Bounded diagonalization and Ramseyan results on edge-labeled ternary trees

Rod Downey, Noam Greenberg,
Carl Jockusch, and Kevin Milans

Goal. Compare the complexity of diagonalization using only the values $\{0,1,2\}$ with the complexity of constructing a random set, e.g. a 1-random set.

The solution takes us into Ramseyan combinatorics. Given a ternary tree with certain edges labeled 0 or 1 , its paths have induced labels which are binary words. We try to find a perfect binary subtree (branching at every level) whose paths have few induced labels.
f, g, h, \ldots are variables for total functions from ω to ω.
$f \leq_{T} g \Longleftrightarrow(\exists e)\left[f=\Phi_{e}^{g}\right]$
Let A^{B} be the set of functions from B to A.

A mass problem is a set of total functions from ω to ω, i.e. a subset of ω^{ω}.
$\mathcal{A}, \mathcal{B}, \ldots$ are variables for mass problems.
The "solutions" to a mass problem \mathcal{A} are simply the elements of \mathcal{A}.

Examples of mass problems

$\mathrm{DNR}=\left\{f:(\forall e)\left[f(e) \neq \varphi_{e}(e)\right]\right\}$.
For $k \in \omega$,
$\mathrm{DNR}_{k}=\{f:(\forall e)[f(e)<k \quad \& \quad f(e) \neq$ $\left.\left.\varphi_{e}(e)\right]\right\}=\mathrm{DNR} \cap k^{\omega}$

For $A \subseteq \omega$, the problem of enumerating A is the set of functions with range A.

Let PA be the set of complete extensions of Peano arithmetic. PA can be viewed as a mass problem via Gödel numbering and identifying subsets of ω with their characteristic functions.

Comparing Mass Problems

Definition. Let \mathcal{A} and \mathcal{B} be mass problems. Then \mathcal{A} is weakly reducible to $\mathcal{B}\left(\right.$ denoted $\left.\mathcal{A} \leq_{w} \mathcal{B}\right)$ if

$$
(\forall g \in \mathcal{B})(\exists f \in \mathcal{A})\left[f \leq_{T} g\right]
$$

This definition is due to Muchnik, and the reducibility is also known as Muchnik reducibility.

Definition. \mathcal{A} is strongly reducible to \mathcal{B} (denoted $\left.\mathcal{A} \leq_{s} \mathcal{B}\right)$ if

$$
(\exists e)(\forall g \in \mathcal{B})\left[\Phi_{e}^{g} \in \mathcal{A}\right]
$$

This definition is due to Medvedev, and the reducibility is also known as Medvedev reducibility.

Definition
$\mathcal{A} \equiv_{s} \mathcal{B}$ if $\mathcal{A} \leq_{s} \mathcal{B}$ and $\mathcal{B} \leq_{s} \mathcal{A}$
The strong degree of \mathcal{A}, denoted $[\mathcal{A}]_{s}$ is $\left\{\mathcal{B}: \mathcal{B} \equiv_{s} \mathcal{A}\right\}$.

Define $[\mathcal{A}]_{s} \leq[\mathcal{B}]_{s}$ to mean $\mathcal{A} \leq_{s} \mathcal{B}$. This is a partial ordering of the strong degrees. The strong degrees form a distributive lattice under this partial order.

Define weak degrees analogously. The analogous partial ordering is also a distributive lattice.

Theorem. (Jockusch-Soare). $\mathrm{DNR}_{2} \equiv s$ PA .

Let $\mathcal{B}>_{s} \mathcal{A}$ mean that $\mathcal{A} \leq_{s} \mathcal{B}$ and $\mathcal{B} \not \leq_{s} \mathcal{A}$.

Theorem. (Jockusch)
(i) For all $i, j \geq 2, \mathrm{DNR}_{i} \equiv{ }_{w} \mathrm{DNR}_{j}$.
(ii) $\mathrm{DNR}_{2}>_{s} D N R_{3}>_{s} D N R_{4}>_{s} \ldots$

Let $\omega^{<\omega}=\cup_{n \in \omega} \omega^{n}$. Thus $\omega^{<\omega}$ is the set of all finite strings of natural numbers.
Let σ, τ, \ldots be variables for such strings.
$[\sigma]=\left\{f \in \omega^{\omega}: f \supseteq \sigma\right\}$
\mathcal{A} is effectively open or Σ_{1}^{0} if $\mathcal{A}=\cup_{\sigma \in S}[\sigma]$ for some c.e. set $S \subseteq \omega^{<\omega}$.
\mathcal{A} is effectively closed or Π_{1}^{0} if $\omega^{\omega} \backslash \mathcal{A}$ is effectively open.

Alternatively \mathcal{A} is Π_{1}^{0} iff there is a computable tree $T \subseteq \omega^{<\omega}$ such that
$\mathcal{A}=[T]:=\{f:(\forall n)[f \upharpoonright n \in T]\}$.

The following are all Π_{1}^{0} sets:
$\mathrm{DNR}, \mathrm{DNR}_{k}, \mathrm{PA}$, the set of all ideals of a computable ring, the set of k-colorings of a computable graph

Definition. A Π_{1}^{0} set $P \subseteq 2^{\omega}$ is strongly universal if $P \neq \emptyset$ and every nonempty Π_{1}^{0} set $Q \subseteq 2^{\omega}$ is strongly reducible to P. Theorem. (D. Scott) PA is strongly universal.

Corollary. DNR_{2} is strongly universal. For $k>2, \mathrm{DNR}_{k}$ is weakly universal but not strongly universal.
(We can pretend that $D N R_{k} \subseteq 2^{\omega}$ via binary coding.)

Let μ be the usual coin toss measure on 2^{ω}.

Definition. A set $A \subseteq \omega$ is weakly 1 -random, or Kurtz-random, if there is no
Π_{1}^{0} set $P \subseteq 2^{\omega}$ such that $\mu(P)=0$ and $A \in P$.

Note. Every 1-generic set is weakly 1-random.

Let $\mathcal{K}=\{A: A$ is weakly 1-random $\}$.

Definition. An effectively null Π_{2}^{0} set is a set $\mathcal{S} \subseteq 2^{\omega}$ of the form $\mathcal{S}=\cap_{e} \mathcal{S}_{e}$, where $\left\{\mathcal{S}_{e}\right\}$ is a computable sequence of Σ_{1}^{0} subsets of 2^{ω} with $\mu\left(\mathcal{S}_{e}\right) \leq 2^{-e}$ for all e.

Note: Every Π_{1}^{0} set $P \subseteq 2^{\omega}$ of measure 0 is an effectively null Π_{2}^{0} set.

Definition. A set $A \subseteq \omega$ is 1 -random if there is no effectively null Π_{2}^{0} set \mathcal{S} such that $A \in \mathcal{S}$.

Let $\mathcal{R}_{1}=\{A: A$ is 1-random $\}$.
$\mathcal{R}_{1} \subset \mathcal{K}$

Weak and strong degrees of nonempty Π_{1}^{0} subsets of 2^{ω}

Stephen Simpson initiated the study of this area and has led its development. If \mathbf{d} is a weak degree and there is a nonempty Π_{1}^{0} subset of 2^{ω} of weak degree \mathbf{d}, call d a Π_{1}^{0} weak degree. Let $\mathbf{1}$ be the weak degree of DNR_{2}. Then $\mathbf{1}$ is the greatest Π_{1}^{0} weak degree.

Theorem. (Simpson) Let S be a Σ_{3}^{0} subset of ω^{ω}, and let P be a nonempty Π_{1}^{0} subset of 2^{ω}. Then the weak degree of $S \cup P$ is Π_{1}^{0}.

Corollary. (Simpson) The weak degree \mathbf{d} of DNR and the weak degree $\mathbf{r}_{\mathbf{1}}$ of \mathcal{R}_{1} (the family of 1 -random sets) are each Π_{1}^{0}.

Theorem. $\mathrm{d}<\mathrm{r}_{1}<1$
Here $\mathbf{r}_{\mathbf{1}}<\mathbf{1}$ since almost every set is 1-random yet almost no set computes a DNR_{2} function. Simpson and Giusto proved that $\mathbf{d} \leq \mathbf{r}_{\mathbf{1}}$. This inequality is strict because Kumabe proved that there is a DNR function of minimal degree, while it is known that no 1-random set is of minimal degree.

Theorem. (Simpson) $\mathbf{r}_{\mathbf{1}}$ is the greatest Π_{1}^{0} weak degree containing a Π_{1}^{0} set $P \subseteq 2^{\omega}$ of positive measure.

In contrast, Terwijn and Simpson-Slaman showed that there is no greatest Π_{1}^{0} strong degree containing a Π_{1}^{0} set $P \subseteq 2^{\omega}$ of positive measure.

Let \mathbf{d}_{k}^{*} be the strong degree of DNR_{k}. Recall that $\mathbf{d}_{2}^{*}>\mathbf{d}_{3}^{*}>\ldots$.

Theorem. (Simpson) Let P and Q be Π_{1}^{0} subsets of 2^{ω} with P of positive measure. Let \mathbf{p}, \mathbf{q} be the strong degrees of P, Q, respectively. If $\mathbf{d}_{k}^{*} \leq \sup (\mathbf{p}, \mathbf{q})$, then $\mathbf{d}_{k}^{*} \leq \mathbf{q}$.

Thus, Π_{1}^{0} sets of positive measure are not helpful in "computing" DNR_{k}.

Theorem. (Simpson) Let \mathbf{p} be the strong degree of a Π_{1}^{0} set $P \subseteq 2^{\omega}$ of positive measure, and let \mathbf{d}_{k}^{*} be the strong degree of DNR_{k}. Then
$\sup \left(\mathbf{p}, \mathbf{d}_{2}^{*}\right)>\sup \left(\mathbf{p}, \mathbf{d}_{\mathbf{3}}^{*}\right)>\sup \left(\mathbf{p}, \mathbf{d}_{\mathbf{3}}^{*}\right)>\ldots$
In connection with this result, Simpson raised the following question.

Question. (Simpson) Is every Π_{1}^{0} set $P \subseteq 2^{\omega}$ with $\mu(P)>0$ strongly reducible to DNR_{3} ?

Question. (Joe Miller) Is \mathcal{R}_{1} (the class of 1-random sets) strongly reducible to DNR_{3} ?

Recall that \mathcal{K} is the class of weakly 1-random sets.

Theorem. (D-G-J-M) \mathcal{K} is not strongly reducible to DNR_{3}.

Corollary. \mathcal{R}_{1} is not strongly reducible to DNR_{3}.

Proof. $\mathcal{R}_{1} \subseteq \mathcal{K}$.
Corollary. There is a Π_{1}^{0} set $P \subseteq 2^{\omega}$ with $\mu(P)>0$ such that P is not strongly reducible to DNR_{3}.

Proof. Since \mathcal{R}_{1} is a Σ_{2}^{0} set of positive measure, it has a Π_{1}^{0} subset P of positive measure. Apply the previous corollary.

A contrasting result

Definition. \mathcal{H}_{1} is the class of all $A \subseteq \omega$ of effective Hausdorff dimension 1. Thus, \mathcal{H}_{1} is the family of all A such that

$$
\lim _{n} \frac{K(A \upharpoonright n)}{n}=1
$$

where K is prefix-free Kolmogorov complexity.

Theorem. (Greenberg and Miller) For all $k \geq 2, \mathcal{H}_{1} \leq{ }_{s} \mathrm{DNR}_{k}$.

Outline of proof that $\mathcal{K} \mathbb{Z}_{s} \mathrm{DNR}_{3}$

Given e such that Φ_{e}^{f} is total for all $f \in$ DNR_{3}. We must show that there exists $f \in \mathrm{DNR}_{3}$ such that $\Phi_{e}^{f} \notin \mathcal{K}$.

1. We can assume without loss of generality that Φ_{e}^{f} is total and $\{0,1\}$-valued for all $f \in 3^{\omega}$ (not just all $f \in \mathrm{DNR}_{3}$). The reason is that there exists i with the desired properties such that $\Phi_{e}^{f}=\Phi_{i}^{f}$ for all $f \in \mathrm{DNR}_{3}$.
2. Main Step. Construct a Π_{1}^{0} class $P \subseteq 3^{\omega}$ such that $P \cap \mathrm{DNR}_{3} \neq \emptyset$ and $\Phi_{e}(P):=\left\{\Phi_{e}^{f}: f \in P\right\}$ has measure 0.
3. By König's Lemma, if $n \in \omega$ is given and $\sigma \in 3^{<\omega}$ is a sufficiently long finite string, then $\Phi_{e}^{\sigma}(n)$ is defined.
4. Using $3, \Phi_{e}(P)$ is a Π_{1}^{0} class. Take $f \in P \cap D N R_{3}$. Then $\Phi_{e}^{f} \in \Phi_{e}(P)$. $\Phi_{e}(P)$ is a Π_{1}^{0} set of measure 0 , so $\Phi_{e}^{f} \notin \mathcal{K}$.

Outline of the Main Step

Call a set $S \subseteq 3^{<\omega}$ 2-bushy if S is a length-preserving copy of $2^{<\omega}$. Thus, S is closed downwards and every string in S has exactly two immediate extensions in S.

If S is 2-bushy, then $[S] \cap \mathrm{DNR}_{3}$ is nonempty.

We must construct a computable 2-bushy S with $\Phi_{e}([S])$ of measure 0 . Then $P=[S]$ is the desired Π_{1}^{0} class with $P \cap$ DNR_{3} nonempty and $\Phi_{e}(P)$ of measure 0 .

Define u_{n} recursively. Let u_{n} be the least number $u>0$ with $u>u_{i}$ for all $i<n$ and $\Phi_{e}^{\sigma}(i)$ defined for all strings $\sigma \in 3^{<\omega}$ of length u and all $i<n$.

If $\sigma \in 3^{<\omega}$ has length u_{n}, let $t(\sigma)$ be the binary string of length n whose i th term is $\Phi_{e}^{\sigma}(i)$ for $i<n$.

Given a 2 -bushy $S \subseteq 3^{<\omega}$, let
$c_{S}(n)=\left\{t(\sigma): \sigma \in S \quad \& \quad \sigma\right.$ has length $\left.u_{n}\right\}$
To ensure that $\Phi_{e}([S])$ has measure 0 , we require that $\lim _{n \rightarrow \infty}\left|c_{S}(n)\right| / 2^{n}=0$.

A combinatorial formulation

A rooted tree is a connected undirected graph with no cycles having a distinguished vertex called the root.

Definition. In a rooted tree, the depth of a vertex is its distance from the root. A finite rooted tree is complete if all of its leaves have the same depth, and this common depth is called the depth of the tree. It is q-ary if each vertex which is not a leaf has exactly q children. The depth of an edge is the depth of its deeper endpoint.

Monochromatic Subtree Lemma. (Folklore ?) Suppose that T is a complete rooted ternary tree of depth n, and each leaf of T is colored red or blue. Then T has a complete binary subtree S of depth n with all leaves of the same color.

This lemma was used implicitly to show that DNR_{k} is not strongly reducible to DNR_{k+1} for any k.

Definition. An infinite tree is complete if it has no leaves.

Definition. Let T be an infinite complete ternary tree, and let $U=\left\{u_{1}<u_{2}<\ldots\right\}$ be an infinite set of positive integers. A U-labeling of T assigns to each edge with depth in U a label which is 0 or 1 .

Suppose that T is an infinite complete U-labeled ternary tree. We consider infinite paths through T, starting at the root. With each such path p we associate the infinite binary word $t(p)=a_{1} a_{2} \ldots$, where $a_{i} \in\{0,1\}$ is the label on the unique edge of depth u_{i} on the path.

Let T be an infinite complete U-labeled rooted ternary tree, where U is an infinite set of positive integers.

If S is an infinite complete subtree of T, let $c(S)=\{t(p): p$ is a path through $S\}$ Thus, $c(S)$ is the set of infinite binary words associated with paths through S.

Our goal is to find an infinite complete binary subtree S of T with $c(S)$ "small". However, in general we cannot make $c(S)$ countable.

Measure 0 Theorem. Let U be an infinite set of positive integers, and let T be a U-labeled infinite complete ternary tree. Then T has an infinite complete binary subtree S with $c(S)$ of measure 0 . Hence, the set of infinite words along the paths through S has measure 0 .

If σ is a vertex of depth u_{n} in T, let $t(\sigma)$ be the n-bit binary word formed by the labels of the edges on the path from the root to σ. Let
$c_{S}(n)=\{t(\sigma):$
$\sigma \in S \quad \& \quad \sigma$ has depth $\left.u_{n}\right\}$.
To ensure that $c(S)$ has measure 0 , we arrange that $\lim _{n}\left|c_{S}(n)\right| / 2^{n}=0$.

Definition.

Let $S \sqsubset T$ mean that S, T are complete finite rooted trees of the same depth, S is a subtree of T, T is ternary, and S is binary.

If $S \sqsubset T$, then every leaf of S is a leaf of T.

Let $U=\left\{u_{1}<u_{2}<\ldots\right\}$ If S is a U-labeled tree of depth u_{n}, let

$$
c(S)=\{t(\sigma): \sigma \text { is a leaf of } S\}
$$

Thus, $c(S)$ is the set of binary words occurring along paths from the root of S to leaves of S.

Multiple Tree Lemma. Let $U=\left\{u_{1}<u_{2}<\ldots\right\}$ be an infinite set, and let $T_{1}, T_{2}, \ldots, T_{k}$ be complete U-labeled ternary trees of depth u_{n}, where $n>2^{k}$. Then there exist binary trees $S_{1}, S_{2}, \ldots, S_{k}$ with $S_{i} \sqsubset T_{i}$ for $1 \leq i \leq k$ such that
$\left|\cup_{i \leq k} c\left(S_{i}\right)\right| \leq(3 / 4) 2^{n}$.

Proof of Multiple Tree Lemma

For $1 \leq i \leq n$ say that a complete tree T of depth u_{n} is i-good if there exists $S \sqsubset T$ such that every word in $c(S)$ has a 0 as its i-th bit. By the Monochromatic
Subtree Lemma, if T is not i-good, there exists $S \sqsubset T$ such that every word in $c(S)$ has a 1 as its i th bit.

Let $G_{i}=\left\{j \leq k: T_{j}\right.$ is i-good $\}$
By the pigeonhole principle, there exist distinct coordinates a, b between 1 and n with $G_{a}=G_{b}$.

Let a and b be distinct coordinates such that $G_{a}=G_{b}$.

For $j \in G_{a}$, choose $S_{j} \sqsubset T_{j}$ such that every word in $c\left(S_{j}\right)$ has a 0 in the a th coordinate.

For $j \notin G_{a}=G_{b}$ with $j \leq k$, choose $S_{j} \sqsubset T_{j}$ such that every word in $c\left(S_{j}\right)$ has a 1 in the b th coordinate.

Then every word in $\cup_{j \leq k} c\left(S_{j}\right)$ has either a 0 in the a th coordinate or a 1 in the b th coordinate. It follows that
$\left|\cup_{j \leq k} c_{S_{j}}(n)\right| \leq(3 / 4) 2^{n}$.

Proof of measure 0 path label theorem.

Let T be an infinite complete U-labeled ternary tree. We must construct $S \sqsubset T$ with $\mu(c(S))=0$.

Stage s. Suppose we are given S_{s}, a complete binary subtree of T of depth u_{m} (say), with $\left|c\left(S_{s}\right)\right| \leq(3 / 4)^{s} 2^{m}$. We choose n large and construct S_{s+1} by extending the leaves of S_{s} to depth u_{m+n} with $\left|c\left(S_{s+1}\right)\right| \leq(3 / 4)^{s+1} 2^{m+n}$.

The tree S_{s} has k leaves, where $k=2^{u_{m}}$. Let $n=2^{k}+1$. Let $T_{1}, T_{2}, \ldots, T_{k}$ be the subtrees of T above the leaves of S_{s} to depth u_{m+n}, with the induced edge-labeling. By the multiple tree lemma, there exist $L_{1} \sqsubset T_{1}, \ldots, L_{k} \sqsubset T_{k}$ with $\left|\cup c\left(L_{i}\right)\right| \leq(3 / 4) 2^{n}$. Obtain S_{s+1} by gluing each L_{i} above the corresponding leaf of S_{s}.

Then $\left|c\left(S_{s+1}\right)\right| \leq\left|c\left(S_{s}\right)\right|\left|\cup_{i \leq k} c\left(L_{i}\right)\right| \leq$ $(3 / 4)^{s} 2^{m}(3 / 4) 2^{n}=(3 / 4)^{s+1} 2^{m+n}$.

This finally completes the proof that \mathcal{K} is not strongly reducible to DNR_{3}. Identify the vertices of the complete ternary tree with $3^{<\omega}$. Define U from Φ_{e} as before, and note that U is computable. Let $U=\left\{u_{1}, u_{2}, \ldots\right\}$, with $u_{1}<u_{2}<\ldots$. If a string $\sigma \in 3^{<\omega}$ has length (depth) u_{n}, label the edge just above it with $\Phi_{e}^{\sigma}(n-1)$. The proof of the measure 0 path theorem is effective and so yields a computable infinite complete binary subtree S of T with $\mu(c(S))=0$. Then S is the desired computable 2-bushy set with $\Phi_{e}([S])$ of measure 0 .

We now consider the case $U=\mathbb{N}$, so all edges are colored. We define a combinatorial bounding function $f: \mathbb{N} \rightarrow \mathbb{N}$.

First define f on finite complete ternary trees T with all edges labeled 0 or 1:
$f(T)=\min \{|c(S)|: S \sqsubset T\}$
Thus, $f(T)$ is the smallest number of path labels that can be achieved for complete binary subtrees S of the same depth as T.

Then we look at the worst case for each depth:
$f(n)=\max \{f(T):$
T is a complete ternary tree of depth $n\}$

Thus, $f(n)$ is the least number b such that every $\{0,1\}$ edge-labeled complete ternary tree of depth n has a complete binary subtree S of depth n with at most b path labels.

Proposition. Let m and n be positive integers.
(i) $f(m+n) \geq f(m) f(n)$
(ii) $f(n+1) \leq 2 f(n)$.

Proposition.
(i) $f(i)=i$ for $1 \leq i \leq 4$.
(ii) $6 \leq f(5) \leq 8$.

Proposition. $\lim _{n}(f(n))^{1 / n}$ exists and is the supremum of the values of $f(n)^{1 / n}$ for $n \in \mathbb{N}$.

Corollary. $\lim _{n}(f(n))^{1 / n} \geq \sqrt[3]{3} \geq 1.442$.
Theorem. For all $n \in \mathbb{N}, f(n) \geq 2^{\frac{n-2}{\log _{2} 3}}$.
Corollary.
$\lim _{n}(f(n))^{1 / n} \geq 2^{\frac{1}{\log _{2} 3}} \geq 1.548$

Theorem. There are positive constants γ and c such that, for all $n \in \mathbb{N}$,

$$
f(n) \leq \gamma 2^{n-c \sqrt{n}}
$$

Open Question. What is
$\lim _{n}(f(n))^{1 / n}$? We know that this limit L exists and satisfies

$$
1.548 \leq 2^{\frac{1}{\log _{2}(3)}} \leq L \leq 2
$$

Open Question. Does there exist $n>1$ such that $f(n+1)=2 f(n)$?

Open Question. What if one considers p-ary trees and q-ary subtrees in place of ternary trees and binary subtrees?

