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Hierarchy of the Induction Scheme

Fix M = 〈M, X,+, ·, 0, 1〉 to be a structure in the language of
second order arithmetic. X ⊂ M is M-finite if it is coded in M.
Fix n ≥ 1.

M |= IΣn (Σn induction) if it satisfies every Σn instance
(with parameters in M) of the induction scheme.

M |= BΣn (Σn bounding) if every Σn definable function
maps an M-finite set onto an M-finite set.

Kirby-Paris: · · ·→ IΣn+1 → BΣn+1 → IΣn → · · ·

We take as base theory RCA0 (Recursive Comprehension
Axiom plus IΣ1).
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The Combinatorial Principle COH

Definition
Let R ∈ X and Rs = {t |(s, t) ∈ R}. C ⊂ M is cohesive for R if
for all s, either C ∩ Rs is M-finite or C ∩ R̄s is M-finite.

COH: M |= COH if for all R ∈ X, there is a C ∈ X that is
cohesive for R.
An M-extension of M is a structure M∗ = 〈M∗, X∗,+, ·, 0, 1〉
such that M = M∗ and X ⊆ X∗.

Theorem
(Cholak, Jockusch and Slaman) Let n = 1, 2. Every countable
M |= RCA0 + IΣn has an M-extension
M∗ |= RCA0 + COH + IΣn.
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Corollary

COH + RCA0 + IΣn is Π1
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An M-extension Theorem

Theorem
Let M |= RCA0 + BΣ2 be countable. If R ∈ X, then M has an
M-extension M∗ = M[G] |= RCA0 + BΣ2 such that G is
cohesive for R.

This is established using a two stage forcing construction.
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A Two-Stage Construction for M-Extension

Stage 1. Build an R′-recursive tree T for which every
unbounded path X on T is cohesive for R and GL1 relative
to R, i.e. X ⊕ R′ ≡T X ′.

Let I be a Σ2 cut in M and g : I → M be Σ2, increasing and
cofinal.

Build a uniformly R′-recursive nested sequence {Ci |i ∈ I}
of M-infinite R-recursive trees such that for all i ∈ I:

(i) Ci ⊃ Ci+1
(ii) Every unbounded path on Ci is cohesive for Rs, s < g(i)

(III) Every unbounded path on Ci is 1-generic on Ci for ∃xϕs,
s < g(i), where ϕs is ∆0

(iv) T =
⋂

Ci .
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A Two-Stage Forcing Construction

A Cohen-type forcing construction carried out recursively
in R′ is deployed to achieve GL1. However,

For each i ∈ I, need to argue that there is a condition
forcing ∃xϕs for all s < g(i).

Effectively we are constructing T so that each X ∈ [T ] is
hyperregular.

This is achieved by exploiting a coding lemma that says
"Every bounded ∆2(R) set is coded".
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A Two-Stage Forcing Construction

Stage 2. Define a path G (from the outside) on T such that
M[G] |= BΣ2.

Define countable sequences {Tn} and {σn}, n < ω, such
that for each n,

Tn ⊃ Tn+1 are recursive in R′

σn ∈ Tn, σn ≤ σn+1
σn⊕R′ forces BΣ1(G⊕R′) for the nth Σ1(G⊕R′) sentence.
Tn above σn is M-infinite.

Put G =
⋃

n σn.
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Ramsey’s Theorem For Pairs

Let M |= RCA0.

RT2
2: Every two coloring of [M]2 (pairs of elements of M) has a

homogeneous set in M.
SRT2

2: Every stable two coloring of [M]2 has a homogeneous
set in M (f : [M]2 → 2 is stable if for all x , limy f (x , y) exists).

Hirst: Over RCA0, RT2
2 → BΣ2

Cholak, Jockusch and Slaman: Over RCA0,
RT2

2 ↔ COH + SRT2
2.

Question: Over RCA0, does RT2
2 → IΣ2? Does SRT2

2 → RT2
2?
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Nonstandard Methods in RT2
2

Downey, Hirschfeldt, Lempp and Solomon: There is a ∆2
A ⊂ ω such that neither A nor Ā contains an infinite low ∆2
set.

Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman:
Every ∆2 set A ⊂ ω either contains or is disjoint from an
infinite incomplete ∆2 set.

For A ∆2, call any infinite X ⊂ A or Ā a solution for A.

Interpreting these ∆2 solutions in RCA0 + BΣ2:
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Interpreting these ∆2 solutions in RCA0 + BΣ2:



Nonstandard Methods in RT2
2

Downey, Hirschfeldt, Lempp and Solomon: There is a ∆2
A ⊂ ω such that neither A nor Ā contains an infinite low ∆2
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Chong and Yag, Mytillinaios and Slaman: Let
M |= RCA0 + BΣ2. If G is ∆2(M), then M[G] satisfies
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Either P or Q is false.
Conjecture 1: There is a countable M |= RCA0 + BΣ2 with an
M-extension for the same theory in which every ∆2 set has a
solution.

Corollary (to Conjecture 1): RT2
2 does not imply IΣ2.

Jockusch: There is a recursive two coloring of [N]2 with no ∆2
homogeneous set.

Theorem
There is a (first order) M |= BΣ2 with a recursive two coloring
of [M]2 having no regular ∅′′-recursive homogeneous set.
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