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Notation

I For n ∈N and sets V ,

I [n] = {1, . . . , n}
I (Vn ) = {X ⊆ V : |X | = n}
I H = (V , E ) is an s-graph, if E ⊆ (Vs )
I K t

s =
(
[t], ([t ]

s )
)

is the complete s-graph on t vertices

I vk = v1, . . . , vk
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(p, s, t)-Survival Game

I Players: Presenter, Chooser.

I Round 0: Presenter fixes an empty s-graph H0 = (S0, ∅).
I Round i > 0:

I Start with Hi−1 = (Si−1, Ei−1); construct Hi = (Si , Ei ).
I Presenter plays a p-subset Pi ⊆ Si−1.
I Chooser selects an s-subset Xi ⊆ Pi .
I Si := Si−1 − (Pi − Xi )
I Ei := (Ei−1 ∪ {Xi})−

{
Xj ∈ Ei−1 : Xj * Si

}
.

I Presenter wins if Hi contains a copy of K t
s for some i .

I Otherwise Chooser wins when |Si | < t.
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Key Technical Result

Theorem (HK-Konjevod)

For all positive integers p, s, t, with s ≤ p, Presenter has a winning
strategy in the (p, s, t)-survival game.



Example

Theorem (Grytczuk, Ha luszczak and HK)

For all positive integers p, t Presenter can win the (p, 2, t)-survival
game.
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Method

I Start: H0 has “huge” potential and satisfies

∃v(v ∈ E )

I If H has “LARGE” potential and satisfies

∀x∃yQzE (xyz)

then Presenter can force H with “large” potential satisfying

∃x∀wQzE (xyz).

I So Presenter can force a “big” H
′

satisfying

∀v(v ∈ E ).
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Partitioned s-Graphs

I Fix a total ordering < of S0.

I A partitioned s-graph is a structure H = (U, W , E ), such that

I (U ∪W , E ) is an s-uniform hypergraph.
I U and W are disjoint subsets of S0.
I U ∪W inherits the order of S0.
I U is the universal set and W is the witness set.

I The order of H is |H | := |U |.
I Define v l v ′ iff

v < v ′ and if v ′ ∈ W then {u ∈ U : v < u < v ′} = ∅.

I Define λ l v ′ iff if v ′ ∈ W then {u ∈ U : u < v ′} = ∅.

I For notational convenience, let v0 = λ = v0.
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Definition of Satisfaction for Basic Formulas

Let H be a partitioned s-graph and vh ⊆ U ∪W .

I A basic formula has the form:

Qh+1ξh+1 . . . QsξsE (vh, ξh+1, . . . , ξs), Q ∈ {∀, ∃}.

I H |= E (vh) iff s = h and vh ∈ E and vh is increasing.

I H |= ∀ξh+1QξE (vh, ξh+1, ξ) iff

for all u ∈ U such that u m vh H |= QξE (vh, u, ξ).

I H |= ∃ξh+1QξE (vh, ξh+1, ξ) iff

for some w ∈ W with w m vh H |= QξE (vh, w , ξ).
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Basic Sentences

I A basic sentence ϕ has the form ϕ = Q1ξ1 . . . QsξsE (ξs).

I There are 2s basic sentences ϕ0, . . . , ϕ2s−1.

I ϕ0 = ∃ξ1 . . . ∃ξsE (ξ).
I If ϕi = ∀ξ`∃ξ`+1ψ then ϕ+

i := ϕi+1 = ∃ξ`∀ξ`+1ψ.
I ϕ2s−1 = ∀ξ1 . . . ∀ξsE (ξ).
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Plan

I A sentence ϕ is f -satisfiable if for any n, Presenter has a
strategy starting from f (n) vertices, so that some Hi contains
a subgraph (V , E ) that can be partitioned as {U, W } so that
(U, W , E ) |= ϕ and |U | = n.

I Argue by induction on r that for every ϕr , there exists a
function fr such that ϕr is fr -satisfiable.

I The theorem follows: If H |= ∀ξ1 . . . ∀ξsE (ξs) and |U | = t
then U induces K t

s .

I Base Step: ϕ0 = ∃ξ1 . . . ∃ξsE (ξ) is f - satisfiable, where
f (n) = n + p.
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Induction Step

Lemma
If ϕ = ∀ξ`∃ξ`+1ψ is f -satisfiable then ϕ+ = ∃ξ`∀ξ`+1ψ is
F -satisfiable, where F is defined recursively by

F (0) = s

F (j + 1) = f (F (j)), if j ≥ 0.



Proof

I Consider ϕ = ∀ξ`∃ξ`+1QξE (x `, ξ`+1, . . . , ξs).

I Construct Hi = (Ui , Vi , Ei ), i = 0, . . . , n− 1 such that

Hi |= ϕ and |Ui | = F (n− i) and Ui+1, Wi+1 ⊆ Ui .

I Let x ` ∈ Un. Then Hi |= ∃ξ`+1QξE (x `, ξ`+1, . . . , ξs).

I Let yi ∈ Wi such that Hi |= QξE (x `, yi , ξ`+2, . . . , ξs).
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Substructure Lemma

Lemma
Suppose H = (U, W , E ) and H ′ = (U ′, W ′, E ′) are partitioned
s-graphs and vh ⊆ (U ∪W ) ∩ (U ′ ∪W ′).

If H |= QξE (vh, ξ) then H ′ |= QξE (vh, ξ),

provided the following conditions are all satisfied:

1. If y s ∈ E then y s ∈ E ′ for all y s ⊆ (U ∪W ) ∩ (U ′ ∪W ′).

2. U ′ − {v : v ≤ vh} ⊆ U.

3. W − {v : v ≤ vh} ⊆ W ′.

.



Proof of Substructure Lemma

I We argue by induction on s − h.
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I So H ′ |= ∀ξh+1QξE (vh, ξh+1, ξ).

I Induction Step (∃): H |= ∃ξh+1QξE (vh, ξh+1, ξ).

I By definition of satisfaction, there exists a w ∈ W with
w m vh such that H |= QξE (vh, w , ξ).
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I By IH, H ′ |= QξE (vh, w , ξ).
I By Hypothesis 2, H ′ satisfies w m vh.
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Comment

The winning strategy for Presenter requires more than A(2s − 1, t)
starting vertices, where A is the Ackermann function.



Main Theorem

Theorem (HK and Konjevod)

For all c , s, t ∈N, the on-line coloring Ramsey number satisfies
the trivial lower bound

col - oRams
c(t) = col(K t

s ).

Weaker, but more familiar:

Theorem (HK and Konjevod)

For all c , s, t ∈N and on-line s-edge coloring algorithms A there
exists a k-colorable s-graph G such that if A colors G with c colors
then G contains a monochromatic K t

s , where k = χ(K t
s ).
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