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Goal. Compare the complexity of
diagonalization using only the values
{0,1,2} with the complexity of
constructing a random set, e.g. a

1-random set.

The solution takes us into Ramseyan
combinatorics. Given a ternary tree with
certain edges labeled 0 or 1, its paths
have induced labels which are binary
words. We try to find a perfect binary
subtree (branching at every level) whose

paths have few induced labels.
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f,q,h,... are variables for total functions

from w to w.
f<r g+ (Je)[f = ¥

Let AP be the set of functions from B to
A.

A mass problem is a set of total

tunctions from w to w, i.e. a subset of w®.
A.,B, ... are variables for mass problems.

The “solutions” to a mass problem A are

simply the elements of A.
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‘ Examples of mass problems I

DNR = {/ : (Ve)[f(e) # pe(e)]}.

For k € w,

DNRy, = {f: (Ve)[f(e) <k & fle) #
pe(e)]} = DNR N £k

For A C w, the problem of enumerating A

is the set of functions with range A.

Let PA be the set of complete extensions
of Peano arithmetic. PA can be viewed as
a mass problem via Godel numbering and
identitying subsets of w with their

characteristic functions.
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/ ‘ Comparing Mass Problems I \

Definition. Let A and B be mass
problems. Then A is weakly reducible to
B (denoted A <,, B) if

(Vg € B)(3f € A)[f <r g

This definition is due to Muchnik, and
the reducibility is also known as Muchnik
reducibility.

Definition. A is strongly reducible to B
(denoted A <, B) if

(Je)(Vg € B)|®7 € A]

This definition is due to Medvedev, and
the reducibility is also known as

\Medvedev reducibility. /
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Definition

A= BifA<,Band B<, A

The strong degree of A, denoted [A]; is
{B:B=, A}.

Define [A]s < [B]s to mean A <, B. This

is a partial ordering of the strong degrees.
The strong degrees form a distributive
lattice under this partial order.

Define weak degrees analogously. The
analogous partial ordering is also a

distributive lattice.
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Theorem. (Jockusch-Soare). DNRy =;
PA .

Let B >, A mean that A <, B and
B L, A.

Theorem. (Jockusch)
(i) For all i, j > 2, DNR; =, DNR, .
(ii) DNRy >3 DNRs >s DNRy >, ....
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Let w<¥ = U, cow™. Thus w<¥ is the set
of all finite strings of natural numbers.

Let o,7,... be variables for such strings.

o]l ={few’: fDa}
A is effectively open or XY if A = U,es|0]

for some c.e. set S C w<Vv.

A is effectively closed or 119 if w* \ A is
effectively open.

Alternatively A is I1Y iff there is a

computable tree T' C w<% such that

A=[T]:=1f:(Vn)lf IneTl}.
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The following are all IIY sets:

DNR, DNR, PA, the set of all ideals of a
computable ring, the set of k-colorings of

a computable graph
Definition. A IIY set P C 2% is strongly

universal if P # () and every nonempty
I1Y set Q C 2% is strongly reducible to P.

Theorem. (D. Scott) PA is strongly

universal.

Corollary. DNRs is strongly universal.
For k > 2, DNR;. is weakly universal but

not strongly universal.

(We can pretend that DN Ry C 2% via
binary coding.)
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Let 11 be the usual coin toss measure on
2%,

Definition. A set A C w is weakly

1-random, or Kurtz-random, if there is no
1Y set P C 2% such that u(P) = 0 and
AeP.

Note. Every 1-generic set is weakly

1-random.

Let £ ={A: A is weakly 1-random}.

- /
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Definition. An effectively null IIJ set is
a set S C 2% of the form S = N.S,, where

{S.} is a computable sequence of 2
subsets of 2¢ with u(S.) < 27¢ for all e.

Note: Every II{ set P C 2 of measure 0
is an effectively null II9 set.

Definition. A set A C w is 1-random it

there is no effectively null II9 set S such
that A € S.

Let Ri ={A: Ais l-random}.
R,y CK

- /
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‘ Weak and strong degrees of I
‘ nonempty 119 subsets of 2% I

Stephen Simpson initiated the study of

this area and has led its development. If
d is a weak degree and there is a
nonempty I1Y subset of 2% of weak degree
d, call d a IIY weak degree. Let 1 be the

weak degree of DNRy. Then 1 is the
greatest IS weak degree.

Theorem. (Simpson) Let S be a 39
subset of w*, and let P be a nonempty
I1Y subset of 2. Then the weak degree of
SUP is I1Y.
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Corollary. (Simpson) The weak degree
d of DNR and the weak degree r; of R4
(the family of 1-random sets) are each IIY.

Theorem. d <r; <1

Here r1 < 1 since almost every set is
I-random yet almost no set computes a
DNRs function. Simpson and Giusto
proved that d < ry. This inequality is
strict because Kumabe proved that there
is a DNR function of minimal degree,
while it is known that no 1-random set is

of minimal degree.

- /
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Theorem. (Simpson) ry is the greatest
1Y weak degree containing a I} set

P C 2% of positive measure.

In contrast, Terwijn and Simpson-Slaman
showed that there is no greatest II}
strong degree containing a II{ set P C 2%

of positive measure.
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Let d; be the strong degree of DNRy.
Recall that d5 >d5 > ....

Theorem. (Simpson) Let P and @ be
I1Y subsets of 2¢ with P of positive
measure. Let p, q be the strong degrees
of P, Q, respectively. If d; < sup(p,q),
then d; < q.

Thus, II sets of positive measure are not

helpful in “computing” DNRj.
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Theorem. (Simpson) Let p be the
strong degree of a IIY set P C 2% of
positive measure, and let d; be the
strong degree of DNRj. Then

sup(p, d;) > sup(p,dg) > sup(p,dg) > ...

In connection with this result, Simpson

raised the following question.

Question. (Simpson) Is every IIY set
P C 2% with u(P) > 0 strongly reducible
to DNRg?

Question. (Joe Miller) Is R; (the class
of 1-random sets) strongly reducible to
DNRj3 7
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Recall that IC is the class of weakly

1-random sets.

Theorem. (D-G-J-M) K is not strongly
reducible to DNR3.

Corollary. R is not strongly reducible
to DNRg

Proof. R, C K.

Corollary. There is a IIY set P C 2
with p(P) > 0 such that P is not
strongly reducible to DNRj3.

Proof. Since R is a X9 set of positive
measure, it has a I1Y subset P of positive

measure. Apply the previous corollary.

- /
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‘ A contrasting result I

Definition. H; is the class of all A C w
of effective Hausdorff dimension 1. Thus,
H; is the family of all A such that

lim K(A T n)

n n

=1

where K is prefix-free Kolmogorov

complexity.

Theorem. (Greenberg and Miller) For
all k> 2, H; <; DNRy.
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‘ Outline of proof that I £, DNR3 I

Given e such that ®/ is total for all f €
DNR3. We must show that there exists
f € DNR3 such that ®/ ¢ K.

1. We can assume without loss of
generality that ®/ is total and

{0, 1}-valued for all f € 3“ (not just all
f € DNRj3). The reason is that there
exists ¢ with the desired properties such
that ®/ = ®/ for all f €DNRs.

- /
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2. Main Step. Construct a II{ class
P C 3% such that PN DNRg3 # () and
®,(P) := {®/ : f € P} has measure 0.

3. By Konig’s Lemma, if n € w is given
and o € 3<% is a sufficiently long finite
string, then ®7(n) is defined.

4. Using 3, ®.(P) is a IIY class. Take
f € PNDNR3. Then ®/ € ®,(P).

®.(P) is a I1Y set of measure 0, so

dl ¢ K.

-
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‘ Outline of the Main Step I

Call a set S C 3<% 2-bushy if S is a
length-preserving copy of 2<¢. Thus, S is

closed downwards and every string in S

has exactly two immediate extensions
in S.
If S is 2-bushy, then [S]N DNRjy is

nonempty.

We must construct a computable 2-bushy
S with ®.([S]) of measure 0. Then

P = [S] is the desired IIY class with PN
DNRj3 nonempty and ®.(P) of measure 0.
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Define u,, recursively. Let u,, be the least

number v > 0 with v > u; for all 1 < n
and ®7(7) defined for all strings o € 3<%
of length v and all 1 < n.

If o € 3<% has length u,, let t(c) be the

binary string of length n whose ith term
is ®7 (1) for i < n.

Given a 2-bushy S C 3<%, let
cs(n) ={t(c):0€ S & o haslength u,

To ensure that ®.(|S]) has measure 0, we

require that lim,, . |cs(n)|/2™ = 0.

- /
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‘ A combinatorial formulation '

A rooted tree is a connected undirected

graph with no cycles having a

distinguished vertex called the root.

Definition. In a rooted tree, the depth
of a vertex is its distance from the root.
A finite rooted tree is complete if all of its
leaves have the same depth, and this
common depth is called the depth of the
tree. It is g-ary if each vertex which is
not a leaf has exactly ¢ children. The
depth of an edge is the depth of its deeper

endpoint.

- /
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Monochromatic Subtree Lemma.
(Folklore 7) Suppose that T is a complete
rooted ternary tree of depth n, and each
leaf of T' is colored red or blue. Then T
has a complete binary subtree S of depth
n with all leaves of the same color.

This lemma was used implicitly to show
that DNR; is not strongly reducible to
DNRgy1 for any k.

- /
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Definition. An infinite tree is complete

if it has no leaves.

Definition. Let 7' be an infinite
complete ternary tree, and let

U ={u; < ug < ...} be an infinite set of
positive integers. A U-labeling of T

assigns to each edge with depth in U a
label which is 0 or 1.

Suppose that 7' is an infinite complete
U-labeled ternary tree. We consider
infinite paths through 7', starting at the
root. With each such path p we associate
the infinite binary word t(p) = aqas . . .,
where a; € {0, 1} is the label on the
unique edge of depth u; on the path.

- /
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Let T' be an infinite complete U-labeled
rooted ternary tree, where U is an infinite

set of positive integers.

If S is an infinite complete subtree of 7',
let ¢(S) = {t(p) : p is a path through S}

Thus, ¢(5) is the set of infinite binary
words associated with paths through S.

Our goal is to find an infinite complete
binary subtree S of T with ¢(.S) “small”.
However, in general we cannot make ¢(.5)

countable.
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Measure 0 Theorem. Let U be an
infinite set of positive integers, and let T’
be a U-labeled infinite complete ternary
tree. Then T has an infinite complete
binary subtree S with ¢(.S) of measure 0.
Hence, the set of infinite words along the

paths through S has measure 0.

If o is a vertex of depth u,, in T, let t(o)
be the n-bit binary word formed by the
labels of the edges on the path from the

root to o. Let

cs(n) ={t(o) :
o€ S & o hasdepth u,}.

To ensure that ¢(S) has measure 0, we

arrange that lim,, |cg(n)|/2™ = 0.

- /
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Definition.

Let S T 1T mean that S,T" are complete
finite rooted trees of the same depth, S is
a subtree of T', T' is ternary, and .S is

binary.

If ST, then every leaf of S is a leaf of
T.

Let U={u; <us <...} If Sisa
U-labeled tree of depth u,,, let
c(S) ={t(o) : o is a leaf of S}

Thus, ¢(S) is the set of binary words
occurring along paths from the root of .S

to leaves of S.

- /
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Multiple Tree Lemma. Let

U ={u; <ug <...} be an infinite set,
and let 17,15, ...,T) be complete
U-labeled ternary trees of depth u,,,
where n > 2%. Then there exist binary
trees S1,52,...,95 with .S; C T; for

1 <1 < k such that

Uik e(Si)] < (3/4)2".

-
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Proof of Multiple Tree Lemma

For 1 <1 < n say that a complete tree T
of depth wu,, is i-good if there exists S C T
such that every word in ¢(S) has a 0 as
its ¢.-th bit. By the Monochromatic
Subtree Lemma, if 1" is not i-good, there
exists S C T such that every word in ¢(.5)
has a 1 as its ¢th bit.

Let G; ={j < k:Tj is i-good}

By the pigeonhole principle, there exist

distinct coordinates a, b between 1 and n

with G, = Gp.

- /
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Let a and b be distinct coordinates such

that G, = Gy

For j € G, choose S; C T such that
every word in c(S;) has a 0 in the ath

coordinate.

For j ¢ G, = G} with j < k , choose
S; C T} such that every word in ¢(S;)
has a 1 in the bth coordinate.

Then every word in U;j<xc(S;) has either
a 0 in the ath coordinate or a 1 in the bth
coordinate. It follows that

| Uj<k cs; ()] < (3/4)2".
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Proof of measure 0 path label

theorem.

Let T' be an infinite complete U-labeled

ternary tree. We must construct S — T
with u(c(S)) = 0.

Stage s. Suppose we are given Sy, a
complete binary subtree of 1" of depth u,,
(say), with |c(Ss)| < (3/4)°2™. We
choose n large and construct S;11 by

extending the leaves of S, to depth w14,
with |c(Ss1)| < (3/4)5T1am+n,

- /
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The tree S5 has k leaves, where k = 2%,
Let n =25+ 1. Let Ty, 75, ..., T be the
subtrees of T above the leaves of S, to
depth ,,+,, with the induced
edge-labeling. By the multiple tree
lemma, there exist L1 C 11,..., Ly T Tk
with | Uc(L;)| < (3/4)2™. Obtain Ssy1 by
gluing each L; above the corresponding
leaf of S,.

Then [c(Ss+1)] < [e(Ss)]| Uik e(Ls)] <
(3/4)52™(3/4)2" = (3/4)5T12m+n.

- /
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This finally completes the proof that K is
not strongly reducible to DNRg. Identify
the vertices of the complete ternary tree
with 3<%. Define U from ®. as before,
and note that U is computable. Let
U={u,uo,...}, with uy <wug <....If
a string o € 3<“ has length (depth) u,,,
label the edge just above it with

®7(n — 1). The proof of the measure 0
path theorem is effective and so yields a
computable infinite complete binary
subtree S of T" with u(c(S)) =0. Then S
is the desired computable 2-bushy set
with ®.([S]) of measure 0.
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We now consider the case U = N, so all
edges are colored. We define a

combinatorial bounding function

f:N—N.

First define f on finite complete ternary
trees 1" with all edges labeled 0 or 1:

f(T) =min{|c(S)|: ST T}

Thus, f(7T') is the smallest number of
path labels that can be achieved for

complete binary subtrees S of the same
depth as T'.

Then we look at the worst case for each
depth:

f(n) = max{f(T) :
T is a complete ternary tree of depth n}
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Thus, f(n) is the least number b such
that every {0, 1} edge-labeled complete
ternary tree of depth n has a complete

binary subtree S of depth n with at most
b path labels.
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Proposition. Let m and n be positive

integers.

(i) f(m+n) = f(m)f(n)
(ii)) f(n+1) <2f(n).
Proposition.

(i) f(i) =i for 1 <4 < 4.
(ii) 6 < f(5) < 8.
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1/n exists and is

Proposition. lim,(f(n))
the supremum of the values of f(n)'/™ for

n € N,
Corollary. lim, (f(n))!/™ > /3 > 1.442.

n—2

Theorem. For alln € N | f(n) > 2e23.

Corollary.
lim, (f(n))/? > 27823 > 1.548
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Theorem. There are positive constants
~v and c such that, for all n € N,

f(n) <~2n—evn

Open Question. What is
lim, (f(n))Y/™? We know that this limit

L exists and satisfies

1.548 < 2Fm® < [, < 9

Open Question. Does there exist n > 1
such that f(n+1) =2f(n)?

Open Question. What if one considers
p-ary trees and g-ary subtrees in place of

ternary trees and binary subtrees?
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