \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{\mathbf{x}_{\ell}}, \xi_{\ell+1}, \dots, \xi_s)$.
- ▶ Let $y_i \in W_i$ such that $H_i \models \overline{Q\xi} E(\overline{x}_{\ell}, y_i, \xi_{\ell+2}, ..., \xi_s)$.
- ▶ (y_i) is strictly increasing, since $x_{\ell} \lt y_i$ in H_i and $y_{i+1} \in U_i$.
- ▶ Let *H*⁺ be induced by

$$U^+ := \{y_i : i = 0, ..., n-1\}$$
 and $W^+ := \bigcup W_i - U^+$.

• Need
$$H^+ \models \overline{Q\xi} E(\overline{\mathbf{x}}_{\ell}, \mathbf{y}_i, \xi_{\ell+2}, \dots, \xi_s).$$

- Consider $\varphi = \forall \overline{\xi}_{\ell} \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{x}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$
- Construct $H_i = (U_i, V_i, E_i), i = 0, \dots, n-1$ such that

$$H_i \models \varphi$$
 and $|U_i| = F(n-i)$ and $U_{i+1}, W_{i+1} \subseteq U_i$.

- ▶ Let $\overline{\mathbf{x}_{\ell}} \in U_n$. Then $H_i \models \exists \xi_{\ell+1} \overline{Q\xi} E(\overline{\mathbf{x}_{\ell}}, \xi_{\ell+1}, \dots, \xi_s)$.
- ▶ Let $y_i \in W_i$ such that $H_i \models \overline{Q\xi} E(\overline{x}_{\ell}, y_i, \xi_{\ell+2}, ..., \xi_s)$.
- ▶ (y_i) is strictly increasing, since $x_{\ell} \lt y_i$ in H_i and $y_{i+1} \in U_i$.
- Let H⁺ be induced by

$$U^+ := \{y_i : i = 0, ..., n-1\}$$
 and $W^+ := \bigcup W_i - U^+$.

► Need $H^+ \models \overline{Q\xi} E(\overline{x}_{\ell}, y_i, \xi_{\ell+2}, \dots, \xi_s).$ ► Thus $H^+ \models \exists \overline{\xi}_{\ell} \forall \xi_{\ell+1} \overline{Q\xi} E(\overline{\xi}_{\ell}, \xi_{\ell+1}, \dots, \xi_s).$

Substructure Lemma

Lemma

٠

Suppose H = (U, W, E) and H' = (U', W', E') are partitioned s-graphs and $\overline{v}_h \subseteq (U \cup W) \cap (U' \cup W')$.

If
$$H \models \overline{Q\overline{\xi}}E(\overline{v}_h,\overline{\xi})$$
 then $H' \models \overline{Q\overline{\xi}}E(\overline{v}_h,\overline{\xi})$,

provided the following conditions are all satisfied:

1. If
$$\overline{y}_s \in E$$
 then $\overline{y}_s \in E'$ for all $\overline{y}_s \subseteq (U \cup W) \cap (U' \cup W')$.
2. $U' - \{v : v \leq v_h\} \subseteq U$.
3. $W - \{v : v \leq v_h\} \subseteq W'$.

• We argue by induction on s - h.

<□ > < @ > < E > < E > E のQ @

- We argue by induction on s h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.

- We argue by induction on s h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$

- We argue by induction on s h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.

- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.

- We argue by induction on s h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.

- ► Induction step (\forall): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi})$.
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.

- We argue by induction on s h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - So $H \models \overline{Q\xi} E(\overline{v}_h, \boldsymbol{u}, \overline{\xi})$ by definition of satisfaction.

- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ▶ So $H \models \overline{Q\xi} E(\overline{v}_h, u, \overline{\xi})$ by definition of satisfaction.

• By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, \underline{u}, \overline{\xi}).$

- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ▶ So $H \models \overline{Q\xi} E(\overline{v}_h, \boldsymbol{u}, \overline{\xi})$ by definition of satisfaction.

- By IH, $H' \models \overline{Q\overline{\xi}E}(\overline{v}_h, u, \overline{\xi})$.
- So $H' \models \forall \xi_{h+1} \overline{Q}\overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$

- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ▶ So $H \models \overline{Q\xi} E(\overline{v}_h, u, \overline{\xi})$ by definition of satisfaction.

- By IH, $H' \models \overline{Q\xi}E(\overline{v}_h, u, \overline{\xi})$.
- So $H' \models \forall \overline{\xi}_{h+1} \overline{Q}\overline{\xi} E(\overline{v}_h, \overline{\xi}_{h+1}, \overline{\xi}).$
- ► Induction Step (∃): $H \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ► So $H \models \overline{Q\overline{\xi}}E(\overline{v}_h, u, \overline{\xi})$ by definition of satisfaction.
 - By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, u, \overline{\xi})$.
 - So $H' \models \forall \xi_{h+1} \overline{Q}\overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
- ► Induction Step (∃): $H \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - ▶ By definition of satisfaction, there exists a $w \in W$ with $w \ge v_h$ such that $H \models \overline{Q\xi} E(\overline{v}_h, w, \overline{\xi})$.

- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ► So $H \models \overline{Q\overline{\xi}}E(\overline{v}_h, u, \overline{\xi})$ by definition of satisfaction.
 - By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, u, \overline{\xi})$.
 - So $H' \models \forall \xi_{h+1} \overline{Q}\overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
- ► Induction Step (∃): $H \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - ▶ By definition of satisfaction, there exists a $w \in W$ with $w \ge v_h$ such that $H \models \overline{Q\xi}E(\overline{v}_h, w, \overline{\xi})$.

• By Hypothesis 3, $w \in W'$.

- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ► So $H \models \overline{Q\overline{\xi}}E(\overline{v}_h, u, \overline{\xi})$ by definition of satisfaction.
 - By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, u, \overline{\xi})$.
 - So $H' \models \forall \xi_{h+1} \overline{Q}\overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
- ► Induction Step (∃): $H \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - ▶ By definition of satisfaction, there exists a $w \in W$ with $w \ge v_h$ such that $H \models \overline{Q\xi} E(\overline{v}_h, w, \overline{\xi})$.

- By Hypothesis 3, $w \in W'$.
- By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, w, \overline{\xi}).$

- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (∀): $H \models \forall \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ► So $H \models \overline{Q\overline{\xi}}E(\overline{v}_h, u, \overline{\xi})$ by definition of satisfaction.
 - By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, u, \overline{\xi})$.
 - So $H' \models \forall \overline{\xi}_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \frac{\xi_{h+1}}{\xi}, \overline{\xi}).$

► Induction Step (∃): $H \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$

▶ By definition of satisfaction, there exists a $w \in W$ with $w \ge v_h$ such that $H \models \overline{Q\xi} E(\overline{v}_h, w, \overline{\xi})$.

- By Hypothesis 3, $w \in W'$.
- By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, w, \overline{\xi}).$
- By Hypothesis 2, H' satisfies $w > v_h$.

- ► We argue by induction on s − h.
- ▶ Base step: $H \models E(\overline{v}_s)$. Then $H' \models E(\overline{v}_s)$ by Hypothesis 1.
- ► Induction step (\forall): $H \models \forall \overline{\xi_{h+1}} \overline{Q} \overline{\xi} E(\overline{v}_h, \overline{\xi_{h+1}}, \overline{\xi})$.
 - Consider $u \in U'$ with $u > v_h$.
 - By Hypothesis 2, $u \in U$.
 - ► So $H \models \overline{Q\overline{\xi}}E(\overline{v}_h, u, \overline{\xi})$ by definition of satisfaction.
 - By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, u, \overline{\xi})$.
 - So $H' \models \forall \xi_{h+1} \overline{Q}\overline{\xi} E(\overline{v}_h, \frac{\xi_{h+1}}{\xi_{h+1}}, \overline{\xi}).$

► Induction Step (∃): $H \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$

- ▶ By definition of satisfaction, there exists a $w \in W$ with $w \ge v_h$ such that $H \models \overline{Q\xi} E(\overline{v}_h, w, \overline{\xi})$.
- By Hypothesis 3, $w \in W'$.
- By IH, $H' \models \overline{Q}\overline{\xi}E(\overline{v}_h, w, \overline{\xi}).$
- By Hypothesis 2, H' satisfies $w > v_h$.
- So $H' \models \exists \xi_{h+1} \overline{Q} \overline{\xi} E(\overline{v}_h, \xi_{h+1}, \overline{\xi}).$

Comment

The winning strategy for Presenter requires more than $A(2^s - 1, t)$ starting vertices, where A is the Ackermann function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Main Theorem

Theorem (HK and Konjevod)

For all c, s, $t \in \mathbb{N}$, the on-line coloring Ramsey number satisfies the trivial lower bound

$$\operatorname{col}-\operatorname{oRam}_{c}^{s}(t)=\operatorname{col}(K_{s}^{t}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Theorem

Theorem (HK and Konjevod)

For all c, s, $t \in \mathbb{N}$, the on-line coloring Ramsey number satisfies the trivial lower bound

$$\operatorname{col}-\operatorname{oRam}_{c}^{s}(t)=\operatorname{col}(K_{s}^{t}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weaker, but more familiar:

Main Theorem

Theorem (HK and Konjevod)

For all c, s, $t \in \mathbb{N}$, the on-line coloring Ramsey number satisfies the trivial lower bound

$$\operatorname{col}-\operatorname{oRam}_{c}^{s}(t)=\operatorname{col}(K_{s}^{t}).$$

Weaker, but more familiar:

Theorem (HK and Konjevod)

For all $c, s, t \in \mathbb{N}$ and on-line s-edge coloring algorithms A there exists a k-colorable s-graph G such that if A colors G with c colors then G contains a monochromatic K_s^t , where $k = \chi(K_s^t)$.