Recursive and On-line Coloring

Hal Kierstead

Arizona State University

December 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A k-coloring of a graph G is a function c : V → [k] such that if xy ∈ E then c(x) ≠ c(y).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ A *k*-coloring of a graph *G* is a function $c : V \to [k]$ such that if $xy \in E$ then $c(x) \neq c(y)$.
- ► The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.

- A k-coloring of a graph G is a function c : V → [k] such that if xy ∈ E then c(x) ≠ c(y).
- ► The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- ► A recursive graph (or digraph) is a graph G = (V, E) whose vertex set V and edge set E are both recursive.

- A k-coloring of a graph G is a function c : V → [k] such that if xy ∈ E then c(x) ≠ c(y).
- ► The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- ► A recursive graph (or digraph) is a graph G = (V, E) whose vertex set V and edge set E are both recursive.
- $\chi_{rec}(G)$ is the least k such that G has a recursive k-coloring.

- A k-coloring of a graph G is a function c : V → [k] such that if xy ∈ E then c(x) ≠ c(y).
- ► The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- ► A recursive graph (or digraph) is a graph G = (V, E) whose vertex set V and edge set E are both recursive.
- $\chi_{rec}(G)$ is the least k such that G has a recursive k-coloring.

- A k-coloring of a graph G is a function c : V → [k] such that if xy ∈ E then c(x) ≠ c(y).
- ► The chromatic number $\chi(G)$ of G is the least k such that G has a k-coloring.
- ► A recursive graph (or digraph) is a graph G = (V, E) whose vertex set V and edge set E are both recursive.
- $\chi_{rec}(G)$ is the least k such that G has a recursive k-coloring.

Problem

Given a class C of graphs (closed under isomorphism) does there exist a function f such that every recursive graph $G \in C$ satisfies $f(\chi(G)) \leq \chi_{rec}(G)$ -coloring.

Additional recursive structure

- Additional recursive structure
 - Highly recursive graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets
- Computer science and on-line algorithms

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets
- Computer science and on-line algorithms
 - ► On-line algorithms "=" recursive function

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets
- Computer science and on-line algorithms
 - On-line algorithms "=" recursive function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Bounds in terms of n = |V|

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets
- Computer science and on-line algorithms
 - On-line algorithms "=" recursive function

- Bounds in terms of n = |V|
- First-Fit

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets
- Computer science and on-line algorithms
 - On-line algorithms "=" recursive function

- Bounds in terms of n = |V|
- First-Fit
- On-line Ramsey theory

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets
- Computer science and on-line algorithms
 - On-line algorithms "=" recursive function

- Bounds in terms of n = |V|
- First-Fit
- On-line Ramsey theory

- Additional recursive structure
 - Highly recursive graphs
 - Digraphs, especially posets
- Computer science and on-line algorithms
 - On-line algorithms "=" recursive function
 - Bounds in terms of n = |V|
 - First-Fit
 - On-line Ramsey theory

Definition

A graph G is perfect if every induced subgraph H satisfies $\chi(H) = \omega(H)$, where $\omega(G)$ is the number of vertices of the largest complete subgraph of G.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Definition (Bean)

A recursive graph G = (V, E) is highly recursive if each vertex x has degree $d(x) < \infty$ and $d : V \to \mathbf{N}$ is a recursive function.

Definition (Bean)

A recursive graph G = (V, E) is highly recursive if each vertex x has degree $d(x) < \infty$ and $d : V \to \mathbf{N}$ is a recursive function.

Theorem

Let G be a highly recursive graph. Then:

► (Schmerl 1980) $\chi_{rec}(G) \leq 2\chi(G) - 1$. Moreover, this is tight.

Definition (Bean)

A recursive graph G = (V, E) is highly recursive if each vertex x has degree $d(x) < \infty$ and $d : V \to \mathbf{N}$ is a recursive function.

Theorem

Let G be a highly recursive graph. Then:

► (Schmerl 1980) $\chi_{rec}(G) \leq 2\chi(G) - 1$. Moreover, this is tight.

► (Schmerl 1982 — Recursive Brooks' Theorem) If $\omega(G) \le \Delta(G)$ and $\Delta(G) \ge 3$ then $\chi_{rec}(G) \le \Delta(G)$.

Definition (Bean)

A recursive graph G = (V, E) is highly recursive if each vertex x has degree $d(x) < \infty$ and $d : V \to \mathbf{N}$ is a recursive function.

Theorem

Let G be a highly recursive graph. Then:

► (Schmerl 1980) $\chi_{rec}(G) \leq 2\chi(G) - 1$. Moreover, this is tight.

- ► (Schmerl 1982 Recursive Brooks' Theorem) If $\omega(G) \le \Delta(G)$ and $\Delta(G) \ge 3$ then $\chi_{rec}(G) \le \Delta(G)$.
- (HK 1981) If G is perfect then $\chi_{rec}(G) \leq \chi(G) + 1$.

Definition (Bean)

A recursive graph G = (V, E) is highly recursive if each vertex x has degree $d(x) < \infty$ and $d : V \to \mathbf{N}$ is a recursive function.

Theorem

Let G be a highly recursive graph. Then:

► (Schmerl 1980) $\chi_{rec}(G) \leq 2\chi(G) - 1$. Moreover, this is tight.

- ► (Schmerl 1982 Recursive Brooks' Theorem) If $\omega(G) \le \Delta(G)$ and $\Delta(G) \ge 3$ then $\chi_{rec}(G) \le \Delta(G)$.
- (HK 1981) If G is perfect then $\chi_{rec}(G) \leq \chi(G) + 1$.
- ► (*HK* 1981 *Recursive Vizing's Theorem*) $\chi'_{rec}(G) \leq \chi'(G) + 1.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - の Q ()・

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

▲ロト ▲御 ト ▲ 唐 ト ▲ 唐 ト 二 唐 … の Q ()

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

► An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as v₁, v₂,... v_n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as v₁, v₂,... v_n.
- $V_i := \{v_1, \ldots, v_i\}$ and S_i is substructure of S induced by V_i .

- An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as v₁, v₂,... v_n.
- $V_i := \{v_1, \ldots, v_i\}$ and S_i is substructure of S induced by V_i .
- ► An on-line partitioning (chain, antichain, coloring) algorithm assigns each vertex v_i of an on-line structure S to a class based only on information about S_i, including the ordering v₁, v₂,... v_n.

- An on-line structure S (graph, digraph, poset, etc.) is a structure whose vertices are linearly ordered as v₁, v₂,... v_n.
- $V_i := \{v_1, \ldots, v_i\}$ and S_i is substructure of S induced by V_i .
- ► An on-line partitioning (chain, antichain, coloring) algorithm assigns each vertex v_i of an on-line structure S to a class based only on information about S_i, including the ordering v₁, v₂,... v_n.
- on-line coloring algorithms give rise to recursive colorings.

On-line Antichain Partitioning
On-line Antichain Partitioning

Theorem

Every poset P can be partitioned into height(P) antichains.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

On-line Antichain Partitioning

Theorem

Every poset P can be partitioned into height(P) antichains.

Theorem (Schmerl 1978)

There is an on-line algorithm for partitioning every on-line poset P into

$$\binom{\mathsf{height}(P)+1}{2}$$
 antichains.

・ロト ・ 一 ト ・ モト ・ モト

-

Moreover, this is best possible.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

<ロ> <@> < E> < E> E のQの

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

height = 3

height = 3

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

 $\mathrm{height}=3$

・ロト ・聞ト ・ヨト ・ヨト

æ

 $\mathrm{height}=3$

<ロト <回ト < 注ト < 注ト

æ

 $\mathrm{height}=3$

<ロト <回ト < 注ト < 注ト

э

Theorem Every comparability graph G is perfect.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Theorem

Every comparability graph G is perfect.

Theorem

For every on-line coloring algorithm \mathcal{A} and integer k there exists an on-line comparability graph G with $\omega(G) = 2$ and $\mathcal{A}(G) > k$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Every comparability graph G is perfect.

Theorem

For every on-line coloring algorithm A and integer k there exists an on-line comparability graph G with $\omega(G) = 2$ and A(G) > k.

Remark

Every tree T is the comparability graph with $\omega(T) \leq 2$.

 $\omega = 2$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 → りへぐ

 $\omega = 2$

(4日) (個) (目) (目) (目) (の)

 $\omega = 2$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $\omega = 2$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

 $\omega = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 つくぐ

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• (Lovász, Saks & Trotter 1989) $O(\frac{\log^{(2k-3)} n}{\log^{(2k-4)} n}n)$ colors.

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks & Trotter 1989) $O(\frac{\log^{(2k-3)} n}{\log^{(2k-4)} n}n)$ colors.
- (*HK 1998*) $O(n^{1-\frac{1}{k!}})$ colors.

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks & Trotter 1989) $O(\frac{\log^{(2k-3)} n}{\log^{(2k-4)} n}n)$ colors.
- (*HK 1998*) $O(n^{1-\frac{1}{k!}})$ colors.
- (*HK 1998*) $20n^{2/3} \log^{1/3} n$ colors, provided k = 3.

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks & Trotter 1989) $O(\frac{\log^{(2k-3)} n}{\log^{(2k-4)} n}n)$ colors.
- (*HK 1998*) $O(n^{1-\frac{1}{k!}})$ colors.
- (HK 1998) $20n^{2/3} \log^{1/3} n$ colors, provided k = 3.
- (HK & Kolossa 1994) $n^{\frac{10k}{\log \log n}}$ colors, provided G is perfect.

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

- (Lovász, Saks & Trotter 1989) $O(\frac{\log^{(2k-3)} n}{\log^{(2k-4)} n}n)$ colors.
- (*HK 1998*) $O(n^{1-\frac{1}{k!}})$ colors.
- (HK 1998) $20n^{2/3} \log^{1/3} n$ colors, provided k = 3.
- (HK & Kolossa 1994) $n^{\frac{10k}{\log \log n}}$ colors, provided G is perfect.

Theorem

There exists an on-line coloring algorithm that colors every on-line k-colorable graph on n vertices with

• (Lovász, Saks & Trotter 1989) $O(\frac{\log^{(2k-3)} n}{\log^{(2k-4)} n}n)$ colors.

• (*HK 1998*)
$$O(n^{1-\frac{1}{k!}})$$
 colors.

- (HK 1998) $20n^{2/3} \log^{1/3} n$ colors, provided k = 3.
- (HK & Kolossa 1994) $n^{\frac{10k}{\log \log n}}$ colors, provided G is perfect.

Theorem (Irani 1994)

First-Fit colors every on-line graph G with $col(G) \le k$ on n vertices with $O(d \log n)$ colors. Moreover no on-line algorithm does better than this.

Lower bounds

Lower bounds

Theorem (Halldórsson & Szegedy)

For every $k \in \mathbf{N}$ and every on-line algorithm \mathcal{A} there exists an on-line graph G such that $\chi(G) = k$ and $\chi_{\mathcal{A}}(G) \ge 2^k - 1$ and $|G| \le k2^k$.
Theorem (Halldórsson & Szegedy)

For every $k \in \mathbf{N}$ and every on-line algorithm \mathcal{A} there exists an on-line graph G such that $\chi(G) = k$ and $\chi_{\mathcal{A}}(G) \ge 2^k - 1$ and $|G| \le k2^k$.

Theorem (Vishwanathan 1992)

For every on-line coloring algorithm \mathcal{A} there exists an on-line *k*-colorable perfect graph G on *n* vertices with $\mathcal{A} = \Omega(\frac{\log^{k-1}(n)}{k^k})$.

Chain Partitioning

・ロト (四ト (三) (三) つくろ

Chain Partitioning

Theorem (Dilworth 1950)

Every poset P can be partitioned into width(P) chains.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

On-line Chain Partitioning

Theorem (HK 1981)

There is an on-line algorithm for partitioning every poset P into

$$\frac{5^{\mathsf{width}(P)}-1}{4} \ chains.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

On-line Chain Partitioning

Theorem (HK 1981)

There is an on-line algorithm for partitioning every poset P into

$$\frac{5^{\mathsf{width}(P)}-1}{4} \ chains.$$

Theorem (Szemerédi & Trotter 1981)

For every on-line algorithm A and positive integer w there exists an on-line poset P with width(P) = w such that

$$\mathcal{A}(P) \geq \binom{w+1}{2}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problems

<ロ> <@> < E> < E> E のQの

Problems

Problem (On-line Chain Partitioning) *Improve:*

$$\binom{\mathsf{width}(P)+1}{2} \leq_{\forall \mathcal{A} \exists P} \mathcal{A}(P) \leq_{\exists \mathcal{A} \forall P} \frac{5^{\mathsf{width}(P)}-1}{4}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Problems

Problem (On-line Chain Partitioning) *Improve:*

$$\binom{\mathsf{width}(P)+1}{2} \leq_{\forall \mathcal{A} \exists P} \mathcal{A}(P) \leq_{\exists \mathcal{A} \forall P} \frac{5^{\mathsf{width}(P)}-1}{4}$$

Problem (On-line Coloring Cocomparability Graphs – Schmerl) Does there exist an on-line coloring algorithm A and a function fsuch that for every on-line cocomparability graph G,

 $\mathcal{A}(G) \leq f(\omega(G))?$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Interval graphs are cocomparability graphs for interval orders.

► Interval graphs are cocomparability graphs for interval orders.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Interval graphs are cocomparability graphs for interval orders.

Theorem (HK & Trotter 1981)

There is an on-line coloring algorithm \mathcal{A} such that every on-line interval graph G satisfies $\mathcal{A}(G) \leq 3\omega(G) - 2$. Moreover this is best possible.

Interval graphs are cocomparability graphs for interval orders.

Theorem (HK & Trotter 1981)

There is an on-line coloring algorithm \mathcal{A} such that every on-line interval graph G satisfies $\mathcal{A}(G) \leq 3\omega(G) - 2$. Moreover this is best possible.

The algorithm does not need an interval representation.

Theorem (HK, McNulty & Trotter 1984)

There exists an on-line chain partitioning algorithm that covers the intersection P of d on-line linear orders with

$$\binom{\mathsf{width}(P)+1}{2}^{d-1}$$
 chains.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

<ロ> <@> < E> < E> E のQの

Definition

A graph class C is weakly perfect if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in C$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A graph class C is weakly perfect if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in C$.

Definition

For a graph H, let Forb(H) be the class of all graphs that do not induce H.

Definition

A graph class C is weakly perfect if there exists a function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in C$.

Definition

For a graph H, let Forb(H) be the class of all graphs that do not induce H.

Conjecture (Gyárfás 1975; Sumner 1981) Forb(T) is weakly perfect for every tree T.

<ロ> <@> < E> < E> E のQの

Theorem (Gyárfás, Szemerédi & Tuza 1980) Forb(T, K_3) is weakly perfect for every tree T with radius(T) ≤ 2 .

Theorem (Gyárfás, Szemerédi & Tuza 1980) Forb(T, K_3) is weakly perfect for every tree T with radius(T) ≤ 2 .

Theorem (HK & Penrice 1994)

Forb(*T*) is weakly perfect for every tree *T* with radius(*T*) ≤ 2 .

<ロ> <@> < E> < E> E のQの

Theorem (HK & Y. Zhu 2004)

The Gyárfás-Sumner Conjecture is true if T is obtained from a tree T' with $radius(T') \le 2$ by subdividing every edge adjacent to the root exactly once.

<ロ> <@> < E> < E> E のQの

Theorem (Scott 1997)

For every tree T, the class of graphs that do not contain any induced subdivision of T is nearly perfect.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Scott 1997)

For every tree T, the class of graphs that do not contain any induced subdivision of T is nearly perfect.

Corollary (Scott 1997)

The Gyárfás-Sumner Conjecture is true if T is a subdivision of a star.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Scott 1997)

For every tree T, the class of graphs that do not contain any induced subdivision of T is nearly perfect.

Corollary (Scott 1997)

The Gyárfás-Sumner Conjecture is true if T is a subdivision of a star.

It is time to resolve the Gyárfás-Sumner Conjecture!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem (HK, Penrice & Trotter 1994)

For every tree T with $radius(T) \le 2$ there exists an on-line coloring algorithm A and a function h such that for every on-line graph $G \in Forb(T)$

 $\mathcal{A}(G) \leq h(\omega(G)).$

Moreover, if radius(T) > 2 then no such algorithm exists.

Theorem (HK, Penrice & Trotter 1994)

For every tree T with $radius(T) \le 2$ there exists an on-line coloring algorithm A and a function h such that for every on-line graph $G \in Forb(T)$

 $\mathcal{A}(G) \leq h(\omega(G)).$

Moreover, if radius(T) > 2 then no such algorithm exists.

Corollary (Schmerl's Problem)

There exists an on-line coloring algorithm A and a function f such that for every on-line cocomparability graph G,

 $\mathcal{A}(G) \leq f(\omega(G)).$

Corollary

There exists an on-line coloring algorithm A and a function f such that for every on-line cocomparability graph G,

 $\mathcal{A}(G) \leq f(\omega(G)).$

Proof.

Corollary

There exists an on-line coloring algorithm A and a function f such that for every on-line cocomparability graph G,

 $\mathcal{A}(G) \leq f(\omega(G)).$

Proof.

is not a cocomparability graph!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem (Chvátal 1989) Every on-line $G \in Forb(P_4)$ satisfies $FF(G) = \omega(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Chvátal 1989)

Every on-line $G \in Forb(P_4)$ satisfies $FF(G) = \omega(G)$.

Theorem (HK, Penrice & Trotter 1995)

There exists a function f such that every on-line $G \in Forb(P_5)$ satisfies $FF(G) \leq f(\omega(G))$.

Theorem (Chvátal 1989)

Every on-line $G \in Forb(P_4)$ satisfies $FF(G) = \omega(G)$.

Theorem (HK, Penrice & Trotter 1995)

There exists a function f such that every on-line $G \in Forb(P_5)$ satisfies $FF(G) \leq f(\omega(G))$.

Theorem (Gyárfás & Lehel + HK, Penrice & Trotter) For all trees T, if there exists a a function f such that every on-line $G \in$ Forb satisfies $FF(G) \leq f(\omega(G))$, then T does not induce $K_2 + 2K_1$.
First-Fit and Cocomparability Graphs

Theorem (HK 1981)

For every positive integer k there exists an on-line cocomparability graph G with $\chi(G) = 2$ satisfying FF(G) = k.

First-Fit and Cocomparability Graphs

Theorem (HK 1981)

For every positive integer k there exists an on-line cocomparability graph G with $\chi(G) = 2$ satisfying FF(G) = k.

Theorem (Bosek, Krawczyk & Szczypka Nov. 2008) Let G be the cocomparability graph of a poset that does not induce $K_{t,t}$. Then

$$FF(G) \leq (4(t-1)(\omega(G)-1)+1)\omega(G).$$

First-Fit and Cocomparability Graphs

Theorem (HK 1981)

For every positive integer k there exists an on-line cocomparability graph G with $\chi(G) = 2$ satisfying FF(G) = k.

Theorem (Bosek, Krawczyk & Szczypka Nov. 2008) Let G be the cocomparability graph of a poset that does not induce $K_{t,t}$. Then

$$FF(G) \leq (4(t-1)(\omega(G)-1)+1)\omega(G).$$

Remark

Interval graphs do not induce $K_{2,2}$.

Theorem First-Fit colors every on-line interval graph G with at most $C\omega(G)$ colors, where

► (*HK 1988*) *C* = 40.

Theorem First-Fit colors every on-line interval graph G with at most $C\omega(G)$ colors, where

► (*HK 1988*) *C* = 40.

▶ (Pemmaraju, Raman & Varadarajan 2004) C = 10.

Theorem First-Fit colors every on-line interval graph G with at most $C\omega(G)$ colors, where

► (*HK 1988*) *C* = 40.

- ▶ (Pemmaraju, Raman & Varadarajan 2004) C = 10.
- ▶ (Brightwell, HK & Trotter 2004/ Narayanaswarmy & Babu 2007) C = 8.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem First-Fit colors every on-line interval graph G with at most $C\omega(G)$ colors, where

► (*HK 1988*) *C* = 40.

- ▶ (Pemmaraju, Raman & Varadarajan 2004) C = 10.
- ▶ (Brightwell, HK & Trotter 2004/ Narayanaswarmy & Babu 2007) C = 8.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem First-Fit colors every on-line interval graph G with at most $C\omega(G)$ colors, where

► (*HK 1988*) *C* = 40.

- ▶ (Pemmaraju, Raman & Varadarajan 2004) C = 10.
- ▶ (Brightwell, HK & Trotter 2004/ Narayanaswarmy & Babu 2007) C = 8.

Theorem

There exists an on-line interval graph G such that $FF(G) \ge C\omega(G) - B(C)$, where

▶ (Chrobak & Slusarek 1989) C = 4.4

Theorem First-Fit colors every on-line interval graph G with at most $C\omega(G)$ colors, where

► (*HK 1988*) *C* = 40.

- ▶ (Pemmaraju, Raman & Varadarajan 2004) C = 10.
- ▶ (Brightwell, HK & Trotter 2004/ Narayanaswarmy & Babu 2007) C = 8.

Theorem

There exists an on-line interval graph G such that $FF(G) \ge C\omega(G) - B(C)$, where

- ▶ (Chrobak & Slusarek 1989) C = 4.4
- ► (*HK* & *Trotter* 2008) *C* = 4.99

Theorem First-Fit colors every on-line interval graph G with at most $C\omega(G)$ colors, where

► (*HK 1988*) *C* = 40.

- ▶ (Pemmaraju, Raman & Varadarajan 2004) C = 10.
- ► (Brightwell, HK & Trotter 2004/ Narayanaswarmy & Babu 2007) C = 8.

Theorem

There exists an on-line interval graph G such that $FF(G) \ge C\omega(G) - B(C)$, where

- ► (Chrobak & Slusarek 1989) C = 4.4
- ▶ (*HK* & *Trotter* 2008) *C* = 4.99
- The technique fails for C = 5.

Tolerance Graphs

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Tolerance Graphs

Definition

A graph G = (V, E) is a tolerance graph if for each vertex v there is an interval I_v and a nonnegative real (tolerance) t_v such that

$$vw \in E$$
 iff $|I_v \cap I_w| \geq \min\{t_v, t_w\}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$\mathsf{Tolerance} \subseteq \mathsf{Perfect}$

Theorem (Golumbic, Monma & Trotter 1984) All tolerance graphs graphs are perfect.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► There is an extensive classification theory for tolerance graphs.

(ロ)、(型)、(E)、(E)、 E) の(の)

• There is an extensive classification theory for tolerance graphs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Book: Golumbic & Trenk

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic & Trenk
- A p-tolerance graph is a tolerance graphs such that t_v/|I_v| ≤ p for all vertices v.

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic & Trenk
- A p-tolerance graph is a tolerance graphs such that t_v/|I_v| ≤ p for all vertices v.

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic & Trenk
- A p-tolerance graph is a tolerance graphs such that t_v/|I_v| ≤ p for all vertices v.

Theorem (Felsner 1998)

Every 1-tolerance graph is the cocomparability graph of a poset with interval dimension 2.

- There is an extensive classification theory for tolerance graphs.
- Book: Golumbic & Trenk
- A p-tolerance graph is a tolerance graphs such that t_v/|I_v| ≤ p for all vertices v.

Theorem (Felsner 1998)

Every 1-tolerance graph is the cocomparability graph of a poset with interval dimension 2.

Corollary

Every $\frac{1}{2}$ -tolerance graph is the union of two interval graphs.

Theorem (HK & Saoub 2008)

• Every on-line $\frac{1}{2}$ -tolerance graph G satisfies $FF(G) \leq 16\omega(G)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (HK & Saoub 2008)

• Every on-line $\frac{1}{2}$ -tolerance graph G satisfies $FF(G) \leq 16\omega(G)$.

► Every on-line $(1 - \frac{1}{k-1})$ -tolerance graph *G* satisfies $FF(G) \le (4(k-1)(\omega(G)-1)+1)\omega(G)$.

Theorem (HK & Saoub 2008)

- Every on-line $\frac{1}{2}$ -tolerance graph G satisfies $FF(G) \leq 16\omega(G)$.
- ► Every on-line $(1 \frac{1}{k-1})$ -tolerance graph *G* satisfies $FF(G) \le (4(k-1)(\omega(G)-1)+1)\omega(G)$.
- For every k there exists an on-line 1-tolerance graph G with ω(G) = k and FF(G) ≥ 2^k.

Theorem (HK & Saoub 2008)

- Every on-line $\frac{1}{2}$ -tolerance graph G satisfies $FF(G) \leq 16\omega(G)$.
- ► Every on-line $(1 \frac{1}{k-1})$ -tolerance graph *G* satisfies $FF(G) \le (4(k-1)(\omega(G)-1)+1)\omega(G)$.
- For every k there exists an on-line 1-tolerance graph G with ω(G) = k and FF(G) ≥ 2^k.
- ► There is an on-line algorithm that colors every on-line low tolerance graph with $\frac{9}{2}\omega^3(G)$ colors, provided that the tolerance representation is also given on-line.

Up-growing Posets

Definition (Felsner 1994)

An on-line poset is up-growing if its presentation order is a linear extension, i.e., no new element is smaller than a previously presented element.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Up-growing Posets

Definition (Felsner 1994)

An on-line poset is up-growing if its presentation order is a linear extension, i.e., no new element is smaller than a previously presented element.

Theorem (Felsner 1994)

There exists an on-line algorithm \mathcal{A} such that for any up-growing poset \mathcal{P}

$$\mathcal{A}(P) \leq \binom{\mathsf{width}(P)+1}{2}$$

Moreover this is best possible.

Up-growing Interval Orders

Theorem (Baier, Bosek & Micek 2008)

There exists an on-line algorithm \mathcal{A} such that for any up-growing interval order \mathcal{P}

$$\mathcal{A}(P) \leq 2 \operatorname{width}(P) - 1$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Moreover this is best possible.

Up-growing Semi-orders

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Theorem (Felsner, Kloch, Matecki & Micek 2008) There exists an on-line algorithm A such that for any up-growing semi-order P

$$\mathcal{A}(P) \leq \lfloor rac{1+\sqrt{5}}{2} \operatorname{width}(P)
floor$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Moreover this is best possible!

Theorem (HK & Konjevod 2008)

Fix integers u and t. For every on-line edge painting algorithm \mathcal{A} there exists an on-line u-uniform hypergraph G with the same coloring number as K_u^t such that some copy of $K_u^t \subseteq G$ is monochromatic.