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Basic Problem

I A k-coloring of a graph G is a function c : V → [k ] such that
if xy ∈ E then c(x) 6= c(y).

I The chromatic number χ(G ) of G is the least k such that G
has a k-coloring.

I A recursive graph (or digraph) is a graph G = (V , E ) whose
vertex set V and edge set E are both recursive.

I χrec(G ) is the least k such that G has a recursive k-coloring.

Problem
Given a class C of graphs (closed under isomorphism) does there
exist a function f such that every recursive graph G ∈ C satisfies
f (χ(G )) ≤ χrec(G )-coloring.
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Organization

I Additional recursive structure

I Highly recursive graphs
I Digraphs, especially posets

I Computer science and on-line algorithms

I On-line algorithms “=” recursive function
I Bounds in terms of n = |V |
I First-Fit
I On-line Ramsey theory

Definition
A graph G is perfect if every induced subgraph H satisfies
χ(H) = ω(H), where ω(G) is the number of vertices of the
largest complete subgraph of G .
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Highly Recursive Graphs

Definition (Bean)

A recursive graph G = (V , E ) is highly recursive if each vertex x
has degree d(x) < ∞ and d : V → N is a recursive function.

Theorem
Let G be a highly recursive graph. Then:

I (Schmerl 1980) χrec(G ) ≤ 2χ(G )− 1. Moreover, this is tight.

I (Schmerl 1982 — Recursive Brooks’ Theorem) If
ω(G ) ≤ ∆(G ) and ∆(G ) ≥ 3 then χrec(G ) ≤ ∆(G ).

I (HK 1981) If G is perfect then χrec(G ) ≤ χ(G ) + 1.

I (HK 1981 — Recursive Vizing’s Theorem)
χ′rec(G ) ≤ χ′(G ) + 1.
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On-line Partitioning

I An on-line structure S (graph, digraph, poset, etc.) is a
structure whose vertices are linearly ordered as v1, v2, . . . vn.

I Vi := {v1, . . . vi} and Si is substructure of S induced by Vi .

I An on-line partitioning (chain, antichain, coloring) algorithm
assigns each vertex vi of an on-line structure S to a class
based only on information about Si , including the ordering
v1, v2, . . . vn.

I on-line coloring algorithms give rise to recursive colorings.
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On-line Antichain Partitioning

Theorem
Every poset P can be partitioned into height(P) antichains.

Theorem (Schmerl 1978)

There is an on-line algorithm for partitioning every on-line poset P
into (

height(P) + 1

2

)
antichains.

Moreover, this is best possible.
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∑

i+j≤h+1

1 =
h∑

j=1

j =
(

h + 1
2

)
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On-line Coloring Comparability Graphs

Theorem
Every comparability graph G is perfect.

Theorem
For every on-line coloring algorithm A and integer k there exists
an on-line comparability graph G with ω(G ) = 2 and A(G ) > k.

Remark
Every tree T is the comparability graph with ω(T ) ≤ 2.
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Upper bounds in terms of |V |

Theorem
There exists an on-line coloring algorithm that colors every on-line
k-colorable graph on n vertices with

I (Lovász, Saks & Trotter 1989) O( log(2k−3) n

log(2k−4) n
n) colors.

I (HK 1998) O(n1− 1
k ! ) colors.

I (HK 1998) 20n2/3 log1/3 n colors, provided k = 3.

I (HK & Kolossa 1994) n
10k

log log n colors, provided G is perfect.

Theorem (Irani 1994)

First-Fit colors every on-line graph G with col(G ) ≤ k on n
vertices with O(d log n) colors. Moreover no on-line algorithm
does better than this.
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Lower bounds

Theorem (Halldórsson & Szegedy)

For every k ∈ N and every on-line algorithm A there exists an
on-line graph G such that χ(G ) = k and χA(G ) ≥ 2k − 1 and
|G | ≤ k2k .

Theorem (Vishwanathan 1992)

For every on-line coloring algorithm A there exists an on-line

k-colorable perfect graph G on n vertices with A = Ω( logk−1(n)
kk ).
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On-line Chain Partitioning

Theorem (HK 1981)

There is an on-line algorithm for partitioning every poset P into

5width(P) − 1

4
chains.

Theorem (Szemerédi & Trotter 1981)

For every on-line algorithm A and positive integer w there exists
an on-line poset P with width(P) = w such that

A(P) ≥
(

w + 1

2

)
.
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Problems

Problem (On-line Chain Partitioning)

Improve:(
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2

)
≤∀A∃P A(P) ≤∃A∀P

5width(P) − 1

4

Problem (On-line Coloring Cocomparability Graphs – Schmerl)

Does there exist an on-line coloring algorithm A and a function f
such that for every on-line cocomparability graph G,

A(G ) ≤ f (ω(G ))?
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Special Posets: Interval Orders

I Interval graphs are cocomparability graphs for interval orders.

Theorem (HK & Trotter 1981)

There is an on-line coloring algorithm A such that every on-line
interval graph G satisfies A(G ) ≤ 3ω(G )− 2. Moreover this is
best possible.

I The algorithm does not need an interval representation.
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Special Posets: Bounded Dimension

Theorem (HK, McNulty & Trotter 1984)

There exists an on-line chain partitioning algorithm that covers the
intersection P of d on-line linear orders with(

width(P) + 1

2

)d−1

chains.



Graph Theory Detour: Forbidden Trees

Definition
A graph class C is weakly perfect if there exists a function f such
that χ(G ) ≤ f (ω(G )) for all G ∈ C.

Definition
For a graph H, let Forb(H) be the class of all graphs that do not
induce H.

Conjecture (Gyárfás 1975; Sumner 1981)

Forb(T ) is weakly perfect for every tree T .
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Forbidden Trees

Theorem (HK & Y. Zhu 2004)

The Gyárfás-Sumner Conjecture is true if T is obtained from a tree
T ′ with radius(T ′) ≤ 2 by subdividing every edge adjacent to the
root exactly once.



Forbidden Trees

Theorem (HK & Y. Zhu 2004)
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Forbidden Trees

Theorem (Scott 1997)

For every tree T , the class of graphs that do not contain any
induced subdivision of T is nearly perfect.

Corollary (Scott 1997)

The Gyárfás-Sumner Conjecture is true if T is a subdivision of a
star.

It is time to resolve the Gyárfás-Sumner Conjecture!
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Forbidden Trees

Theorem (Scott 1997)

For every tree T , the class of graphs that do not contain any
induced subdivision of T is nearly perfect.

Corollary (Scott 1997)
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Schmerl’s Problem

Theorem (HK, Penrice & Trotter 1994)

For every tree T with radius(T ) ≤ 2 there exists an on-line
coloring algorithm A and a function h such that for every on-line
graph G ∈ Forb(T )

A(G ) ≤ h(ω(G )).

Moreover, if radius(T ) > 2 then no such algorithm exists.

Corollary (Schmerl’s Problem)

There exists an on-line coloring algorithm A and a function f such
that for every on-line cocomparability graph G ,

A(G ) ≤ f (ω(G )).
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First-Fit and Forbidden Trees

Theorem (Chvátal 1989)

Every on-line G ∈ Forb(P4) satisfies FF (G ) = ω(G ).

Theorem (HK, Penrice & Trotter 1995)

There exists a function f such that every on-line G ∈ Forb(P5)
satisfies FF (G ) ≤ f (ω(G )).

Theorem (Gyárfás & Lehel + HK, Penrice & Trotter)

For all trees T , if there exists a a function f such that every
on-line G ∈ Forb satisfies FF (G ) ≤ f (ω(G )), then T does not
induce K2 + 2K1.
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First-Fit and Cocomparability Graphs

Theorem (HK 1981)

For every positive integer k there exists an on-line cocomparability
graph G with χ(G ) = 2 satisfying FF (G ) = k.

Theorem (Bosek, Krawczyk & Szczypka Nov. 2008)

Let G be the cocomparability graph of a poset that does not
induce Kt,t . Then

FF (G ) ≤ (4(t − 1)(ω(G )− 1) + 1)ω(G ).

Remark
Interval graphs do not induce K2,2.
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First-Fit and Interval Graphs

Theorem
First-Fit colors every on-line interval graph G with at most C ω(G )
colors, where

I (HK 1988) C = 40.

I (Pemmaraju, Raman & Varadarajan 2004) C = 10.

I (Brightwell, HK & Trotter 2004/ Narayanaswarmy & Babu
2007) C = 8.

Theorem
There exists an on-line interval graph G such that
FF(G ) ≥ C ω(G )− B(C ), where

I (Chrobak & Slusarek 1989) C = 4.4

I (HK & Trotter 2008) C = 4.99

I The technique fails for C = 5.
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Tolerance Graphs

Definition
A graph G = (V , E ) is a tolerance graph if for each vertex v there
is an interval Iv and a nonnegative real (tolerance) tv such that

vw ∈ E iff |Iv ∩ Iw | ≥ min{tv , tw}.
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Tolerance ⊆ Perfect

Theorem (Golumbic, Monma &Trotter 1984)

All tolerance graphs graphs are perfect.



Classification of Tolerance Graphs

I There is an extensive classification theory for tolerance graphs.

I Book: Golumbic & Trenk

I A p-tolerance graph is a tolerance graphs such that tv
|Iv | ≤ p

for all vertices v .

Theorem (Felsner 1998)

Every 1-tolerance graph is the cocomparability graph of a poset
with interval dimension 2.

Corollary

Every 1
2 -tolerance graph is the union of two interval graphs.
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Recent Results

Theorem (HK & Saoub 2008)

I Every on-line 1
2 -tolerance graph G satisfies FF (G ) ≤ 16ω(G ).

I Every on-line (1− 1
k−1 )-tolerance graph G satisfies

FF (G ) ≤ (4(k − 1)(ω(G )− 1) + 1)ω(G ).

I For every k there exists an on-line 1-tolerance graph G with
ω(G ) = k and FF (G ) ≥ 2k .

I There is an on-line algorithm that colors every on-line low
tolerance graph with 9

2ω3(G ) colors, provided that the
tolerance representation is also given on-line.
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Up-growing Posets

Definition (Felsner 1994)

An on-line poset is up-growing if its presentation order is a linear
extension, i.e., no new element is smaller than a previously
presented element.

Theorem (Felsner 1994)

There exists an on-line algorithm A such that for any up-growing
poset P

A(P) ≤
(

width(P) + 1

2

)
Moreover this is best possible.
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Up-growing Interval Orders

Theorem (Baier, Bosek & Micek 2008)

There exists an on-line algorithm A such that for any up-growing
interval order P

A(P) ≤ 2 width(P)− 1

Moreover this is best possible.



Up-growing Semi-orders

Theorem (Felsner, Kloch, Matecki & Micek 2008)

There exists an on-line algorithm A such that for any up-growing
semi-order P

A(P) ≤ b1 +
√

5

2
width(P)c

Moreover this is best possible!
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On-line Ramsey Theory

Theorem (HK & Konjevod 2008)

Fix integers u and t. For every on-line edge painting algorithm A
there exists an on-line u-uniform hypergraph G with the same
coloring number as K t

u such that some copy of K t
u ⊆ G is

monochromatic.


