Recursive and On-line Coloring

Hal Kierstead

Arizona State University

December 2008

Basic Problem

- A k-coloring of a graph G is a function $c: V \rightarrow[k]$ such that if $x y \in E$ then $c(x) \neq c(y)$.

Basic Problem

- A k-coloring of a graph G is a function $c: V \rightarrow[k]$ such that if $x y \in E$ then $c(x) \neq c(y)$.
- The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.

Basic Problem

- A k-coloring of a graph G is a function $c: V \rightarrow[k]$ such that if $x y \in E$ then $c(x) \neq c(y)$.
- The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- A recursive graph (or digraph) is a graph $G=(V, E)$ whose vertex set V and edge set E are both recursive.

Basic Problem

- A k-coloring of a graph G is a function $c: V \rightarrow[k]$ such that if $x y \in E$ then $c(x) \neq c(y)$.
- The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- A recursive graph (or digraph) is a graph $G=(V, E)$ whose vertex set V and edge set E are both recursive.
- $\chi_{\text {rec }}(G)$ is the least k such that G has a recursive k-coloring.

Basic Problem

- A k-coloring of a graph G is a function $c: V \rightarrow[k]$ such that if $x y \in E$ then $c(x) \neq c(y)$.
- The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- A recursive graph (or digraph) is a graph $G=(V, E)$ whose vertex set V and edge set E are both recursive.
- $\chi_{\text {rec }}(G)$ is the least k such that G has a recursive k-coloring.

Basic Problem

- A k-coloring of a graph G is a function $c: V \rightarrow[k]$ such that if $x y \in E$ then $c(x) \neq c(y)$.
- The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- A recursive graph (or digraph) is a graph $G=(V, E)$ whose vertex set V and edge set E are both recursive.
- $\chi_{\text {rec }}(G)$ is the least k such that G has a recursive k-coloring.

Problem

Given a class \mathcal{C} of graphs (closed under isomorphism) does there exist a function f such that every recursive graph $G \in \mathcal{C}$ satisfies $f(\chi(G)) \leq \chi_{\text {rec }}(G)$-coloring.

Organization

- Additional recursive structure

Organization

- Additional recursive structure
- Highly recursive graphs

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets
- Computer science and on-line algorithms

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets
- Computer science and on-line algorithms
- On-line algorithms "=" recursive function

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets
- Computer science and on-line algorithms
- On-line algorithms " $=$ " recursive function
- Bounds in terms of $n=|V|$

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets
- Computer science and on-line algorithms
- On-line algorithms " $=$ " recursive function
- Bounds in terms of $n=|V|$
- First-Fit

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets
- Computer science and on-line algorithms
- On-line algorithms " $=$ " recursive function
- Bounds in terms of $n=|V|$
- First-Fit
- On-line Ramsey theory

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets
- Computer science and on-line algorithms
- On-line algorithms " $=$ " recursive function
- Bounds in terms of $n=|V|$
- First-Fit
- On-line Ramsey theory

Organization

- Additional recursive structure
- Highly recursive graphs
- Digraphs, especially posets
- Computer science and on-line algorithms
- On-line algorithms " $=$ " recursive function
- Bounds in terms of $n=|V|$
- First-Fit
- On-line Ramsey theory

Definition

A graph G is perfect if every induced subgraph H satisfies $\chi(H)=\omega(H)$, where $\omega(\mathrm{G})$ is the number of vertices of the largest complete subgraph of G.

Highly Recursive Graphs

Highly Recursive Graphs

Definition (Bean)
A recursive graph $G=(V, E)$ is highly recursive if each vertex x has degree $d(x)<\infty$ and $d: V \rightarrow \mathbf{N}$ is a recursive function.

Highly Recursive Graphs

Definition (Bean)
A recursive graph $G=(V, E)$ is highly recursive if each vertex x has degree $d(x)<\infty$ and $d: V \rightarrow \mathbf{N}$ is a recursive function.

Theorem
Let G be a highly recursive graph. Then:

- (Schmerl 1980) $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$. Moreover, this is tight.

Highly Recursive Graphs

Definition (Bean)
A recursive graph $G=(V, E)$ is highly recursive if each vertex x has degree $d(x)<\infty$ and $d: V \rightarrow \mathbf{N}$ is a recursive function.

Theorem
Let G be a highly recursive graph. Then:

- (Schmerl 1980) $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$. Moreover, this is tight.
- (Schmerl 1982 - Recursive Brooks' Theorem) If $\omega(G) \leq \Delta(G)$ and $\Delta(G) \geq 3$ then $\chi_{\text {rec }}(G) \leq \Delta(G)$.

Highly Recursive Graphs

Definition (Bean)

A recursive graph $G=(V, E)$ is highly recursive if each vertex x has degree $d(x)<\infty$ and $d: V \rightarrow \mathbf{N}$ is a recursive function.

Theorem
Let G be a highly recursive graph. Then:

- (Schmerl 1980) $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$. Moreover, this is tight.
- (Schmerl 1982 - Recursive Brooks' Theorem) If $\omega(G) \leq \Delta(G)$ and $\Delta(G) \geq 3$ then $\chi_{\text {rec }}(G) \leq \Delta(G)$.
- (HK 1981) If G is perfect then $\chi_{\text {rec }}(G) \leq \chi(G)+1$.

Highly Recursive Graphs

Definition (Bean)

A recursive graph $G=(V, E)$ is highly recursive if each vertex x has degree $d(x)<\infty$ and $d: V \rightarrow \mathbf{N}$ is a recursive function.

Theorem
Let G be a highly recursive graph. Then:

- (Schmerl 1980) $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$. Moreover, this is tight.
- (Schmerl 1982 - Recursive Brooks' Theorem) If $\omega(G) \leq \Delta(G)$ and $\Delta(G) \geq 3$ then $\chi_{\text {rec }}(G) \leq \Delta(G)$.
- (HK 1981) If G is perfect then $\chi_{\text {rec }}(G) \leq \chi(G)+1$.
- (HK 1981 - Recursive Vizing's Theorem)

$$
\chi_{\text {rec }}^{\prime}(G) \leq \chi^{\prime}(G)+1
$$

If G if highly recursive then $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$

If G if highly recursive then $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$

If G if highly recursive then $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$

k, ., 2k-1

If G if highly recursive then $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$

If G if highly recursive then $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$

k, .., 2k-1

If G if highly recursive then $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$

If G if highly recursive then $\chi_{\text {rec }}(G) \leq 2 \chi(G)-1$

$k, \ldots, 2 k-1$

On-line Partitioning

On-line Partitioning

- An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as $v_{1}, v_{2}, \ldots v_{n}$.

On-line Partitioning

- An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as $v_{1}, v_{2}, \ldots v_{n}$.
- $V_{i}:=\left\{v_{1}, \ldots v_{i}\right\}$ and S_{i} is substructure of S induced by V_{i}.

On-line Partitioning

- An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as $v_{1}, v_{2}, \ldots v_{n}$.
- $V_{i}:=\left\{v_{1}, \ldots v_{i}\right\}$ and S_{i} is substructure of S induced by V_{i}.
- An on-line partitioning (chain, antichain, coloring) algorithm assigns each vertex v_{i} of an on-line structure S to a class based only on information about S_{i}, including the ordering $v_{1}, v_{2}, \ldots v_{n}$.

On-line Partitioning

- An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as $v_{1}, v_{2}, \ldots v_{n}$.
- $V_{i}:=\left\{v_{1}, \ldots v_{i}\right\}$ and S_{i} is substructure of S induced by V_{i}.
- An on-line partitioning (chain, antichain, coloring) algorithm assigns each vertex v_{i} of an on-line structure S to a class based only on information about S_{i}, including the ordering $v_{1}, v_{2}, \ldots v_{n}$.
- on-line coloring algorithms give rise to recursive colorings.

On-line Antichain Partitioning

On-line Antichain Partitioning

Theorem
Every poset P can be partitioned into height (P) antichains.

On-line Antichain Partitioning

Theorem
Every poset P can be partitioned into height (P) antichains.

Theorem (Schmerl 1978)
There is an on-line algorithm for partitioning every on-line poset P into

$$
\binom{\text { height }(P)+1}{2} \text { antichains. }
$$

Moreover, this is best possible.

Proof (Algorithm)

Proof (Algorithm)

Proof (Algorithm)

Proof (Algorithm)

Proof (Algorithm)

Proof (Algorithm)

Proof (Algorithm)

Proof (Algorithm)

Proof (On-line Poset)

height $=3$

Proof (On-line Poset)

height $=3$

Proof (On-line Poset)

height $=3$

Proof (On-line Poset)

height $=3$

Proof (On-line Poset)

height $=3$

Proof (On-line Poset)

height $=3$

On-line Coloring Comparability Graphs

On-line Coloring Comparability Graphs

Theorem
Every comparability graph G is perfect.

On-line Coloring Comparability Graphs

Theorem

Every comparability graph G is perfect.
Theorem
For every on-line coloring algorithm \mathcal{A} and integer k there exists an on-line comparability graph G with $\omega(G)=2$ and $\mathcal{A}(G)>k$.

On-line Coloring Comparability Graphs

Theorem

Every comparability graph G is perfect.
Theorem
For every on-line coloring algorithm \mathcal{A} and integer k there exists an on-line comparability graph G with $\omega(G)=2$ and $\mathcal{A}(G)>k$.

Remark
Every tree T is the comparability graph with $\omega(T) \leq 2$.

On-line Trees

$$
\omega=2
$$

On-line Trees

$$
\omega=2
$$

On-line Trees

$$
\omega=2
$$

!

On-line Trees

$$
\omega=2
$$

On-line Trees

$$
\omega=2
$$

On-line Trees

Upper bounds in terms of $|V|$

Upper bounds in terms of $|V|$

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

Upper bounds in terms of $|V|$

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks \& Trotter 1989) $O\left(\frac{\log ^{(2 k-3)} n}{\log ^{(2 k-4)} n} n\right)$ colors.

Upper bounds in terms of $|V|$

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks \& Trotter 1989) $O\left(\frac{\log ^{(2 k-3)} n}{\log ^{(2 k-4)} n} n\right)$ colors.
- (HK 1998) $O\left(n^{1-\frac{1}{k!}}\right)$ colors.

Upper bounds in terms of $|V|$

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks \& Trotter 1989) $O\left(\frac{\log ^{(2 k-3)} n}{\log ^{(2 k-4)} n} n\right)$ colors.
- (HK 1998) $O\left(n^{1-\frac{1}{k!}}\right)$ colors.
- (HK 1998) $20 n^{2 / 3} \log ^{1 / 3} n$ colors, provided $k=3$.

Upper bounds in terms of $|V|$

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks \& Trotter 1989) $O\left(\frac{\log ^{(2 k-3)} n}{\log ^{(2 k-4)} n} n\right)$ colors.
- (HK 1998) $O\left(n^{1-\frac{1}{k!}}\right)$ colors.
- (HK 1998) $20 n^{2 / 3} \log ^{1 / 3} n$ colors, provided $k=3$.
- (HK \& Kolossa 1994) $n^{\frac{10 k}{\log \log n}}$ colors, provided G is perfect.

Upper bounds in terms of $|V|$

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks \& Trotter 1989) $O\left(\frac{\log ^{(2 k-3)} n}{\log ^{(2 k-4)} n} n\right)$ colors.
- (HK 1998) $O\left(n^{1-\frac{1}{k!}}\right)$ colors.
- (HK 1998) $20 n^{2 / 3} \log ^{1 / 3} n$ colors, provided $k=3$.
- (HK \& Kolossa 1994) $n^{\frac{10 k}{\log \log n}}$ colors, provided G is perfect.

Upper bounds in terms of $|V|$

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks \& Trotter 1989) $O\left(\frac{\log ^{(2 k-3)} n}{\log ^{(2 k-4)} n} n\right)$ colors.
- (HK 1998) $O\left(n^{1-\frac{1}{k!}}\right)$ colors.
- (HK 1998) $20 n^{2 / 3} \log ^{1 / 3} n$ colors, provided $k=3$.
- (HK \& Kolossa 1994) $n^{\frac{10 k}{\log \log n}}$ colors, provided G is perfect.

Theorem (Irani 1994)
First-Fit colors every on-line graph G with $\operatorname{col}(G) \leq k$ on n vertices with $O(d \log n)$ colors. Moreover no on-line algorithm does better than this.

Lower bounds

Lower bounds

Theorem (Halldórsson \& Szegedy)
For every $k \in \mathbf{N}$ and every on-line algorithm \mathcal{A} there exists an on-line graph G such that $\chi(G)=k$ and $\chi_{\mathcal{A}}(G) \geq 2^{k}-1$ and $|G| \leq k 2^{k}$.

Lower bounds

Theorem (Halldórsson \& Szegedy)
For every $k \in \mathbf{N}$ and every on-line algorithm \mathcal{A} there exists an on-line graph G such that $\chi(G)=k$ and $\chi_{\mathcal{A}}(G) \geq 2^{k}-1$ and $|G| \leq k 2^{k}$.

Theorem (Vishwanathan 1992)
For every on-line coloring algorithm \mathcal{A} there exists an on-line k-colorable perfect graph G on n vertices with $\mathcal{A}=\Omega\left(\frac{\log ^{k-1}(n)}{k^{k}}\right)$.

Chain Partitioning

Chain Partitioning

Theorem (Dilworth 1950)
Every poset P can be partitioned into width (P) chains.

On-line Chain Partitioning

Theorem (HK 1981)
There is an on-line algorithm for partitioning every poset P into

$$
\frac{5^{\text {width }(P)}-1}{4} \text { chains. }
$$

On-line Chain Partitioning

Theorem (HK 1981)
There is an on-line algorithm for partitioning every poset P into

$$
\frac{5^{\text {width }(P)}-1}{4} \text { chains. }
$$

Theorem (Szemerédi \& Trotter 1981)
For every on-line algorithm \mathcal{A} and positive integer w there exists an on-line poset P with width $(P)=w$ such that

$$
\mathcal{A}(P) \geq\binom{ w+1}{2}
$$

Problems

Problems

Problem (On-line Chain Partitioning)

Improve:

$$
\binom{\text { width }(P)+1}{2} \leq_{\forall \mathcal{A} \exists P} \mathcal{A}(P) \leq_{\exists \mathcal{A} \forall P} \frac{5^{\text {width }(P)}-1}{4}
$$

Problems

Problem (On-line Chain Partitioning)

Improve:

$$
\binom{\text { width }(P)+1}{2} \leq_{\forall \mathcal{A} \exists P} \mathcal{A}(P) \leq_{\exists \mathcal{A} \forall P} \frac{5^{\text {width }(P)}-1}{4}
$$

Problem (On-line Coloring Cocomparability Graphs - Schmerl)
Does there exist an on-line coloring algorithm \mathcal{A} and a function f such that for every on-line cocomparability graph G,

$$
\mathcal{A}(G) \leq f(\omega(G)) ?
$$

Special Posets: Interval Orders

Special Posets: Interval Orders

- Interval graphs are cocomparability graphs for interval orders.

Special Posets: Interval Orders

- Interval graphs are cocomparability graphs for interval orders.

Special Posets: Interval Orders

- Interval graphs are cocomparability graphs for interval orders.

Theorem (HK \& Trotter 1981)
There is an on-line coloring algorithm \mathcal{A} such that every on-line interval graph G satisfies $\mathcal{A}(G) \leq 3 \omega(G)-2$. Moreover this is best possible.

Special Posets: Interval Orders

- Interval graphs are cocomparability graphs for interval orders.

Theorem (HK \& Trotter 1981)
There is an on-line coloring algorithm \mathcal{A} such that every on-line interval graph G satisfies $\mathcal{A}(G) \leq 3 \omega(G)-2$. Moreover this is best possible.

- The algorithm does not need an interval representation.

Special Posets: Bounded Dimension

Theorem (HK, McNulty \& Trotter 1984)
There exists an on-line chain partitioning algorithm that covers the intersection P of d on-line linear orders with

$$
\binom{\text { width }(P)+1}{2}^{d-1} \text { chains. }
$$

Graph Theory Detour: Forbidden Trees

Graph Theory Detour: Forbidden Trees

Definition
A graph class \mathcal{C} is weakly perfect if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{C}$.

Graph Theory Detour: Forbidden Trees

Definition
A graph class \mathcal{C} is weakly perfect if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{C}$.

Definition
For a graph H, let $\operatorname{Forb}(H)$ be the class of all graphs that do not induce H.

Graph Theory Detour: Forbidden Trees

Definition
A graph class \mathcal{C} is weakly perfect if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{C}$.

Definition
For a graph H, let $\operatorname{Forb}(H)$ be the class of all graphs that do not induce H.

Conjecture (Gyárfás 1975; Sumner 1981)
$\operatorname{Forb}(T)$ is weakly perfect for every tree T.

Forbidden Trees

Forbidden Trees

Theorem (Gyárfás, Szemerédi \& Tuza 1980)
Forb $\left(T, K_{3}\right)$ is weakly perfect for every tree T with $\operatorname{radius}(T) \leq 2$.

Forbidden Trees

Theorem (Gyárfás, Szemerédi \& Tuza 1980)
Forb $\left(T, K_{3}\right)$ is weakly perfect for every tree T with $\operatorname{radius}(T) \leq 2$.

Theorem (HK \& Penrice 1994)
Forb (T) is weakly perfect for every tree T with $\operatorname{radius}(T) \leq 2$.

Forbidden Trees

Forbidden Trees

Theorem (HK \& Y. Zhu 2004)
The Gyárfás-Sumner Conjecture is true if T is obtained from a tree T^{\prime} with radius $\left(T^{\prime}\right) \leq 2$ by subdividing every edge adjacent to the root exactly once.

Forbidden Trees

Forbidden Trees

Theorem (Scott 1997)
For every tree T, the class of graphs that do not contain any induced subdivision of T is nearly perfect.

Forbidden Trees

Theorem (Scott 1997)
For every tree T, the class of graphs that do not contain any induced subdivision of T is nearly perfect.

Corollary (Scott 1997)
The Gyárfás-Sumner Conjecture is true if T is a subdivision of a star.

Forbidden Trees

Theorem (Scott 1997)
For every tree T, the class of graphs that do not contain any induced subdivision of T is nearly perfect.

Corollary (Scott 1997)
The Gyárfás-Sumner Conjecture is true if T is a subdivision of a star.

It is time to resolve the Gyárfás-Sumner Conjecture!

Schmerl's Problem

Schmerl's Problem

Theorem (HK, Penrice \& Trotter 1994)
For every tree T with radius $(T) \leq 2$ there exists an on-line coloring algorithm \mathcal{A} and a function h such that for every on-line graph $G \in \operatorname{Forb}(T)$

$$
\mathcal{A}(G) \leq h(\omega(G))
$$

Moreover, if $\operatorname{radius}(T)>2$ then no such algorithm exists.

Schmerl's Problem

Theorem (HK, Penrice \& Trotter 1994)
For every tree T with radius $(T) \leq 2$ there exists an on-line coloring algorithm \mathcal{A} and a function h such that for every on-line graph $G \in \operatorname{Forb}(T)$

$$
\mathcal{A}(G) \leq h(\omega(G))
$$

Moreover, if $\operatorname{radius}(T)>2$ then no such algorithm exists.

Corollary (Schmerl's Problem)

There exists an on-line coloring algorithm \mathcal{A} and a function f such that for every on-line cocomparability graph G,

$$
\mathcal{A}(G) \leq f(\omega(G))
$$

Schmerl's Problem

Corollary
There exists an on-line coloring algorithm \mathcal{A} and a function f such that for every on-line cocomparability graph G,

$$
\mathcal{A}(G) \leq f(\omega(G))
$$

Proof.

Schmerl's Problem

Corollary
There exists an on-line coloring algorithm \mathcal{A} and a function f such that for every on-line cocomparability graph G,

$$
\mathcal{A}(G) \leq f(\omega(G))
$$

Proof.

is not a cocomparability graph!

First-Fit and Forbidden Trees

First-Fit and Forbidden Trees

Theorem (Chvátal 1989)
Every on-line $G \in \operatorname{Forb}\left(P_{4}\right)$ satisfies $F F(G)=\omega(G)$.

First-Fit and Forbidden Trees

Theorem (Chvátal 1989)
Every on-line $G \in \operatorname{Forb}\left(P_{4}\right)$ satisfies $F F(G)=\omega(G)$.
Theorem (HK, Penrice \& Trotter 1995)
There exists a function f such that every on-line $G \in \operatorname{Forb}\left(P_{5}\right)$ satisfies $F F(G) \leq f(\omega(G))$.

First-Fit and Forbidden Trees

Theorem (Chvátal 1989)
Every on-line $G \in \operatorname{Forb}\left(P_{4}\right)$ satisfies $F F(G)=\omega(G)$.
Theorem (HK, Penrice \& Trotter 1995)
There exists a function f such that every on-line $G \in \operatorname{Forb}\left(P_{5}\right)$ satisfies $F F(G) \leq f(\omega(G))$.

Theorem (Gyárfás \& Lehel + HK, Penrice \& Trotter)
For all trees T, if there exists a a function f such that every on-line $G \in$ Forb satisfies $F F(G) \leq f(\omega(G))$, then T does not induce $K_{2}+2 K_{1}$.

First-Fit and Cocomparability Graphs

Theorem (HK 1981)
For every positive integer k there exists an on-line cocomparability graph G with $\chi(G)=2$ satisfying $F F(G)=k$.

First-Fit and Cocomparability Graphs

Theorem (HK 1981)
For every positive integer k there exists an on-line cocomparability graph G with $\chi(G)=2$ satisfying $F F(G)=k$.

Theorem (Bosek, Krawczyk \& Szczypka Nov. 2008)
Let G be the cocomparability graph of a poset that does not induce $K_{t, t}$. Then

$$
F F(G) \leq(4(t-1)(\omega(G)-1)+1) \omega(G) .
$$

First-Fit and Cocomparability Graphs

Theorem (HK 1981)
For every positive integer k there exists an on-line cocomparability graph G with $\chi(G)=2$ satisfying $F F(G)=k$.

Theorem (Bosek, Krawczyk \& Szczypka Nov. 2008)
Let G be the cocomparability graph of a poset that does not induce $K_{t, t}$. Then

$$
F F(G) \leq(4(t-1)(\omega(G)-1)+1) \omega(G)
$$

Remark
Interval graphs do not induce $K_{2,2}$.

First-Fit and Interval Graphs

First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most $C \omega(G)$ colors, where

- (HK 1988) $C=40$.

First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most $C \omega(G)$ colors, where

- (HK 1988) C $=40$.
- (Pemmaraju, Raman \& Varadarajan 2004) $C=10$.

First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most $C \omega(G)$ colors, where

- (HK 1988) $C=40$.
- (Pemmaraju, Raman \& Varadarajan 2004) C=10.
- (Brightwell, HK \& Trotter 2004/ Narayanaswarmy \& Babu 2007) $C=8$.

First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most $C \omega(G)$ colors, where

- (HK 1988) $C=40$.
- (Pemmaraju, Raman \& Varadarajan 2004) C=10.
- (Brightwell, HK \& Trotter 2004/ Narayanaswarmy \& Babu 2007) $C=8$.

First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most $C \omega(G)$ colors, where

- (HK 1988) $C=40$.
- (Pemmaraju, Raman \& Varadarajan 2004) C $=10$.
- (Brightwell, HK \& Trotter 2004/ Narayanaswarmy \& Babu 2007) $C=8$.

Theorem
There exists an on-line interval graph G such that $\operatorname{FF}(G) \geq C \omega(G)-B(C)$, where

- (Chrobak \& Slusarek 1989) C $=4.4$

First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most $C \omega(G)$ colors, where

- (HK 1988) $C=40$.
- (Pemmaraju, Raman \& Varadarajan 2004) C $=10$.
- (Brightwell, HK \& Trotter 2004/ Narayanaswarmy \& Babu 2007) $C=8$.

Theorem
There exists an on-line interval graph G such that $\operatorname{FF}(G) \geq C \omega(G)-B(C)$, where

- (Chrobak \& Slusarek 1989) C $=4.4$
- (HK \& Trotter 2008) C $=4.99$

First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most $C \omega(G)$ colors, where

- (HK 1988) $C=40$.
- (Pemmaraju, Raman \& Varadarajan 2004) C $=10$.
- (Brightwell, HK \& Trotter 2004/ Narayanaswarmy \& Babu 2007) $C=8$.

Theorem
There exists an on-line interval graph G such that $\operatorname{FF}(G) \geq C \omega(G)-B(C)$, where

- (Chrobak \& Slusarek 1989) C $=4.4$
- (HK \& Trotter 2008) C $=4.99$
- The technique fails for $C=5$.

Tolerance Graphs

Tolerance Graphs

Definition
A graph $G=(V, E)$ is a tolerance graph if for each vertex v there is an interval I_{v} and a nonnegative real (tolerance) t_{v} such that

$$
v w \in E \text { iff }\left|I_{v} \cap I_{w}\right| \geq \min \left\{t_{v}, t_{w}\right\}
$$

Tolerance \subseteq Perfect

Theorem (Golumbic, Monma \&Trotter 1984) All tolerance graphs graphs are perfect.

Classification of Tolerance Graphs

Classification of Tolerance Graphs

- There is an extensive classification theory for tolerance graphs.

Classification of Tolerance Graphs

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic \& Trenk

Classification of Tolerance Graphs

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic \& Trenk
- A p-tolerance graph is a tolerance graphs such that $\frac{t_{v}}{\left|I_{v}\right|} \leq p$ for all vertices v.

Classification of Tolerance Graphs

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic \& Trenk
- A p-tolerance graph is a tolerance graphs such that $\frac{t_{v}}{\left|I_{v}\right|} \leq p$ for all vertices v.

Classification of Tolerance Graphs

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic \& Trenk
- A p-tolerance graph is a tolerance graphs such that $\frac{t_{v}}{\left|I_{v}\right|} \leq p$ for all vertices v.

Theorem (Felsner 1998)
Every 1-tolerance graph is the cocomparability graph of a poset with interval dimension 2.

Classification of Tolerance Graphs

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic \& Trenk
- A p-tolerance graph is a tolerance graphs such that $\frac{t_{v}}{\left|I_{v}\right|} \leq p$ for all vertices v.

Theorem (Felsner 1998)

Every 1-tolerance graph is the cocomparability graph of a poset with interval dimension 2.

Corollary

Every $\frac{1}{2}$-tolerance graph is the union of two interval graphs.

Recent Results

Theorem (HK \& Saoub 2008)

- Every on-line $\frac{1}{2}$-tolerance graph G satisfies $F F(G) \leq 16 \omega(G)$.

Recent Results

Theorem (HK \& Saoub 2008)

- Every on-line $\frac{1}{2}$-tolerance graph G satisfies $F F(G) \leq 16 \omega(G)$.
- Every on-line $\left(1-\frac{1}{k-1}\right)$-tolerance graph G satisfies $F F(G) \leq(4(k-1)(\omega(G)-1)+1) \omega(G)$.

Recent Results

Theorem (HK \& Saoub 2008)

- Every on-line $\frac{1}{2}$-tolerance graph G satisfies $F F(G) \leq 16 \omega(G)$.
- Every on-line $\left(1-\frac{1}{k-1}\right)$-tolerance graph G satisfies $F F(G) \leq(4(k-1)(\omega(G)-1)+1) \omega(G)$.
- For every k there exists an on-line 1-tolerance graph G with $\omega(G)=k$ and $F F(G) \geq 2^{k}$.

Recent Results

Theorem (HK \& Saoub 2008)

- Every on-line $\frac{1}{2}$-tolerance graph G satisfies $F F(G) \leq 16 \omega(G)$.
- Every on-line $\left(1-\frac{1}{k-1}\right)$-tolerance graph G satisfies $F F(G) \leq(4(k-1)(\omega(G)-1)+1) \omega(G)$.
- For every k there exists an on-line 1-tolerance graph G with $\omega(G)=k$ and $F F(G) \geq 2^{k}$.
- There is an on-line algorithm that colors every on-line low tolerance graph with $\frac{9}{2} \omega^{3}(G)$ colors, provided that the tolerance representation is also given on-line.

Up-growing Posets

Definition (Felsner 1994)

An on-line poset is up-growing if its presentation order is a linear extension, i.e., no new element is smaller than a previously presented element.

Up-growing Posets

Definition (Felsner 1994)

An on-line poset is up-growing if its presentation order is a linear extension, i.e., no new element is smaller than a previously presented element.

Theorem (Felsner 1994)
There exists an on-line algorithm \mathcal{A} such that for any up-growing poset P

$$
\mathcal{A}(P) \leq\binom{\text { width }(P)+1}{2}
$$

Moreover this is best possible.

Up-growing Interval Orders

Theorem (Baier, Bosek \& Micek 2008)
There exists an on-line algorithm \mathcal{A} such that for any up-growing interval order P

$$
\mathcal{A}(P) \leq 2 \operatorname{width}(P)-1
$$

Moreover this is best possible.

Up-growing Semi-orders

Up-growing Semi-orders

Theorem (Felsner, Kloch, Matecki \& Micek 2008)
There exists an on-line algorithm \mathcal{A} such that for any up-growing semi-order P

$$
\mathcal{A}(P) \leq\left\lfloor\frac{1+\sqrt{5}}{2} \text { width }(P)\right\rfloor
$$

Moreover this is best possible!

On-line Ramsey Theory

Theorem (HK \& Konjevod 2008)
Fix integers u and t. For every on-line edge painting algorithm \mathcal{A} there exists an on-line u-uniform hypergraph G with the same coloring number as K_{u}^{t} such that some copy of $K_{u}^{t} \subseteq G$ is monochromatic.

