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» For n € IN and sets V,
> [n] ={1,..., n}
XS ViIX| = n)
(V,E) is an s-graph, if E C (\s/)
» K= ([t] ([?)) is the complete s-graph on t vertices

> Vi = Vi, ..., Vg
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(p, s, t)-Survival Game

> Players: Presenter, Chooser.

» Round 0: Presenter fixes an empty s-graph Hy = (So, @).
» Round i > 0:

» Start with H;_; = (5,'_1, Ei—l); construct H; = (S,', E,').
Presenter plays a p-subset P; C S5;_1.
Chooser selects an s-subset X; C P;.
Si=Si_1— (P = Xj)
E = (E1U{X})—{X; €E1: X €S}

>
>
>
>
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Otherwise Chooser wins when |S;| < t.



Key Technical Result

Theorem (HK-Konjevod)

For all positive integers p, s, t, with s < p, Presenter has a winning
strategy in the (p, s, t)-survival game.



Example

Theorem (Grytczuk, Hatuszczak and HK)

For all positive integers p, t Presenter can win the (p, 2, t)-survival
game.
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Method

» Start: Hp has "huge” potential and satisfies
dv(v € E)
» If H has “LARGE" potential and satisfies
Vx3y QzZE (xyz)
then Presenter can force H with “large” potential satisfying
IXVwQZE (Xyz).
> So Presenter can force a "big" H' satisfying

V(v € E).
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Partitioned s-Graphs

v

Fix a total ordering < of Sp.
A partitioned s-graph is a structure H = (U, W, E), such that

v

» (UU W, E) is an s-uniform hypergraph.

» U and W are disjoint subsets of Sg.

» U U W inherits the order of Sp.

» U is the universal set and W is the witness set.
The order of H is |H| := |U]|.
Define v < v/ iff

v

v

v<Vvandifv e Wthen{uveU:v<u<V}=0.

v

Define A < V' iff if v € W then {ue U:u <V} =Q.

For notational convenience, let vg = A = vg.

v
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Definition of Satisfaction for Basic Formulas

Let H be a partitioned s-graph and v, C UU W.
» A basic formula has the form:

Qh1Chi1--- QsCsE(Vh, Chyt- .-, gs), Qe {v, 3}

» HE E(vy) iff s = h and v, € E and vy, is increasing.
> HEVGh1QGE(Vh, Chin, §) iff

for all u € U such that u>v, H &= QZE(Vp, u,&).
> H = 38h1QCE(Vh, Chin, ) iff

for some w € W with w > v, H |= QEE(Vp, w, §).
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Basic Sentences

» A basic sentence @ has the form ¢ = Q11 ... Qs&sE(C,).

» There are 2° basic sentences ¢y, ..., Pos_1.

> @o =301 ...3ICE(G). _
> If @j = VE, 301419 then @7 = @iv1 = NV

> o1 = VE1...VEE(D).
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v

A sentence ¢ is f-satisfiable if for any n, Presenter has a
strategy starting from f(n) vertices, so that some H; contains
a subgraph (V, E) that can be partitioned as {U, W} so that
(U, W,E) =¢and |U| = n.

Argue by induction on r that for every ¢,, there exists a
function f, such that @, is f,-satisfiable.

The theorem follows: If H = V¢ ...V&E(E,) and |U| =t
then U induces K{.

Base Step: @o = 3¢1...3EsE(E) is f- satisfiable, where
f(n) =n+p.



Induction Step

Lemma B
If o =V¢,3C 19 is f-satisfiable then ¢ = 3&,V¢), 19 is
F-satisfiable, where F is defined recursively by

F(0)=s
F(j+1)=f(F()), ifj>0.
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Proof

Consider ¢ = V¢,3¢,.1QCE (X, Ery1,-- -, &s).
Construct H; = (U;, V;,E;), i=0,..., n — 1 such that

Hi = ¢ and |Uj| = F(n—i) and U1, Wiy1 C Ui

Let X, € U,. Then H; = 3,1 QCE (X, Erst,-- -, &s).

Let y; € W; such that H; = QCE (X, yi, Epaon, ..., &s).

(y;) is strictly increasing, since x; < y; in H; and y;+1 € U;.
Let H* be induced by

Ut :={y;:i=0,..., n—1}and W= JW; - U™

Need H* |= QZE (X1, i Cigar-- - Cs).
Thus HT |= 32,¥8111 QEE(Zy, Ersn,- -+, 8s).



Substructure Lemma

Lemma
Suppose H= (U, W,E) and H' = (U, W, E’) are partitioned
s-graphs and v, C (UU W) N (U UW").

If H= QZE(Vp, &) then H' = QEE(Vh, €),
provided the following conditions are all satisfied:
1. Ify, € E theny, € E' forally, C(UUW)N (U UW).

2. U —{v:v<y} CU.
3. W—{v:iv<y} CW.
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We argue by induction on s — h.

Base step: H |= E(Vs). Then H' |= E(Vs) by Hypothesis 1.
Induction step (V): H = V&, 1QFE(Vp, Cpit, ).

Consider u € U’ with u > v},

By Hypothesis 2, v € U.

So H = QGE(Vp, u,¢) by definition of satisfaction.

By IH, H' |= QCE(Vp, u,8).

So H' |= Vh11QCE(Vh, Chi1,6)-

> Induction Step (3) H ): 3€h+1QJCE(Vh,§h+1,E).
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Consider u € U’ with u > v},
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Base step: H |= E(Vs). Then H' |= E(Vs) by Hypothesis 1.
Induction step (V): H = V&, 1QFE(Vp, Cpit, ).
Consider u € U’ with u > v},
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> By IH, H' |= QZE(vp, w,T).
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Base step: H |= E(Vs). Then H' |= E(Vs) by Hypothesis 1.
Induction step (V): H = V&, 1QFE(Vp, Cpit, ).

Consider u € U’ with u > v},
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We argue by induction on s — h.
Base step: H |= E(Vs). Then H' |= E(Vs) by Hypothesis 1.
Induction step (V): H = V&, 1QFE(Vp, Cpit, ).
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Consider u € U’ with u > v},

By Hypothesis 2, v € U.

So H |= QZE(Vp, u, &) by definition of satisfaction.
By IH, H' |= QJCE(V,,, UE)

So H' = Y8k 1QCE(Vh, Sy, C)-

Induction Step (3) H ): ElC/H_lQJCE(Vh, §h+116)-

>
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By definition of satisfaction, there exists a w € W with
w > vp, such that H = QZE (v, w, €).

By Hypothesis 3, w € W'.

By IH, H' |= QJCE(V,,, WE)

By Hypothesis 2, H' satisfies w > vj,.

So H' = 384 1QCE(Vh, Sy, §)-



Comment

The winning strategy for Presenter requires more than A(2° — 1, t)
starting vertices, where A is the Ackermann function.
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Weaker, but more familiar:



Main Theorem

Theorem (HK and Konjevod)

For all ¢, s, t € IN, the on-line coloring Ramsey number satisfies
the trivial lower bound

col -oRam?(t) = col(KY).

Weaker, but more familiar:

Theorem (HK and Konjevod)

For all ¢,s,t € IN and on-line s-edge coloring algorithms A there
exists a k-colorable s-graph G such that if A colors G with c colors
then G contains a monochromatic K{, where k = x(K{).



