Bounded diagonalization and Ramseyan results on edge-labeled ternary trees

Rod Downey, Noam Greenberg, Carl Jockusch, and Kevin Milans **Goal.** Compare the complexity of diagonalization using only the values $\{0, 1, 2\}$ with the complexity of constructing a random set, e.g. a 1-random set.

The solution takes us into Ramseyan combinatorics. Given a ternary tree with certain edges labeled 0 or 1, its paths have induced labels which are binary words. We try to find a perfect binary subtree (branching at *every* level) whose paths have few induced labels. f, g, h, \ldots are variables for total functions from ω to ω .

$$f \leq_T g \iff (\exists e)[f = \Phi_e^g]$$

Let A^B be the set of functions from B to A.

A mass problem is a set of total functions from ω to ω , i.e. a subset of ω^{ω} . $\mathcal{A},\mathcal{B},\ldots$ are variables for mass problems. The "solutions" to a mass problem \mathcal{A} are simply the elements of \mathcal{A} . Examples of mass problems

DNR = { $f : (\forall e) [f(e) \neq \varphi_e(e)]$ }.

For $k \in \omega$,

 $DNR_k = \{f : (\forall e) [f(e) < k \& f(e) \neq \varphi_e(e)]\} = DNR \cap k^{\omega}$

For $A \subseteq \omega$, the problem of enumerating A is the set of functions with range A.

Let PA be the set of complete extensions of Peano arithmetic. PA can be viewed as a mass problem via Gödel numbering and identifying subsets of ω with their characteristic functions.

Comparing Mass Problems

Definition. Let \mathcal{A} and \mathcal{B} be mass problems. Then \mathcal{A} is *weakly reducible* to \mathcal{B} (denoted $\mathcal{A} \leq_w \mathcal{B}$) if

$$(\forall g \in \mathcal{B})(\exists f \in \mathcal{A})[f \leq_T g]$$

This definition is due to Muchnik, and the reducibility is also known as Muchnik reducibility.

Definition. \mathcal{A} is strongly reducible to \mathcal{B} (denoted $\mathcal{A} \leq_s \mathcal{B}$) if

$$(\exists e)(\forall g \in \mathcal{B})[\Phi_e^g \in \mathcal{A}]$$

This definition is due to Medvedev, and the reducibility is also known as Medvedev reducibility.

Definition

 $\mathcal{A} \equiv_s \mathcal{B} \text{ if } \mathcal{A} \leq_s \mathcal{B} \text{ and } \mathcal{B} \leq_s \mathcal{A}$

The strong degree of \mathcal{A} , denoted $[\mathcal{A}]_s$ is $\{\mathcal{B}: \mathcal{B} \equiv_s \mathcal{A}\}.$

Define $[\mathcal{A}]_s \leq [\mathcal{B}]_s$ to mean $\mathcal{A} \leq_s \mathcal{B}$. This is a partial ordering of the strong degrees. The strong degrees form a **distributive lattice** under this partial order.

Define weak degrees analogously. The analogous partial ordering is also a distributive lattice. **Theorem.** (Jockusch-Soare). $DNR_2 \equiv_s PA$.

Let $\mathcal{B} >_s \mathcal{A}$ mean that $\mathcal{A} \leq_s \mathcal{B}$ and $\mathcal{B} \not\leq_s \mathcal{A}$.

Theorem. (Jockusch)

(i) For all $i, j \ge 2$, $\text{DNR}_i \equiv_w \text{DNR}_j$.

(ii) $DNR_2 >_s DNR_3 >_s DNR_4 >_s \dots$

Let $\omega^{<\omega} = \bigcup_{n \in \omega} \omega^n$. Thus $\omega^{<\omega}$ is the set of all finite strings of natural numbers. Let σ, τ, \ldots be variables for such strings. $[\sigma] = \{f \in \omega^\omega : f \supseteq \sigma\}$ \mathcal{A} is *effectively open* or Σ_1^0 if $\mathcal{A} = \bigcup_{\sigma \in S} [\sigma]$ for some c.e. set $S \subseteq \omega^{<\omega}$.

 \mathcal{A} is effectively closed or Π_1^0 if $\omega^{\omega} \setminus \mathcal{A}$ is effectively open.

Alternatively \mathcal{A} is Π_1^0 iff there is a computable tree $T \subseteq \omega^{<\omega}$ such that $\mathcal{A} = [T] := \{f : (\forall n) [f \upharpoonright n \in T]\}.$ The following are all Π_1^0 sets:

DNR, DNR_k, PA, the set of all ideals of a computable ring, the set of k-colorings of a computable graph

Definition. A Π_1^0 set $P \subseteq 2^\omega$ is strongly universal if $P \neq \emptyset$ and every nonempty Π_1^0 set $Q \subseteq 2^\omega$ is strongly reducible to P.

Theorem. (D. Scott) PA is strongly universal.

Corollary. DNR₂ is strongly universal. For k > 2, DNR_k is weakly universal but not strongly universal.

(We can pretend that $DNR_k \subseteq 2^{\omega}$ via binary coding.)

Let μ be the usual coin toss measure on 2^{ω} .

Definition. A set $A \subseteq \omega$ is weakly 1-random, or Kurtz-random, if there is no Π_1^0 set $P \subseteq 2^{\omega}$ such that $\mu(P) = 0$ and $A \in P$.

Note. Every 1-generic set is weakly 1-random.

Let $\mathcal{K} = \{A : A \text{ is weakly 1-random}\}.$

Definition. An effectively null Π_2^0 set is a set $S \subseteq 2^{\omega}$ of the form $S = \bigcap_e S_e$, where $\{S_e\}$ is a computable sequence of Σ_1^0 subsets of 2^{ω} with $\mu(S_e) \leq 2^{-e}$ for all e. Note: Every Π_1^0 set $P \subseteq 2^{\omega}$ of measure 0 is an effectively null Π_2^0 set.

Definition. A set $A \subseteq \omega$ is 1-random if there is no effectively null Π_2^0 set S such that $A \in S$.

Let $\mathcal{R}_1 = \{A : A \text{ is 1-random}\}.$

$$\mathcal{R}_1 \subset \mathcal{K}$$

Weak and strong degrees of

nonempty Π_1^0 subsets of 2^{ω}

Stephen Simpson initiated the study of this area and has led its development. If **d** is a weak degree and there is a nonempty Π_1^0 subset of 2^{ω} of weak degree **d**, call **d** a Π_1^0 weak degree. Let **1** be the weak degree of DNR₂. Then **1** is the greatest Π_1^0 weak degree.

Theorem. (Simpson) Let S be a Σ_3^0 subset of ω^{ω} , and let P be a nonempty Π_1^0 subset of 2^{ω} . Then the weak degree of $S \cup P$ is Π_1^0 . **Corollary.** (Simpson) The weak degree **d** of DNR and the weak degree $\mathbf{r_1}$ of \mathcal{R}_1 (the family of 1-random sets) are each Π_1^0 .

Theorem. $d < r_1 < 1$

Here $\mathbf{r_1} < \mathbf{1}$ since almost every set is 1-random yet almost no set computes a DNR₂ function. Simpson and Giusto proved that $\mathbf{d} \leq \mathbf{r_1}$. This inequality is strict because Kumabe proved that there is a DNR function of minimal degree, while it is known that no 1-random set is of minimal degree. **Theorem.** (Simpson) $\mathbf{r_1}$ is the greatest Π_1^0 weak degree containing a Π_1^0 set $P \subseteq 2^{\omega}$ of positive measure.

In contrast, Terwijn and Simpson-Slaman showed that there is no greatest Π_1^0 strong degree containing a Π_1^0 set $P \subseteq 2^{\omega}$ of positive measure. Let \mathbf{d}_k^* be the strong degree of DNR_k . Recall that $\mathbf{d}_2^* > \mathbf{d}_3^* > \dots$

Theorem. (Simpson) Let P and Q be Π_1^0 subsets of 2^{ω} with P of positive measure. Let \mathbf{p} , \mathbf{q} be the strong degrees of P, Q, respectively. If $\mathbf{d}_k^* \leq \sup(\mathbf{p}, \mathbf{q})$, then $\mathbf{d}_k^* \leq \mathbf{q}$.

Thus, Π_1^0 sets of positive measure are not helpful in "computing" DNR_k . **Theorem.** (Simpson) Let \mathbf{p} be the strong degree of a Π_1^0 set $P \subseteq 2^{\omega}$ of positive measure, and let \mathbf{d}_k^* be the strong degree of DNR_k . Then

 $\sup(\mathbf{p}, \mathbf{d}_2^*) > \sup(\mathbf{p}, \mathbf{d}_3^*) > \sup(\mathbf{p}, \mathbf{d}_3^*) > \dots$

In connection with this result, Simpson raised the following question.

Question. (Simpson) Is every Π_1^0 set $P \subseteq 2^{\omega}$ with $\mu(P) > 0$ strongly reducible to DNR₃?

Question. (Joe Miller) Is \mathcal{R}_1 (the class of 1-random sets) strongly reducible to DNR₃ ?

Recall that \mathcal{K} is the class of weakly 1-random sets.

Theorem. (D-G-J-M) \mathcal{K} is not strongly reducible to DNR₃.

Corollary. \mathcal{R}_1 is not strongly reducible to DNR₃.

Proof. $\mathcal{R}_1 \subseteq \mathcal{K}$.

Corollary. There is a Π_1^0 set $P \subseteq 2^{\omega}$ with $\mu(P) > 0$ such that P is not strongly reducible to DNR₃.

Proof. Since \mathcal{R}_1 is a Σ_2^0 set of positive measure, it has a Π_1^0 subset P of positive measure. Apply the previous corollary.

A contrasting result

Definition. \mathcal{H}_1 is the class of all $A \subseteq \omega$ of effective Hausdorff dimension 1. Thus, \mathcal{H}_1 is the family of all A such that

$$\lim_{n} \frac{K(A \upharpoonright n)}{n} = 1$$

where K is prefix-free Kolmogorov complexity.

Theorem. (Greenberg and Miller) For all $k \ge 2$, $\mathcal{H}_1 \le_s \text{DNR}_k$.

Outline of proof that $\mathcal{K} \not\leq_s \mathrm{DNR}_3$

Given e such that Φ_e^f is total for all $f \in$ DNR₃. We must show that there exists $f \in$ DNR₃ such that $\Phi_e^f \notin \mathcal{K}$.

1. We can assume without loss of generality that Φ_e^f is total and $\{0,1\}$ -valued for all $f \in 3^{\omega}$ (not just all $f \in \text{DNR}_3$). The reason is that there exists *i* with the desired properties such that $\Phi_e^f = \Phi_i^f$ for all $f \in \text{DNR}_3$. Main Step. Construct a Π₁⁰ class P ⊆ 3^ω such that P ∩ DNR₃ ≠ Ø and Φ_e(P) := {Φ_e^f : f ∈ P} has measure 0.
By König's Lemma, if n ∈ ω is given and σ ∈ 3^{<ω} is a sufficiently long finite string, then Φ_e^σ(n) is defined.
Using 3, Φ_e(P) is a Π₁⁰ class. Take f ∈ P ∩ DNR₃. Then Φ_e^f ∈ Φ_e(P). Φ_e(P) is a Π₁⁰ set of measure 0, so Φ_e^f ∉ K.

Outline of the Main Step

Call a set $S \subseteq 3^{<\omega}$ 2-bushy if S is a length-preserving copy of $2^{<\omega}$. Thus, S is closed downwards and every string in S has exactly two **immediate extensions** in S.

If S is 2-bushy, then $[S] \cap DNR_3$ is nonempty.

We must construct a computable 2-bushy S with $\Phi_e([S])$ of measure 0. Then P = [S] is the desired Π_1^0 class with $P \cap$ DNR₃ nonempty and $\Phi_e(P)$ of measure 0.

Define u_n recursively. Let u_n be the least number u > 0 with $u > u_i$ for all i < nand $\Phi_e^{\sigma}(i)$ defined for all strings $\sigma \in 3^{<\omega}$ of length u and all i < n.

If $\sigma \in 3^{<\omega}$ has length u_n , let $t(\sigma)$ be the binary string of length n whose *i*th term is $\Phi_e^{\sigma}(i)$ for i < n.

Given a 2-bushy $S \subseteq 3^{<\omega}$, let

 $c_S(n) = \{t(\sigma) : \sigma \in S \quad \& \quad \sigma \text{ has length } u_n\}$

To ensure that $\Phi_e([S])$ has measure 0, we require that $\lim_{n\to\infty} |c_S(n)|/2^n = 0$.

A combinatorial formulation

A rooted tree is a connected undirected graph with no cycles having a distinguished vertex called the *root*.

Definition. In a rooted tree, the *depth* of a vertex is its distance from the root. A finite rooted tree is *complete* if all of its leaves have the same depth, and this common depth is called the *depth* of the tree. It is *q*-*ary* if each vertex which is not a leaf has exactly q children. The *depth* of an edge is the depth of its deeper endpoint.

Monochromatic Subtree Lemma.

(Folklore ?) Suppose that T is a complete rooted ternary tree of depth n, and each leaf of T is colored red or blue. Then Thas a complete binary subtree S of depth n with all leaves of the same color.

This lemma was used implicitly to show that DNR_k is not strongly reducible to DNR_{k+1} for any k. **Definition.** An infinite tree is *complete* if it has no leaves.

Definition. Let T be an infinite complete ternary tree, and let $U = \{u_1 < u_2 < ...\}$ be an infinite set of positive integers. A *U*-labeling of Tassigns to each edge with depth in U a label which is 0 or 1.

Suppose that T is an infinite complete U-labeled ternary tree. We consider infinite paths through T, starting at the root. With each such path p we associate the infinite binary word $t(p) = a_1 a_2 \dots$, where $a_i \in \{0, 1\}$ is the label on the unique edge of depth u_i on the path.

Let T be an infinite complete U-labeled rooted ternary tree, where U is an infinite set of positive integers.

If S is an infinite complete subtree of T, let $c(S) = \{t(p) : p \text{ is a path through } S\}$

Thus, c(S) is the set of infinite binary words associated with paths through S.

Our goal is to find an infinite complete binary subtree S of T with c(S) "small". However, in general we cannot make c(S)countable. Measure 0 Theorem. Let U be an infinite set of positive integers, and let Tbe a U-labeled infinite complete ternary tree. Then T has an infinite complete binary subtree S with c(S) of measure 0. Hence, the set of infinite words along the paths through S has measure 0.

If σ is a vertex of depth u_n in T, let $t(\sigma)$ be the *n*-bit binary word formed by the labels of the edges on the path from the root to σ . Let

 $c_S(n) = \{t(\sigma):$

 $\sigma \in S \& \sigma \text{ has depth } u_n \}.$

To ensure that c(S) has measure 0, we arrange that $\lim_{n} |c_S(n)|/2^n = 0$.

Definition.

Let $S \sqsubset T$ mean that S, T are complete finite rooted trees of the same depth, S is a subtree of T, T is ternary, and S is binary.

If $S \sqsubset T$, then every leaf of S is a leaf of T.

Let $U = \{u_1 < u_2 < \dots\}$ If S is a U-labeled tree of depth u_n , let

 $c(S) = \{t(\sigma) : \sigma \text{ is a leaf of } S\}$

Thus, c(S) is the set of binary words occurring along paths from the root of Sto leaves of S. Multiple Tree Lemma. Let $U = \{u_1 < u_2 < ...\}$ be an infinite set, and let $T_1, T_2, ..., T_k$ be complete U-labeled ternary trees of depth u_n , where $n > 2^k$. Then there exist binary trees $S_1, S_2, ..., S_k$ with $S_i \sqsubset T_i$ for $1 \le i \le k$ such that $|\bigcup_{i \le k} c(S_i)| \le (3/4)2^n$.

Proof of Multiple Tree Lemma

For $1 \leq i \leq n$ say that a complete tree Tof depth u_n is *i-good* if there exists $S \sqsubset T$ such that every word in c(S) has a 0 as its *i*-th bit. By the Monochromatic Subtree Lemma, if T is not *i*-good, there exists $S \sqsubset T$ such that every word in c(S)has a 1 as its *i*th bit.

Let $G_i = \{j \le k : T_j \text{ is } i\text{-good}\}$

By the pigeonhole principle, there exist distinct coordinates a, b between 1 and nwith $G_a = G_b$. Let a and b be distinct coordinates such that $G_a = G_b$.

For $j \in G_a$, choose $S_j \sqsubset T_j$ such that every word in $c(S_j)$ has a 0 in the *a*th coordinate.

For $j \notin G_a = G_b$ with $j \leq k$, choose $S_j \sqsubset T_j$ such that every word in $c(S_j)$ has a 1 in the *b*th coordinate.

Then every word in $\bigcup_{j \leq k} c(S_j)$ has either a 0 in the *a*th coordinate or a 1 in the *b*th coordinate. It follows that $|\bigcup_{j \leq k} c_{S_j}(n)| \leq (3/4)2^n$.

Proof of measure 0 path label theorem.

Let T be an infinite complete U-labeled ternary tree. We must construct $S \sqsubset T$ with $\mu(c(S)) = 0$.

Stage s. Suppose we are given S_s , a complete binary subtree of T of depth u_m (say), with $|c(S_s)| \leq (3/4)^s 2^m$. We choose n large and construct S_{s+1} by extending the leaves of S_s to depth u_{m+n} with $|c(S_{s+1})| \leq (3/4)^{s+1} 2^{m+n}$. The tree S_s has k leaves, where $k = 2^{u_m}$. Let $n = 2^k + 1$. Let T_1, T_2, \ldots, T_k be the subtrees of T above the leaves of S_s to depth u_{m+n} , with the induced edge-labeling. By the multiple tree lemma, there exist $L_1 \sqsubset T_1, \ldots, L_k \sqsubset T_k$ with $| \cup c(L_i) | \leq (3/4)2^n$. Obtain S_{s+1} by gluing each L_i above the corresponding leaf of S_s .

Then $|c(S_{s+1})| \le |c(S_s)|| \cup_{i \le k} c(L_i)| \le (3/4)^s 2^m (3/4) 2^n = (3/4)^{s+1} 2^{m+n}.$

This finally completes the proof that \mathcal{K} is not strongly reducible to DNR_3 . Identify the vertices of the complete ternary tree with $3^{<\omega}$. Define U from Φ_e as before, and note that U is computable. Let $U = \{u_1, u_2, \dots\}, \text{ with } u_1 < u_2 < \dots$ If a string $\sigma \in 3^{<\omega}$ has length (depth) u_n , label the edge just above it with $\Phi_e^{\sigma}(n-1)$. The proof of the measure 0 path theorem is effective and so yields a *computable* infinite complete binary subtree S of T with $\mu(c(S)) = 0$. Then S is the desired computable 2-bushy set with $\Phi_e([S])$ of measure 0.

We now consider the case $U = \mathbb{N}$, so all edges are colored. We define a combinatorial bounding function $f: \mathbb{N} \to \mathbb{N}$.

First define f on finite complete ternary trees T with all edges labeled 0 or 1:

$$f(T) = \min\{|c(S)| : S \sqsubset T\}$$

Thus, f(T) is the smallest number of path labels that can be achieved for complete binary subtrees S of the same depth as T.

Then we look at the worst case for each depth:

 $f(n) = \max\{f(T):$

T is a complete ternary tree of depth n}

Thus, f(n) is the least number b such that every $\{0, 1\}$ edge-labeled complete ternary tree of depth n has a complete binary subtree S of depth n with at most b path labels. **Proposition**. Let m and n be positive integers.

(i) $f(m+n) \ge f(m)f(n)$

(ii) $f(n+1) \le 2f(n)$.

Proposition.

(i)
$$f(i) = i$$
 for $1 \le i \le 4$.
(ii) $6 \le f(5) \le 8$.

Proposition. $\lim_{n} (f(n))^{1/n}$ exists and is the supremum of the values of $f(n)^{1/n}$ for $n \in \mathbb{N}$.

Corollary. $\lim_{n} (f(n))^{1/n} \ge \sqrt[3]{3} \ge 1.442.$ Theorem. For all $n \in \mathbb{N}$, $f(n) \ge 2^{\frac{n-2}{\log_2 3}}$. Corollary.

 $\lim_{n} (f(n))^{1/n} \ge 2^{\frac{1}{\log_2 3}} \ge 1.548$

Theorem. There are positive constants γ and c such that, for all $n \in \mathbb{N}$,

$$f(n) \le \gamma 2^{n - c\sqrt{n}}$$

Open Question. What is $\lim_{n} (f(n))^{1/n}$? We know that this limit L exists and satisfies

$$1.548 \le 2^{\frac{1}{\log_2(3)}} \le L \le 2$$

Open Question. Does there exist n > 1 such that f(n+1) = 2f(n)?

Open Question. What if one considers p-ary trees and q-ary subtrees in place of ternary trees and binary subtrees?