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Bounded diagonalization and Ramseyan

results on edge-labeled ternary trees

Rod Downey, Noam Greenberg,
Carl Jockusch, and Kevin Milans
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Goal. Compare the complexity of
diagonalization using only the values
{0, 1, 2} with the complexity of
constructing a random set, e.g. a
1-random set.

The solution takes us into Ramseyan
combinatorics. Given a ternary tree with
certain edges labeled 0 or 1, its paths
have induced labels which are binary
words. We try to find a perfect binary
subtree (branching at every level) whose
paths have few induced labels.
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f, g, h, . . . are variables for total functions
from ω to ω.

f ≤T g ⇐⇒ (∃e)[f = Φge ]

Let AB be the set of functions from B to
A.

A mass problem is a set of total
functions from ω to ω, i.e. a subset of ωω.

A,B, . . . are variables for mass problems.

The “solutions” to a mass problem A are
simply the elements of A.
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Examples of mass problems

DNR = {f : (∀e)[f(e) 6= ϕe(e)]}.

For k ∈ ω,

DNRk = {f : (∀e)[f(e) < k & f(e) 6=
ϕe(e)]} = DNR ∩ kω

For A ⊆ ω, the problem of enumerating A
is the set of functions with range A.

Let PA be the set of complete extensions
of Peano arithmetic. PA can be viewed as
a mass problem via Gödel numbering and
identifying subsets of ω with their
characteristic functions.
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Comparing Mass Problems

Definition. Let A and B be mass
problems. Then A is weakly reducible to
B (denoted A ≤w B) if

(∀g ∈ B)(∃f ∈ A)[f ≤T g]

This definition is due to Muchnik, and
the reducibility is also known as Muchnik
reducibility.

Definition. A is strongly reducible to B
(denoted A ≤s B) if

(∃e)(∀g ∈ B)[Φge ∈ A]

This definition is due to Medvedev, and
the reducibility is also known as
Medvedev reducibility.
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Definition

A ≡s B if A ≤s B and B ≤s A

The strong degree of A, denoted [A]s is
{B : B ≡s A}.

Define [A]s ≤ [B]s to mean A ≤s B. This
is a partial ordering of the strong degrees.
The strong degrees form a distributive
lattice under this partial order.

Define weak degrees analogously. The
analogous partial ordering is also a
distributive lattice.
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Theorem. (Jockusch-Soare). DNR2 ≡s
PA .

Let B >s A mean that A ≤s B and
B 6≤s A.

Theorem. (Jockusch)

(i) For all i, j ≥ 2, DNRi ≡wDNRj .

(ii) DNR2 >s DNR3 >s DNR4 >s . . . .
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Let ω<ω = ∪n∈ωωn. Thus ω<ω is the set
of all finite strings of natural numbers.
Let σ, τ, . . . be variables for such strings.

[σ] = {f ∈ ωω : f ⊇ σ}

A is effectively open or Σ0
1 if A = ∪σ∈S [σ]

for some c.e. set S ⊆ ω<ω.

A is effectively closed or Π0
1 if ωω \ A is

effectively open.

Alternatively A is Π0
1 iff there is a

computable tree T ⊆ ω<ω such that
A = [T ] := {f : (∀n)[f � n ∈ T ]}.
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The following are all Π0
1 sets:

DNR, DNRk, PA, the set of all ideals of a
computable ring, the set of k-colorings of
a computable graph

Definition. A Π0
1 set P ⊆ 2ω is strongly

universal if P 6= ∅ and every nonempty
Π0

1 set Q ⊆ 2ω is strongly reducible to P .

Theorem. (D. Scott) PA is strongly
universal.

Corollary. DNR2 is strongly universal.
For k > 2, DNRk is weakly universal but
not strongly universal.

(We can pretend that DNRk ⊆ 2ω via
binary coding.)
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Let µ be the usual coin toss measure on
2ω.

Definition. A set A ⊆ ω is weakly
1-random, or Kurtz-random, if there is no
Π0

1 set P ⊆ 2ω such that µ(P ) = 0 and
A ∈ P .

Note. Every 1-generic set is weakly
1-random.

Let K = {A : A is weakly 1-random}.
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Definition. An effectively null Π0
2 set is

a set S ⊆ 2ω of the form S = ∩eSe, where
{Se} is a computable sequence of Σ0

1

subsets of 2ω with µ(Se) ≤ 2−e for all e.

Note: Every Π0
1 set P ⊆ 2ω of measure 0

is an effectively null Π0
2 set.

Definition. A set A ⊆ ω is 1-random if
there is no effectively null Π0

2 set S such
that A ∈ S.

Let R1 = {A : A is 1-random}.

R1 ⊂ K
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Weak and strong degrees of

nonempty Π0
1 subsets of 2ω

Stephen Simpson initiated the study of
this area and has led its development. If
d is a weak degree and there is a
nonempty Π0

1 subset of 2ω of weak degree
d, call d a Π0

1 weak degree. Let 1 be the
weak degree of DNR2. Then 1 is the
greatest Π0

1 weak degree.

Theorem. (Simpson) Let S be a Σ0
3

subset of ωω, and let P be a nonempty
Π0

1 subset of 2ω. Then the weak degree of
S ∪ P is Π0

1.
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Corollary. (Simpson) The weak degree
d of DNR and the weak degree r1 of R1

(the family of 1-random sets) are each Π0
1.

Theorem. d < r1 < 1

Here r1 < 1 since almost every set is
1-random yet almost no set computes a
DNR2 function. Simpson and Giusto
proved that d ≤ r1. This inequality is
strict because Kumabe proved that there
is a DNR function of minimal degree,
while it is known that no 1-random set is
of minimal degree.
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Theorem. (Simpson) r1 is the greatest
Π0

1 weak degree containing a Π0
1 set

P ⊆ 2ω of positive measure.

In contrast, Terwijn and Simpson-Slaman
showed that there is no greatest Π0

1

strong degree containing a Π0
1 set P ⊆ 2ω

of positive measure.
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Let d∗k be the strong degree of DNRk.
Recall that d∗2 > d∗3 > . . . .

Theorem. (Simpson) Let P and Q be
Π0

1 subsets of 2ω with P of positive
measure. Let p, q be the strong degrees
of P,Q, respectively. If d∗k ≤ sup(p,q),
then d∗k ≤ q.

Thus, Π0
1 sets of positive measure are not

helpful in “computing” DNRk.
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Theorem. (Simpson) Let p be the
strong degree of a Π0

1 set P ⊆ 2ω of
positive measure, and let d∗k be the
strong degree of DNRk. Then

sup(p,d∗2) > sup(p,d∗3) > sup(p,d∗3) > . . .

In connection with this result, Simpson
raised the following question.

Question. (Simpson) Is every Π0
1 set

P ⊆ 2ω with µ(P ) > 0 strongly reducible
to DNR3?

Question. (Joe Miller) Is R1 (the class
of 1-random sets) strongly reducible to
DNR3 ?
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Recall that K is the class of weakly
1-random sets.

Theorem. (D-G-J-M) K is not strongly
reducible to DNR3.

Corollary. R1 is not strongly reducible
to DNR3.

Proof. R1 ⊆ K.

Corollary. There is a Π0
1 set P ⊆ 2ω

with µ(P ) > 0 such that P is not
strongly reducible to DNR3.

Proof. Since R1 is a Σ0
2 set of positive

measure, it has a Π0
1 subset P of positive

measure. Apply the previous corollary.
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A contrasting result

Definition. H1 is the class of all A ⊆ ω
of effective Hausdorff dimension 1. Thus,
H1 is the family of all A such that

lim
n

K(A � n)
n

= 1

where K is prefix-free Kolmogorov
complexity.

Theorem. (Greenberg and Miller) For
all k ≥ 2, H1 ≤s DNRk.
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Outline of proof that K 6≤s DNR3

Given e such that Φfe is total for all f ∈
DNR3. We must show that there exists
f ∈ DNR3 such that Φfe /∈ K.

1. We can assume without loss of
generality that Φfe is total and
{0, 1}-valued for all f ∈ 3ω (not just all
f ∈ DNR3). The reason is that there
exists i with the desired properties such
that Φfe = Φfi for all f ∈DNR3.
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2. Main Step. Construct a Π0
1 class

P ⊆ 3ω such that P∩ DNR3 6= ∅ and
Φe(P ) := {Φfe : f ∈ P} has measure 0.

3. By König’s Lemma, if n ∈ ω is given
and σ ∈ 3<ω is a sufficiently long finite
string, then Φσe (n) is defined.

4. Using 3, Φe(P ) is a Π0
1 class. Take

f ∈ P ∩DNR3. Then Φfe ∈ Φe(P ).
Φe(P ) is a Π0

1 set of measure 0, so
Φfe /∈ K.
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Outline of the Main Step

Call a set S ⊆ 3<ω 2-bushy if S is a
length-preserving copy of 2<ω. Thus, S is
closed downwards and every string in S

has exactly two immediate extensions
in S.

If S is 2-bushy, then [S]∩ DNR3 is
nonempty.

We must construct a computable 2-bushy
S with Φe([S]) of measure 0. Then
P = [S] is the desired Π0

1 class with P∩
DNR3 nonempty and Φe(P ) of measure 0.
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Define un recursively. Let un be the least
number u > 0 with u > ui for all i < n

and Φσe (i) defined for all strings σ ∈ 3<ω

of length u and all i < n.

If σ ∈ 3<ω has length un, let t(σ) be the
binary string of length n whose ith term
is Φσe (i) for i < n.

Given a 2-bushy S ⊆ 3<ω, let

cS(n) = {t(σ) : σ ∈ S & σ has length un}

To ensure that Φe([S]) has measure 0, we
require that limn→∞ |cS(n)|/2n = 0.
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A combinatorial formulation

A rooted tree is a connected undirected
graph with no cycles having a
distinguished vertex called the root.

Definition. In a rooted tree, the depth
of a vertex is its distance from the root.
A finite rooted tree is complete if all of its
leaves have the same depth, and this
common depth is called the depth of the
tree. It is q-ary if each vertex which is
not a leaf has exactly q children. The
depth of an edge is the depth of its deeper
endpoint.
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Monochromatic Subtree Lemma.
(Folklore ?) Suppose that T is a complete
rooted ternary tree of depth n, and each
leaf of T is colored red or blue. Then T

has a complete binary subtree S of depth
n with all leaves of the same color.

This lemma was used implicitly to show
that DNRk is not strongly reducible to
DNRk+1 for any k.
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Definition. An infinite tree is complete
if it has no leaves.

Definition. Let T be an infinite
complete ternary tree, and let
U = {u1 < u2 < . . . } be an infinite set of
positive integers. A U -labeling of T
assigns to each edge with depth in U a
label which is 0 or 1.

Suppose that T is an infinite complete
U -labeled ternary tree. We consider
infinite paths through T , starting at the
root. With each such path p we associate
the infinite binary word t(p) = a1a2 . . . ,
where ai ∈ {0, 1} is the label on the
unique edge of depth ui on the path.
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Let T be an infinite complete U -labeled
rooted ternary tree, where U is an infinite
set of positive integers.

If S is an infinite complete subtree of T ,
let c(S) = {t(p) : p is a path through S}

Thus, c(S) is the set of infinite binary
words associated with paths through S.

Our goal is to find an infinite complete
binary subtree S of T with c(S) “small”.
However, in general we cannot make c(S)
countable.
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Measure 0 Theorem. Let U be an
infinite set of positive integers, and let T
be a U -labeled infinite complete ternary
tree. Then T has an infinite complete
binary subtree S with c(S) of measure 0.
Hence, the set of infinite words along the
paths through S has measure 0.

If σ is a vertex of depth un in T , let t(σ)
be the n-bit binary word formed by the
labels of the edges on the path from the
root to σ. Let

cS(n) = {t(σ) :
σ ∈ S & σ has depth un}.

To ensure that c(S) has measure 0, we
arrange that limn |cS(n)|/2n = 0.
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Definition.

Let S @ T mean that S, T are complete
finite rooted trees of the same depth, S is
a subtree of T , T is ternary, and S is
binary.

If S @ T , then every leaf of S is a leaf of
T .

Let U = {u1 < u2 < . . . } If S is a
U -labeled tree of depth un, let

c(S) = {t(σ) : σ is a leaf of S}

Thus, c(S) is the set of binary words
occurring along paths from the root of S
to leaves of S.
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Multiple Tree Lemma. Let
U = {u1 < u2 < . . . } be an infinite set,
and let T1, T2, . . . , Tk be complete
U -labeled ternary trees of depth un,
where n > 2k. Then there exist binary
trees S1, S2, . . . , Sk with Si @ Ti for
1 ≤ i ≤ k such that
| ∪i≤k c(Si)| ≤ (3/4)2n.
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Proof of Multiple Tree Lemma

For 1 ≤ i ≤ n say that a complete tree T
of depth un is i-good if there exists S @ T
such that every word in c(S) has a 0 as
its i-th bit. By the Monochromatic
Subtree Lemma, if T is not i-good, there
exists S @ T such that every word in c(S)
has a 1 as its ith bit.

Let Gi = {j ≤ k : Tj is i-good}

By the pigeonhole principle, there exist
distinct coordinates a, b between 1 and n

with Ga = Gb.
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Let a and b be distinct coordinates such
that Ga = Gb.

For j ∈ Ga, choose Sj @ Tj such that
every word in c(Sj) has a 0 in the ath
coordinate.

For j /∈ Ga = Gb with j ≤ k , choose
Sj @ Tj such that every word in c(Sj)
has a 1 in the bth coordinate.

Then every word in ∪j≤kc(Sj) has either
a 0 in the ath coordinate or a 1 in the bth
coordinate. It follows that
| ∪j≤k cSj (n)| ≤ (3/4)2n.
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Proof of measure 0 path label
theorem.

Let T be an infinite complete U -labeled
ternary tree. We must construct S @ T
with µ(c(S)) = 0.

Stage s. Suppose we are given Ss, a
complete binary subtree of T of depth um
(say), with |c(Ss)| ≤ (3/4)s2m. We
choose n large and construct Ss+1 by
extending the leaves of Ss to depth um+n

with |c(Ss+1)| ≤ (3/4)s+12m+n.
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The tree Ss has k leaves, where k = 2um .
Let n = 2k + 1. Let T1, T2, . . . , Tk be the
subtrees of T above the leaves of Ss to
depth um+n, with the induced
edge-labeling. By the multiple tree
lemma, there exist L1 @ T1, . . . , Lk @ Tk
with | ∪ c(Li)| ≤ (3/4)2n. Obtain Ss+1 by
gluing each Li above the corresponding
leaf of Ss.

Then |c(Ss+1)| ≤ |c(Ss)|| ∪i≤k c(Li)| ≤
(3/4)s2m(3/4)2n = (3/4)s+12m+n.
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This finally completes the proof that K is
not strongly reducible to DNR3. Identify
the vertices of the complete ternary tree
with 3<ω. Define U from Φe as before,
and note that U is computable. Let
U = {u1, u2, . . . }, with u1 < u2 < . . . . If
a string σ ∈ 3<ω has length (depth) un,
label the edge just above it with
Φσe (n− 1). The proof of the measure 0
path theorem is effective and so yields a
computable infinite complete binary
subtree S of T with µ(c(S)) = 0. Then S

is the desired computable 2-bushy set
with Φe([S]) of measure 0.
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We now consider the case U = N, so all
edges are colored. We define a
combinatorial bounding function
f : N→ N.

First define f on finite complete ternary
trees T with all edges labeled 0 or 1:

f(T ) = min{|c(S)| : S @ T}

Thus, f(T ) is the smallest number of
path labels that can be achieved for
complete binary subtrees S of the same
depth as T .

Then we look at the worst case for each
depth:

f(n) = max{f(T ) :
T is a complete ternary tree of depth n}
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Thus, f(n) is the least number b such
that every {0, 1} edge-labeled complete
ternary tree of depth n has a complete
binary subtree S of depth n with at most
b path labels.

36



'

&

$

%

Proposition. Let m and n be positive
integers.

(i) f(m+ n) ≥ f(m)f(n)

(ii) f(n+ 1) ≤ 2f(n).

Proposition.

(i) f(i) = i for 1 ≤ i ≤ 4.

(ii) 6 ≤ f(5) ≤ 8.
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Proposition. limn(f(n))1/n exists and is
the supremum of the values of f(n)1/n for
n ∈ N.

Corollary. limn(f(n))1/n ≥ 3
√

3 ≥ 1.442.

Theorem. For all n ∈ N , f(n) ≥ 2
n−2

log2 3 .

Corollary.
limn(f(n))1/n ≥ 2

1
log2 3 ≥ 1.548
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Theorem. There are positive constants
γ and c such that, for all n ∈ N,

f(n) ≤ γ2n−c
√
n

Open Question. What is
limn(f(n))1/n? We know that this limit
L exists and satisfies

1.548 ≤ 2
1

log2(3) ≤ L ≤ 2

Open Question. Does there exist n > 1
such that f(n+ 1) = 2f(n)?

Open Question. What if one considers
p-ary trees and q-ary subtrees in place of
ternary trees and binary subtrees?
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