The Survival Game

Hal Kierstead and Goran Konjevod

Arizona State University

December 2008

Notation

- For $n \in \mathbb{N}$ and sets V,

Notation

- For $n \in \mathbb{N}$ and sets V,
- $[n]=\{1, \ldots, n\}$

Notation

- For $n \in \mathbb{N}$ and sets V,
- $[n]=\{1, \ldots, n\}$
- ($\binom{V}{n}=\{X \subseteq V:|X|=n\}$

Notation

- For $n \in \mathbb{N}$ and sets V,
- $[n]=\{1, \ldots, n\}$
- ($\left.\begin{array}{l}V \\ n\end{array}\right)=\{X \subseteq V:|X|=n\}$
- $H=(V, E)$ is an s-graph, if $E \subseteq\binom{V}{s}$

Notation

- For $n \in \mathbb{N}$ and sets V,
- $[n]=\{1, \ldots, n\}$
- ($\left.\begin{array}{l}V \\ n\end{array}\right)=\{X \subseteq V:|X|=n\}$
- $H=(V, E)$ is an s-graph, if $E \subseteq\binom{V}{s}$
- $K_{s}^{t}=\left([t],\binom{[t]}{s}\right)$ is the complete s-graph on t vertices

Notation

- For $n \in \mathbb{N}$ and sets V,
- $[n]=\{1, \ldots, n\}$
- ($\left.\begin{array}{l}V \\ n\end{array}\right)=\{X \subseteq V:|X|=n\}$
- $H=(V, E)$ is an s-graph, if $E \subseteq\binom{V}{s}$
- $K_{s}^{t}=\left([t],\binom{[t]}{s}\right)$ is the complete s-graph on t vertices
- $\bar{v}_{k}=v_{1}, \ldots, v_{k}$

(p, s, t)-Survival Game

- Players: Presenter, Chooser.

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:
- Start with $H_{i-1}=\left(S_{i-1}, E_{i-1}\right)$; construct $H_{i}=\left(S_{i}, E_{i}\right)$.

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:
- Start with $H_{i-1}=\left(S_{i-1}, E_{i-1}\right)$; construct $H_{i}=\left(S_{i}, E_{i}\right)$.
- Presenter plays a p-subset $P_{i} \subseteq S_{i-1}$.

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:
- Start with $H_{i-1}=\left(S_{i-1}, E_{i-1}\right)$; construct $H_{i}=\left(S_{i}, E_{i}\right)$.
- Presenter plays a p-subset $P_{i} \subseteq S_{i-1}$.
- Chooser selects an s-subset $X_{i} \subseteq P_{i}$.

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:
- Start with $H_{i-1}=\left(S_{i-1}, E_{i-1}\right)$; construct $H_{i}=\left(S_{i}, E_{i}\right)$.
- Presenter plays a p-subset $P_{i} \subseteq S_{i-1}$.
- Chooser selects an s-subset $X_{i} \subseteq P_{i}$.
- $S_{i}:=S_{i-1}-\left(P_{i}-X_{i}\right)$

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:
- Start with $H_{i-1}=\left(S_{i-1}, E_{i-1}\right)$; construct $H_{i}=\left(S_{i}, E_{i}\right)$.
- Presenter plays a p-subset $P_{i} \subseteq S_{i-1}$.
- Chooser selects an s-subset $X_{i} \subseteq P_{i}$.
- $S_{i}:=S_{i-1}-\left(P_{i}-X_{i}\right)$
- $E_{i}:=\left(E_{i-1} \cup\left\{X_{i}\right\}\right)-\left\{X_{j} \in E_{i-1}: X_{j} \nsubseteq S_{i}\right\}$.

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:
- Start with $H_{i-1}=\left(S_{i-1}, E_{i-1}\right)$; construct $H_{i}=\left(S_{i}, E_{i}\right)$.
- Presenter plays a p-subset $P_{i} \subseteq S_{i-1}$.
- Chooser selects an s-subset $X_{i} \subseteq P_{i}$.
- $S_{i}:=S_{i-1}-\left(P_{i}-X_{i}\right)$
- $E_{i}:=\left(E_{i-1} \cup\left\{X_{i}\right\}\right)-\left\{X_{j} \in E_{i-1}: X_{j} \nsubseteq S_{i}\right\}$.
- Presenter wins if H_{i} contains a copy of K_{s}^{t} for some i.

(p, s, t)-Survival Game

- Players: Presenter, Chooser.
- Round 0: Presenter fixes an empty s-graph $H_{0}=\left(S_{0}, \varnothing\right)$.
- Round $i>0$:
- Start with $H_{i-1}=\left(S_{i-1}, E_{i-1}\right)$; construct $H_{i}=\left(S_{i}, E_{i}\right)$.
- Presenter plays a p-subset $P_{i} \subseteq S_{i-1}$.
- Chooser selects an s-subset $X_{i} \subseteq P_{i}$.
- $S_{i}:=S_{i-1}-\left(P_{i}-X_{i}\right)$
- $E_{i}:=\left(E_{i-1} \cup\left\{X_{i}\right\}\right)-\left\{X_{j} \in E_{i-1}: X_{j} \nsubseteq S_{i}\right\}$.
- Presenter wins if H_{i} contains a copy of K_{s}^{t} for some i.
- Otherwise Chooser wins when $\left|S_{i}\right|<t$.

Key Technical Result

Theorem (HK-Konjevod)
For all positive integers p, s, t, with $s \leq p$, Presenter has a winning strategy in the (p, s, t)-survival game.

Example

Theorem (Grytczuk, Hałuszczak and HK)
For all positive integers p, t Presenter can win the ($p, 2, t$)-survival game.

Proof
$\exists x \exists y E(x, y) \quad$ ○ ०००० ...

Proof

$$
\begin{aligned}
& \exists x \exists y E(x, y) \quad \text { ○ ००००... } \\
& \forall x \exists y E(x, y) \text { o. } \ddagger \text { o } . . .
\end{aligned}
$$

Proof

$\exists x \exists y E(x, y)$ ○ ○○○○...
$\forall x \exists y E(x, y)$ o d o i i...

Proof

$$
\begin{aligned}
& \exists x \exists y E(x, y) \text { @ } \bullet \bullet \bullet . . \\
& \forall x \exists y E(x, y) \text { @ d ! ! !... } \\
& 0_{0}^{-\infty} 0_{0}^{0} 00_{0}^{\infty} 0
\end{aligned}
$$

Proof

$$
\forall x \exists y E(x, y) \quad 0_{0} \quad 0 \quad 000 \ldots
$$

Proof

$\exists x \exists y E(x, y)$ o ००००...
$\forall x \exists y E(x, y)$ o d o i i...
$\exists x \forall y E(x, y)$

Proof

$\exists x \exists y E(x, y)$ o ००००...
$\forall x \exists y E(x, y)$ o d o i ! ...
$\exists x \forall y E(x, y)$

$\forall x \forall y E(x, y)$

Proof

$$
4 \square>4 \text { 可 }>4 \equiv>4 \equiv \Rightarrow \text { 三 }
$$

Method

- Start: H_{0} has "huge" potential and satisfies

$$
\exists \bar{v}(\bar{v} \in E)
$$

Method

- Start: H_{0} has "huge" potential and satisfies

$$
\exists \bar{v}(\bar{v} \in E)
$$

- If H has "LARGE" potential and satisfies

$$
\forall \bar{x} \exists y \bar{Q} \bar{z} E(\bar{x} y \bar{z})
$$

then Presenter can force H with "large" potential satisfying

$$
\exists \bar{x} \forall w \bar{Q} \bar{z} E(\bar{x} y \bar{z})
$$

Method

- Start: H_{0} has "huge" potential and satisfies

$$
\exists \bar{v}(\bar{v} \in E)
$$

- If H has "LARGE" potential and satisfies

$$
\forall \bar{x} \exists y \bar{Q} \bar{z} E(\bar{x} y \bar{z})
$$

then Presenter can force H with "large" potential satisfying

$$
\exists \bar{x} \forall w \bar{Q} \bar{z} E(\bar{x} y \bar{z})
$$

- So Presenter can force a "big" H^{\prime} satisfying

$$
\forall \bar{v}(\bar{v} \in E)
$$

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.
- U and W are disjoint subsets of S_{0}.

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.
- U and W are disjoint subsets of S_{0}.
- $U \cup W$ inherits the order of S_{0}.

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.
- U and W are disjoint subsets of S_{0}.
- $U \cup W$ inherits the order of S_{0}.
- U is the universal set and W is the witness set.

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.
- U and W are disjoint subsets of S_{0}.
- $U \cup W$ inherits the order of S_{0}.
- U is the universal set and W is the witness set.
- The order of H is $|H|:=|U|$.

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.
- U and W are disjoint subsets of S_{0}.
- $U \cup W$ inherits the order of S_{0}.
- U is the universal set and W is the witness set.
- The order of H is $|H|:=|U|$.
- Define $v \lessdot v^{\prime}$ iff

$$
v<v^{\prime} \text { and if } v^{\prime} \in W \text { then }\left\{u \in U: v<u<v^{\prime}\right\}=\varnothing \text {. }
$$

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.
- U and W are disjoint subsets of S_{0}.
- $U \cup W$ inherits the order of S_{0}.
- U is the universal set and W is the witness set.
- The order of H is $|H|:=|U|$.
- Define $v \lessdot v^{\prime}$ iff

$$
v<v^{\prime} \text { and if } v^{\prime} \in W \text { then }\left\{u \in U: v<u<v^{\prime}\right\}=\varnothing \text {. }
$$

- Define $\lambda \lessdot v^{\prime}$ iff if $v^{\prime} \in W$ then $\left\{u \in U: u<v^{\prime}\right\}=\varnothing$.

Partitioned s-Graphs

- Fix a total ordering $<$ of S_{0}.
- A partitioned s-graph is a structure $H=(U, W, E)$, such that
- $(U \cup W, E)$ is an s-uniform hypergraph.
- U and W are disjoint subsets of S_{0}.
- $U \cup W$ inherits the order of S_{0}.
- U is the universal set and W is the witness set.
- The order of H is $|H|:=|U|$.
- Define $v \lessdot v^{\prime}$ iff

$$
v<v^{\prime} \text { and if } v^{\prime} \in W \text { then }\left\{u \in U: v<u<v^{\prime}\right\}=\varnothing \text {. }
$$

- Define $\lambda \lessdot v^{\prime}$ iff if $v^{\prime} \in W$ then $\left\{u \in U: u<v^{\prime}\right\}=\varnothing$.
- For notational convenience, let $\bar{v}_{0}=\lambda=v_{0}$.

Definition of Satisfaction for Basic Formulas

Let H be a partitioned s-graph and $\bar{v}_{h} \subseteq U \cup W$.

- A basic formula has the form:

$$
Q_{h+1} \xi_{h+1} \ldots Q_{s} \xi_{s} E\left(\bar{v}_{h}, \xi_{h+1}, \ldots, \xi_{s}\right), Q \in\{\forall, \exists\} .
$$

Definition of Satisfaction for Basic Formulas

Let H be a partitioned s-graph and $\bar{v}_{h} \subseteq U \cup W$.

- A basic formula has the form:

$$
Q_{h+1} \xi_{h+1} \ldots Q_{s} \xi_{s} E\left(\bar{v}_{h}, \xi_{h+1}, \ldots, \xi_{s}\right), Q \in\{\forall, \exists\} .
$$

- $H \models E\left(\bar{v}_{h}\right)$ iff $s=h$ and $\bar{v}_{h} \in E$ and \bar{v}_{h} is increasing.

Definition of Satisfaction for Basic Formulas

Let H be a partitioned s-graph and $\bar{v}_{h} \subseteq U \cup W$.

- A basic formula has the form:

$$
Q_{h+1} \xi_{h+1} \ldots Q_{s} \xi_{s} E\left(\bar{v}_{h}, \xi_{h+1}, \ldots, \xi_{s}\right), Q \in\{\forall, \exists\} .
$$

- $H \models E\left(\bar{v}_{h}\right)$ iff $s=h$ and $\bar{v}_{h} \in E$ and \bar{v}_{h} is increasing.
- $H \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$ iff
for all $u \in U$ such that $u \gtrdot v_{h} H \models \overline{Q \bar{\xi}} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$.

Definition of Satisfaction for Basic Formulas

Let H be a partitioned s-graph and $\bar{v}_{h} \subseteq U \cup W$.

- A basic formula has the form:

$$
Q_{h+1} \xi_{h+1} \ldots Q_{s} \xi_{s} E\left(\bar{v}_{h}, \xi_{h+1}, \ldots, \xi_{s}\right), Q \in\{\forall, \exists\} .
$$

- $H \models E\left(\bar{v}_{h}\right)$ iff $s=h$ and $\bar{v}_{h} \in E$ and \bar{v}_{h} is increasing.
- $H \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\zeta}\right)$ iff
for all $u \in U$ such that $u \gtrdot v_{h} H \models \overline{Q \xi} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$.
- $H \models \exists \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$ iff for some $w \in W$ with $w \gtrdot v_{h} H \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, w, \bar{\xi}\right)$.

Basic Sentences

- A basic sentence φ has the form $\varphi=Q_{1} \xi_{1} \ldots Q_{s} \xi_{s} E\left(\bar{\xi}_{s}\right)$.

Basic Sentences

- A basic sentence φ has the form $\varphi=Q_{1} \xi_{1} \ldots Q_{s} \xi_{s} E\left(\bar{\xi}_{s}\right)$.
- There are 2^{s} basic sentences $\varphi_{0}, \ldots, \varphi_{2^{s}-1}$.

Basic Sentences

- A basic sentence φ has the form $\varphi=Q_{1} \xi_{1} \ldots Q_{s} \xi_{s} E\left(\bar{\xi}_{s}\right)$.
- There are 2^{s} basic sentences $\varphi_{0}, \ldots, \varphi_{2^{s}-1}$.
- $\varphi_{0}=\exists \xi_{1} \ldots \exists \xi_{s} E(\bar{\xi})$.

Basic Sentences

- A basic sentence φ has the form $\varphi=Q_{1} \xi_{1} \ldots Q_{s} \xi_{s} E\left(\bar{\xi}_{s}\right)$.
- There are 2^{s} basic sentences $\varphi_{0}, \ldots, \varphi_{2^{s}-1}$.
- $\varphi_{0}=\exists \xi_{1} \ldots \exists \xi_{s} E(\bar{\xi})$.
- If $\varphi_{i}=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \psi$ then $\varphi_{i}^{+}:=\varphi_{i+1}=\exists \bar{\xi}_{\ell} \forall \xi_{\ell+1} \psi$.

Basic Sentences

- A basic sentence φ has the form $\varphi=Q_{1} \xi_{1} \ldots Q_{s} \xi_{s} E\left(\bar{\xi}_{s}\right)$.
- There are 2^{s} basic sentences $\varphi_{0}, \ldots, \varphi_{2^{s}-1}$.
- $\varphi_{0}=\exists \xi_{1} \ldots \exists \xi_{s} E(\bar{\xi})$.
- If $\varphi_{i}=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \psi$ then $\varphi_{i}^{+}:=\varphi_{i+1}=\exists \bar{\xi}_{\ell} \forall \xi_{\ell+1} \psi$.
- $\varphi_{2^{s}-1}=\forall \xi_{1} \ldots \forall \xi_{s} E(\overline{\tilde{\xi}})$.

Plan

- A sentence φ is f-satisfiable if for any n, Presenter has a strategy starting from $f(n)$ vertices, so that some H_{i} contains a subgraph (V, E) that can be partitioned as $\{U, W\}$ so that $(U, W, E) \models \varphi$ and $|U|=n$.

Plan

- A sentence φ is f-satisfiable if for any n, Presenter has a strategy starting from $f(n)$ vertices, so that some H_{i} contains a subgraph (V, E) that can be partitioned as $\{U, W\}$ so that $(U, W, E) \vDash \varphi$ and $|U|=n$.
- Argue by induction on r that for every φ_{r}, there exists a function f_{r} such that φ_{r} is f_{r}-satisfiable.

Plan

- A sentence φ is f-satisfiable if for any n, Presenter has a strategy starting from $f(n)$ vertices, so that some H_{i} contains a subgraph (V, E) that can be partitioned as $\{U, W\}$ so that $(U, W, E) \vDash \varphi$ and $|U|=n$.
- Argue by induction on r that for every φ_{r}, there exists a function f_{r} such that φ_{r} is f_{r}-satisfiable.
- The theorem follows: If $H \models \forall \xi_{1} \ldots \forall \xi_{s} E\left(\bar{\xi}_{s}\right)$ and $|U|=t$ then U induces K_{s}^{t}.

Plan

- A sentence φ is f-satisfiable if for any n, Presenter has a strategy starting from $f(n)$ vertices, so that some H_{i} contains a subgraph (V, E) that can be partitioned as $\{U, W\}$ so that $(U, W, E) \models \varphi$ and $|U|=n$.
- Argue by induction on r that for every φ_{r}, there exists a function f_{r} such that φ_{r} is f_{r}-satisfiable.
- The theorem follows: If $H \models \forall \xi_{1} \ldots \forall \xi_{s} E\left(\bar{\xi}_{s}\right)$ and $|U|=t$ then U induces K_{s}^{t}.
- Base Step: $\varphi_{0}=\exists \xi_{1} \ldots \exists \xi_{s} E(\bar{\xi})$ is f - satisfiable, where $f(n)=n+p$.

Induction Step

Lemma
If $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \psi$ is f-satisfiable then $\varphi^{+}=\exists \bar{\xi}_{\ell} \forall \xi_{\ell+1} \psi$ is
F-satisfiable, where F is defined recursively by

$$
\begin{aligned}
F(0) & =s \\
F(j+1) & =f(F(j)), \text { if } j \geq 0 .
\end{aligned}
$$

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Construct $H_{i}=\left(U_{i}, V_{i}, E_{i}\right), i=0, \ldots, n-1$ such that

$$
H_{i} \models \varphi \text { and }\left|U_{i}\right|=F(n-i) \text { and } U_{i+1}, W_{i+1} \subseteq U_{i}
$$

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Construct $H_{i}=\left(U_{i}, V_{i}, E_{i}\right), i=0, \ldots, n-1$ such that

$$
H_{i} \mid=\varphi \text { and }\left|U_{i}\right|=F(n-i) \text { and } U_{i+1}, W_{i+1} \subseteq U_{i}
$$

- Let $\bar{x}_{\ell} \in U_{n}$. Then $H_{i}=\exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Construct $H_{i}=\left(U_{i}, V_{i}, E_{i}\right), i=0, \ldots, n-1$ such that

$$
H_{i} \mid=\varphi \text { and }\left|U_{i}\right|=F(n-i) \text { and } U_{i+1}, W_{i+1} \subseteq U_{i}
$$

- Let $\bar{x}_{\ell} \in U_{n}$. Then $H_{i}=\exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Let $y_{i} \in W_{i}$ such that $H_{i}=\overline{Q \xi} E\left(\bar{x}_{\ell}, y_{i}, \xi_{\ell+2}, \ldots, \xi_{s}\right)$.

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Construct $H_{i}=\left(U_{i}, V_{i}, E_{i}\right), i=0, \ldots, n-1$ such that

$$
H_{i} \models \varphi \text { and }\left|U_{i}\right|=F(n-i) \text { and } U_{i+1}, W_{i+1} \subseteq U_{i}
$$

- Let $\bar{x}_{\ell} \in U_{n}$. Then $H_{i}=\exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Let $y_{i} \in W_{i}$ such that $H_{i}=\bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, y_{i}, \xi_{\ell+2}, \ldots, \xi_{s}\right)$.
- $\left(y_{i}\right)$ is strictly increasing, since $x_{\ell} \lessdot y_{i}$ in H_{i} and $y_{i+1} \in U_{i}$.

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Construct $H_{i}=\left(U_{i}, V_{i}, E_{i}\right), i=0, \ldots, n-1$ such that

$$
H_{i} \mid=\varphi \text { and }\left|U_{i}\right|=F(n-i) \text { and } U_{i+1}, W_{i+1} \subseteq U_{i} .
$$

- Let $\bar{x}_{\ell} \in U_{n}$. Then $H_{i}=\exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Let $y_{i} \in W_{i}$ such that $H_{i}=\bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, y_{i}, \xi_{\ell+2}, \ldots, \xi_{s}\right)$.
- $\left(y_{i}\right)$ is strictly increasing, since $x_{\ell} \lessdot y_{i}$ in H_{i} and $y_{i+1} \in U_{i}$.
- Let H^{+}be induced by

$$
U^{+}:=\left\{y_{i}: i=0, \ldots, n-1\right\} \text { and } W^{+}:=\bigcup W_{i}-U^{+}
$$

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Construct $H_{i}=\left(U_{i}, V_{i}, E_{i}\right), i=0, \ldots, n-1$ such that

$$
H_{i} \mid=\varphi \text { and }\left|U_{i}\right|=F(n-i) \text { and } U_{i+1}, W_{i+1} \subseteq U_{i} .
$$

- Let $\bar{x}_{\ell} \in U_{n}$. Then $H_{i}=\exists \xi_{\ell+1} \overline{Q \xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Let $y_{i} \in W_{i}$ such that $H_{i}=\bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, y_{i}, \xi_{\ell+2}, \ldots, \xi_{s}\right)$.
- $\left(y_{i}\right)$ is strictly increasing, since $x_{\ell} \lessdot y_{i}$ in H_{i} and $y_{i+1} \in U_{i}$.
- Let H^{+}be induced by

$$
U^{+}:=\left\{y_{i}: i=0, \ldots, n-1\right\} \text { and } W^{+}:=\bigcup W_{i}-U^{+} .
$$

- Need $H^{+} \models \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, y_{i}, \xi_{\ell+2}, \ldots, \xi_{s}\right)$.

Proof

- Consider $\varphi=\forall \bar{\xi}_{\ell} \exists \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Construct $H_{i}=\left(U_{i}, V_{i}, E_{i}\right), i=0, \ldots, n-1$ such that

$$
H_{i} \mid=\varphi \text { and }\left|U_{i}\right|=F(n-i) \text { and } U_{i+1}, W_{i+1} \subseteq U_{i} .
$$

- Let $\bar{x}_{\ell} \in U_{n}$. Then $H_{i}=\exists \xi_{\ell+1} \overline{Q \xi} E\left(\bar{x}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.
- Let $y_{i} \in W_{i}$ such that $H_{i}=\bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, y_{i}, \xi_{\ell+2}, \ldots, \xi_{s}\right)$.
- $\left(y_{i}\right)$ is strictly increasing, since $x_{\ell} \lessdot y_{i}$ in H_{i} and $y_{i+1} \in U_{i}$.
- Let H^{+}be induced by

$$
U^{+}:=\left\{y_{i}: i=0, \ldots, n-1\right\} \text { and } W^{+}:=\bigcup W_{i}-U^{+}
$$

- Need $H^{+} \models \bar{Q} \bar{\xi} E\left(\bar{x}_{\ell}, y_{i}, \xi_{\ell+2}, \ldots, \xi_{s}\right)$.
- Thus $H^{+} \mid=\exists \bar{\xi}_{\ell} \forall \xi_{\ell+1} \bar{Q} \bar{\xi} E\left(\bar{\xi}_{\ell}, \xi_{\ell+1}, \ldots, \xi_{s}\right)$.

Substructure Lemma

Lemma

Suppose $H=(U, W, E)$ and $H^{\prime}=\left(U^{\prime}, W^{\prime}, E^{\prime}\right)$ are partitioned s-graphs and $\bar{v}_{h} \subseteq(U \cup W) \cap\left(U^{\prime} \cup W^{\prime}\right)$.

$$
\text { If } H \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \bar{\xi}\right) \text { then } H^{\prime} \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \bar{\xi}\right)
$$

provided the following conditions are all satisfied:

$$
\begin{aligned}
& \text { 1. If } \bar{y}_{s} \in E \text { then } \bar{y}_{s} \in E^{\prime} \text { for all } \bar{y}_{s} \subseteq(U \cup W) \cap\left(U^{\prime} \cup W^{\prime}\right) \text {. } \\
& \text { 2. } U^{\prime}-\left\{v: v \leq v_{h}\right\} \subseteq U \text {. } \\
& \text { 3. } W-\left\{v: v \leq v_{h}\right\} \subseteq W^{\prime} .
\end{aligned}
$$

Proof of Substructure Lemma

- We argue by induction on $s-h$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\xi}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis 2, $u \in U$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis $2, u \in U$.
- So $H \models \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, u, \bar{\zeta}\right)$ by definition of satisfaction.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis 2, $u \in U$.
- So $H \models \bar{Q} \bar{\zeta} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By IH, $H^{\prime} \models \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, u, \bar{\zeta}\right)$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis 2, $u \in U$.
- So $H \models \overline{Q \xi} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By IH, $H^{\prime} \models \bar{Q} \bar{\zeta} E\left(\bar{v}_{h}, u, \bar{\zeta}\right)$.
- So $H^{\prime} \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis 2, $u \in U$.
- So $H \models \overline{Q \xi} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By $\mathrm{IH}, H^{\prime} \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, u, \bar{\zeta}\right)$.
- So $H^{\prime} \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Induction Step (\exists): $H \models \exists \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\xi}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis 2, $u \in U$.
- So $H \models \bar{Q} \bar{\zeta} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By $\mathrm{IH}, H^{\prime} \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$.
- So $H^{\prime} \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Induction Step $(\exists): H \models \exists \xi_{h+1} \bar{Q} \bar{\zeta} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\zeta}\right)$.
- By definition of satisfaction, there exists a $w \in W$ with $w \gtrdot v_{h}$ such that $H=\overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, w, \bar{\xi}\right)$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\xi}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis 2, $u \in U$.
- So $H \models \bar{Q} \bar{\zeta} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By $\mathrm{IH}, H^{\prime} \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$.
- So $H^{\prime} \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Induction Step $(\exists): H \models \exists \xi_{h+1} \bar{Q} \bar{\zeta} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\zeta}\right)$.
- By definition of satisfaction, there exists a $w \in W$ with $w \gtrdot v_{h}$ such that $H=\overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, w, \bar{\xi}\right)$.
- By Hypothesis 3, $w \in W^{\prime}$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\xi}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis $2, u \in U$.
- So $H \models \bar{Q} \bar{\zeta} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By $\mathrm{IH}, H^{\prime} \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$.
- So $H^{\prime} \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Induction Step (\exists): $H \models \exists \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\zeta}\right)$.
- By definition of satisfaction, there exists a $w \in W$ with $w \gtrdot v_{h}$ such that $H=\overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, w, \bar{\xi}\right)$.
- By Hypothesis $3, w \in W^{\prime}$.
- By IH, $H^{\prime} \models \overline{Q \xi} E\left(\bar{v}_{h}, w, \bar{\xi}\right)$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\xi}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis $2, u \in U$.
- So $H \models \overline{Q \xi} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By $\mathrm{IH}, H^{\prime} \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$.
- So $H^{\prime} \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Induction Step (\exists): $H \models \exists \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\zeta}\right)$.
- By definition of satisfaction, there exists a $w \in W$ with $w \gtrdot v_{h}$ such that $H=\overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, w, \bar{\zeta}\right)$.
- By Hypothesis $3, w \in W^{\prime}$.
- By IH, $H^{\prime} \models \overline{Q \xi} E\left(\bar{v}_{h}, w, \bar{\xi}\right)$.
- By Hypothesis 2, H^{\prime} satisfies $w \gtrdot v_{h}$.

Proof of Substructure Lemma

- We argue by induction on $s-h$.
- Base step: $H \models E\left(\bar{v}_{s}\right)$. Then $H^{\prime} \models E\left(\bar{v}_{s}\right)$ by Hypothesis 1 .
- Induction step $(\forall): H=\forall \xi_{h+1} \overline{Q \bar{\xi}} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Consider $u \in U^{\prime}$ with $u>v_{h}$.
- By Hypothesis $2, u \in U$.
- So $H \models \overline{Q \xi} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$ by definition of satisfaction.
- By $\mathrm{IH}, H^{\prime} \models \overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, u, \bar{\xi}\right)$.
- So $H^{\prime} \models \forall \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.
- Induction Step (\exists): $H \models \exists \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\zeta}\right)$.
- By definition of satisfaction, there exists a $w \in W$ with $w \gtrdot v_{h}$ such that $H=\overline{Q \bar{\zeta}} E\left(\bar{v}_{h}, w, \bar{\zeta}\right)$.
- By Hypothesis $3, w \in W^{\prime}$.
- By IH, $H^{\prime} \models \overline{Q \xi} E\left(\bar{v}_{h}, w, \bar{\xi}\right)$.
- By Hypothesis $2, H^{\prime}$ satisfies $w \gtrdot v_{h}$.
- So $H^{\prime} \models \exists \xi_{h+1} \bar{Q} \bar{\xi} E\left(\bar{v}_{h}, \xi_{h+1}, \bar{\xi}\right)$.

Comment

The winning strategy for Presenter requires more than $A\left(2^{s}-1, t\right)$ starting vertices, where A is the Ackermann function.

Main Theorem

Theorem (HK and Konjevod)
For all $c, s, t \in \mathbb{N}$, the on-line coloring Ramsey number satisfies the trivial lower bound

$$
\operatorname{col}-\mathrm{oRam}_{c}^{s}(t)=\operatorname{col}\left(K_{s}^{t}\right)
$$

Main Theorem

Theorem (HK and Konjevod)
For all $c, s, t \in \mathbb{N}$, the on-line coloring Ramsey number satisfies the trivial lower bound

$$
\operatorname{col}-\mathrm{oRam}_{c}^{s}(t)=\operatorname{col}\left(K_{s}^{t}\right)
$$

Weaker, but more familiar:

Main Theorem

Theorem (HK and Konjevod)
For all $c, s, t \in \mathbb{N}$, the on-line coloring Ramsey number satisfies the trivial lower bound

$$
\operatorname{col}-\mathrm{oRam}_{c}^{s}(t)=\operatorname{col}\left(K_{s}^{t}\right)
$$

Weaker, but more familiar:
Theorem (HK and Konjevod)
For all $c, s, t \in \mathbb{N}$ and on-line s-edge coloring algorithms A there exists a k-colorable s-graph G such that if A colors G with c colors then G contains a monochromatic K_{s}^{t}, where $k=\chi\left(K_{s}^{t}\right)$.

