Π_1^1 Conservation of COH Over $B\Sigma_2$ (Joint work with Ted Slaman and Yue Yang)

C T Chong

National University of Singapore

chongct@math.nus.edu.sg

8 December 2008

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.
- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an *M*-finite set onto an *M*-finite set.
- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$
- We take as base theory RCA_0 (Recursive Comprehension Axiom plus $I\Sigma_1$).

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.
- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an *M*-finite set onto an *M*-finite set.
- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$
- We take as base theory RCA_0 (Recursive Comprehension Axiom plus $I\Sigma_1$).

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.
- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an *M*-finite set onto an *M*-finite set.
- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$
- We take as base theory RCA_0 (Recursive Comprehension Axiom plus $I\Sigma_1$).

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.
- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an *M*-finite set onto an *M*-finite set.
- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$

• We take as base theory RCA_0 (Recursive Comprehension Axiom plus $I\Sigma_1$).

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.
- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an *M*-finite set onto an *M*-finite set.
- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$
- We take as base theory RCA₀ (Recursive Comprehension Axiom plus *I*Σ₁).

Definition

Let $R \in \mathbb{X}$ and $R_s = \{t | (s, t) \in R\}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \overline{R}_s$ is M-finite.

COH: $\mathcal{M} \models$ COH if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R. An *M*-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1$ such that $M = M^*$ and $\mathbb{X} \subseteq \mathbb{X}^*$.

Theorem

Definition

Let $R \in \mathbb{X}$ and $R_s = \{t | (s, t) \in R\}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \overline{R}_s$ is M-finite.

COH: $\mathcal{M} \models$ COH if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R. An M-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subseteq \mathbb{X}^*$.

Theorem

Definition

Let $R \in \mathbb{X}$ and $R_s = \{t | (s, t) \in R\}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \overline{R}_s$ is M-finite.

COH: $\mathcal{M} \models$ COH if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.

An *M*-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subseteq \mathbb{X}^*$.

Theorem

Definition

Let $R \in \mathbb{X}$ and $R_s = \{t | (s, t) \in R\}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \overline{R}_s$ is M-finite.

COH: $\mathcal{M} \models$ COH if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R. An *M*-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subseteq \mathbb{X}^*$.

Theorem

Definition

Let $R \in \mathbb{X}$ and $R_s = \{t | (s, t) \in R\}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \overline{R}_s$ is M-finite.

COH: $\mathcal{M} \models$ COH if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R. An *M*-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subset \mathbb{X}^*$.

Theorem

 $COH + RCA_0 + I\Sigma_n$ is Π^1_1 conservative over $RCA_0 + I\Sigma_n$, i.e. if φ is Π^1_1 and $RCA_0 + COH + I\Sigma_n \vdash \varphi$, then $RCA_0 + I\Sigma_n \vdash \varphi$.

Theorem

Every countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ has an M-extension $\mathcal{M}^* \models RCA_0 + COH + B\Sigma_2$.

Corollary

 $COH + RCA_0 + B\Sigma_2$ is Π^1_1 conservative over $RCA_0 + B\Sigma_2$.

 $COH + RCA_0 + I\Sigma_n \text{ is } \Pi_1^1 \text{ conservative over } RCA_0 + I\Sigma_n, \text{ i.e. if} \varphi \text{ is } \Pi_1^1 \text{ and } RCA_0 + COH + I\Sigma_n \vdash \varphi, \text{ then } RCA_0 + I\Sigma_n \vdash \varphi.$

Theorem

Every countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ has an M-extension $\mathcal{M}^* \models RCA_0 + COH + B\Sigma_2$.

Corollary

 $COH + RCA_0 + B\Sigma_2$ is Π_1^1 conservative over $RCA_0 + B\Sigma_2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $COH + RCA_0 + I\Sigma_n \text{ is } \Pi_1^1 \text{ conservative over } RCA_0 + I\Sigma_n, \text{ i.e. if} \varphi \text{ is } \Pi_1^1 \text{ and } RCA_0 + COH + I\Sigma_n \vdash \varphi, \text{ then } RCA_0 + I\Sigma_n \vdash \varphi.$

Theorem

Every countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ has an M-extension $\mathcal{M}^* \models RCA_0 + COH + B\Sigma_2$.

Corollary

 $COH + RCA_0 + B\Sigma_2$ is Π_1^1 conservative over $RCA_0 + B\Sigma_2$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 $COH + RCA_0 + I\Sigma_n \text{ is } \Pi^1_1 \text{ conservative over } RCA_0 + I\Sigma_n, \text{ i.e. if} \varphi \text{ is } \Pi^1_1 \text{ and } RCA_0 + COH + I\Sigma_n \vdash \varphi, \text{ then } RCA_0 + I\Sigma_n \vdash \varphi.$

Theorem

Every countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ has an M-extension $\mathcal{M}^* \models RCA_0 + COH + B\Sigma_2$.

Corollary

 $COH + RCA_0 + B\Sigma_2$ is Π_1^1 conservative over $RCA_0 + B\Sigma_2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

An M-extension Theorem

Theorem

Let $\mathcal{M} \models RCA_0 + B\Sigma_2$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^* = \mathcal{M}[G] \models RCA_0 + B\Sigma_2$ such that G is cohesive for R.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

This is established using a two stage forcing construction.

An M-extension Theorem

Theorem

Let $\mathcal{M} \models RCA_0 + B\Sigma_2$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^* = \mathcal{M}[G] \models RCA_0 + B\Sigma_2$ such that G is cohesive for R.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

This is established using a two stage forcing construction.

An M-extension Theorem

Theorem

Let $\mathcal{M} \models RCA_0 + B\Sigma_2$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^* = \mathcal{M}[G] \models RCA_0 + B\Sigma_2$ such that G is cohesive for R.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

This is established using a two stage forcing construction.

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let *I* be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

■ Build a uniformly R'-recursive nested sequence {C_i | i ∈ I} of M-infinite R-recursive trees such that for all i ∈ I:

(i) C_i ⊃ C_{i+1}
(ii) Every unbounded path on C_i is cohesive for R_s, s < g(i)
(III) Every unbounded path on C_i is 1-generic on C_i for ∃xφ_s, s < g(i), where φ_s is Δ₀
(iv) T = ∩ C_i.

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL₁ relative to R, i.e. X ⊕ R' ≡_T X'.

Let *I* be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i | i \in I\}$ of \mathcal{M} -infinite R-recursive trees such that for all $i \in I$:

(i) C_i ⊃ C_{i+1}
(ii) Every unbounded path on C_i is cohesive for R_s, s < g(i)
(III) Every unbounded path on C_i is 1-generic on C_i for ∃xφ_s, s < g(i), where φ_s is Δ₀
(iv) T = ∩ C_i.

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

■ Build a uniformly *R*′-recursive nested sequence {*C_i*|*i* ∈ *I*} of *M*-infinite *R*-recursive trees such that for all *i* ∈ *I*:

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let *I* be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

■ Build a uniformly R'-recursive nested sequence {C_i | i ∈ I} of M-infinite R-recursive trees such that for all i ∈ I:

(i) $C_i \supset C_{i+1}$ (ii) Every unbounded path on C_i is cohesive for R_s , s < g(i)(III) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, s < g(i), where φ_s is Δ_0 (iv) $T = \bigcap C_i$.

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let *I* be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

■ Build a uniformly R'-recursive nested sequence {C_i | i ∈ I} of M-infinite R-recursive trees such that for all i ∈ I:

(i) C_i ⊃ C_{i+1}
(ii) Every unbounded path on C_i is cohesive for R_s, s < g(i)
(III) Every unbounded path on C_i is 1-generic on C_i for ∃xφ_s, s < g(i), where φ_s is Δ₀
(iv) T = ∩ C_i.

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let *I* be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

■ Build a uniformly R'-recursive nested sequence {C_i | i ∈ I} of M-infinite R-recursive trees such that for all i ∈ I:

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let *I* be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

■ Build a uniformly R'-recursive nested sequence {C_i | i ∈ I} of M-infinite R-recursive trees such that for all i ∈ I:

(i)
$$C_i \supset C_{i+1}$$

- (ii) Every unbounded path on C_i is cohesive for R_s , s < g(i)
- (III) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, s < g(i), where φ_s is Δ_0

(iv) $T = \bigcap C$

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let *I* be a Σ_2 cut in \mathcal{M} and $g: I \to M$ be Σ_2 , increasing and cofinal.

■ Build a uniformly R'-recursive nested sequence {C_i | i ∈ I} of M-infinite R-recursive trees such that for all i ∈ I:

(i)
$$C_i \supset C_{i+1}$$

- (ii) Every unbounded path on C_i is cohesive for R_s , s < g(i)
- (III) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, s < g(i), where φ_s is Δ_0 (iv) $T = OC_i$

(iv)
$$T = \bigcap C_i$$
.

- A Cohen-type forcing construction carried out recursively in R' is deployed to achieve GL₁. However,
- For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_s$ for all s < g(i).
- Effectively we are constructing T so that each X ∈ [T] is hyperregular.
- This is achieved by exploiting a coding lemma that says "Every bounded Δ₂(R) set is coded".

- A Cohen-type forcing construction carried out recursively in R' is deployed to achieve GL₁. However,
- For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_s$ for all s < g(i).
- Effectively we are constructing T so that each $X \in [T]$ is *hyperregular*.
- This is achieved by exploiting a coding lemma that says "Every bounded Δ₂(R) set is coded".

(日) (日) (日) (日) (日) (日) (日) (日)

- A Cohen-type forcing construction carried out recursively in R['] is deployed to achieve GL₁. However,
- For each *i* ∈ *I*, need to argue that there is a condition forcing ∃*x*φ_s for all *s* < *g*(*i*).
- Effectively we are constructing T so that each X ∈ [T] is hyperregular.
- This is achieved by exploiting a coding lemma that says "Every bounded Δ₂(R) set is coded".

(日) (日) (日) (日) (日) (日) (日) (日)

- A Cohen-type forcing construction carried out recursively in R['] is deployed to achieve GL₁. However,
- For each *i* ∈ *I*, need to argue that there is a condition forcing ∃*x*φ_s for all *s* < *g*(*i*).
- Effectively we are constructing T so that each $X \in [T]$ is *hyperregular*.
- This is achieved by exploiting a coding lemma that says "Every bounded Δ₂(R) set is coded".

(日) (日) (日) (日) (日) (日) (日) (日)

- A Cohen-type forcing construction carried out recursively in R['] is deployed to achieve GL₁. However,
- For each *i* ∈ *I*, need to argue that there is a condition forcing ∃*x*φ_s for all *s* < *g*(*i*).
- Effectively we are constructing T so that each $X \in [T]$ is *hyperregular*.
- This is achieved by exploiting a coding lemma that says "Every bounded Δ₂(*R*) set is coded".

- Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.
- Define countable sequences $\{T_n\}$ and $\{\sigma_n\}, n < \omega$, such that for each *n*,

 $T_n \supset T_{n+1} \text{ are recursive in } R'$ $\sigma_n \in T_n, \sigma_n \le \sigma_{n+1}$ $\sigma_n \oplus R' \text{ forces } B\Sigma_1(G \oplus R') \text{ for the } n\text{th } \Sigma_1(G \oplus R') \text{ sentence.}$ $T_n \text{ above } \sigma_n \text{ is } \mathcal{M}\text{-infinite.}$

Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.

■ Define countable sequences {*T_n*} and {*σ_n*}, *n* < *ω*, such that for each *n*,

■ $T_n \supset T_{n+1}$ are recursive in R'■ $\sigma_n \in T_n, \sigma_n \le \sigma_{n+1}$ ■ $\sigma_n \oplus R'$ forces $B\Sigma_1(G \oplus R')$ for the *n*th $\Sigma_1(G \oplus R')$ sentence. ■ T_n above σ_n is \mathcal{M} -infinite.

(日) (日) (日) (日) (日) (日) (日) (日)

- Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.
- Define countable sequences {*T_n*} and {*σ_n*}, *n* < *ω*, such that for each *n*,

■ $T_n \supset T_{n+1}$ are recursive in R'■ $\sigma_n \in T_n, \sigma_n \le \sigma_{n+1}$ ■ $\sigma_n \oplus R'$ forces $B\Sigma_1(G \oplus R')$ for the *n*th $\Sigma_1(G \oplus R')$ sentence. ■ T_n above σ_n is \mathcal{M} -infinite.

(日) (日) (日) (日) (日) (日) (日) (日)

- Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.
- Define countable sequences {*T_n*} and {*σ_n*}, *n* < *ω*, such that for each *n*,

■ $T_n \supset T_{n+1}$ are recursive in R'■ $\sigma_n \in T_n, \sigma_n \le \sigma_{n+1}$ ■ $\sigma_n \oplus R'$ forces $B\Sigma_1(G \oplus R')$ for the *n*th $\Sigma_1(G \oplus R')$ sentence. ■ T_n above σ_n is \mathcal{M} -infinite.

(日) (日) (日) (日) (日) (日) (日) (日)

- Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.
- Define countable sequences {*T_n*} and {*σ_n*}, *n* < *ω*, such that for each *n*,

• $T_n \supset T_{n+1}$ are recursive in R'• $\sigma_n \in T_n, \sigma_n \le \sigma_{n+1}$ • $\sigma_n \oplus R'$ forces $B\Sigma_1(G \oplus R')$ for the *n*th $\Sigma_1(G \oplus R')$ sentence. • T_n above σ_n is \mathcal{M} -infinite.

(日) (日) (日) (日) (日) (日) (日) (日)

A Two-Stage Forcing Construction

- Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.
- Define countable sequences {*T_n*} and {*σ_n*}, *n* < *ω*, such that for each *n*,

• $T_n \supset T_{n+1}$ are recursive in R'• $\sigma_n \in T_n, \sigma_n \le \sigma_{n+1}$ • $\sigma_n \oplus R'$ forces $B\Sigma_1(G \oplus R')$ for the *n*th $\Sigma_1(G \oplus R')$ sentence. • T_n above σ_n is \mathcal{M} -infinite.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Put $G = \bigcup_n \sigma_n$.

A Two-Stage Forcing Construction

- Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.
- Define countable sequences {*T_n*} and {*σ_n*}, *n* < *ω*, such that for each *n*,
 - $T_n \supset T_{n+1}$ are recursive in R'• $\sigma_n \in T_n, \sigma_n \leq \sigma_{n+1}$ • $\sigma_n \oplus R'$ forces $B\Sigma_1(G \oplus R')$ for the *n*th $\Sigma_1(G \oplus R')$ sentence. • T_n above σ_n is \mathcal{M} -infinite.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Put $G = \bigcup_n \sigma_n$.

A Two-Stage Forcing Construction

- Stage 2. Define a path *G* (from the *outside*) on *T* such that $\mathcal{M}[G] \models B\Sigma_2$.
- Define countable sequences {*T_n*} and {*σ_n*}, *n* < *ω*, such that for each *n*,

•
$$T_n \supset T_{n+1}$$
 are recursive in R'
• $\sigma_n \in T_n, \sigma_n \le \sigma_{n+1}$
• $\sigma_n \oplus R'$ forces $B\Sigma_1(G \oplus R')$ for the *n*th $\Sigma_1(G \oplus R')$ sentence.
• T_n above σ_n is \mathcal{M} -infinite.

Put $G = \bigcup_n \sigma_n$.

Let $\mathcal{M} \models \operatorname{RCA}_0$.

RT₂²: Every two coloring of $[M]^2$ (pairs of elements of M) has a homogeneous set in \mathcal{M} . SRT₂²: Every *stable* two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \rightarrow 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA₀, $RT_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA₀, $RT_2^2 \leftrightarrow COH + SRT_2^2$.

Question: Over RCA₀, does $RT_2^2 \rightarrow I\Sigma_2$? Does $SRT_2^2 \rightarrow RT_2^2$?

RT₂²: Every two coloring of $[M]^2$ (pairs of elements of M) has a homogeneous set in \mathcal{M} . SRT₂²: Every *stable* two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \rightarrow 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA₀, $RT_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA₀, $RT_2^2 \leftrightarrow COH + SRT_2^2$.

Question: Over RCA₀, does $RT_2^2 \rightarrow I\Sigma_2$? Does $SRT_2^2 \rightarrow RT_2^2$?

 RT_2^2 : Every two coloring of $[M]^2$ (pairs of elements of *M*) has a homogeneous set in \mathcal{M} .

SRT₂²: Every stable two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \to 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA₀, $RT_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0 , $RT_2^2 \leftrightarrow COH + SRT_2^2$.

Question: Over RCA₀, does $RT_2^2 \rightarrow I\Sigma_2$? Does $SRT_2^2 \rightarrow RT_2^2$?

RT₂²: Every two coloring of $[M]^2$ (pairs of elements of M) has a homogeneous set in \mathcal{M} . SRT₂²: Every *stable* two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \rightarrow 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA₀, $RT_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0 , $RT_2^2 \leftrightarrow COH + SRT_2^2$.

Question: Over RCA₀, does $RT_2^2 \rightarrow I\Sigma_2$? Does $SRT_2^2 \rightarrow RT_2^2$?

RT₂²: Every two coloring of $[M]^2$ (pairs of elements of M) has a homogeneous set in \mathcal{M} . SRT₂²: Every *stable* two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \rightarrow 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA₀, $RT_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0 , $RT_2^2 \leftrightarrow COH + SRT_2^2$.

Question: Over RCA₀, does $RT_2^2 \rightarrow I\Sigma_2$? Does $SRT_2^2 \rightarrow RT_2^2$?

RT₂²: Every two coloring of $[M]^2$ (pairs of elements of M) has a homogeneous set in \mathcal{M} . SRT₂²: Every *stable* two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \rightarrow 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA₀, $RT_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA₀, $RT_2^2 \leftrightarrow COH + SRT_2^2$.

Question: Over RCA₀, does $RT_2^2 \rightarrow I\Sigma_2$? Does $SRT_2^2 \rightarrow RT_2^2$?

RT₂²: Every two coloring of $[M]^2$ (pairs of elements of M) has a homogeneous set in \mathcal{M} . SRT₂²: Every *stable* two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \rightarrow 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA₀, $RT_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA₀, $RT_2^2 \leftrightarrow COH + SRT_2^2$.

Question: Over RCA₀, does $RT_2^2 \rightarrow I\Sigma_2$? Does $SRT_2^2 \rightarrow RT_2^2$?

- Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_2 $A \subset \omega$ such that neither A nor \overline{A} contains an infinite low Δ_2 set.
- Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_2 set $A \subset \omega$ either contains or is disjoint from an infinite *incomplete* Δ_2 set.

- For $A riangle_2$, call any infinite $X \subset A$ or \overline{A} a solution for A.
- Interpreting these Δ_2 solutions in RCA₀ + $B\Sigma_2$:

Nonstandard Methods in RT²₂

- Downey, Hirschfeldt, Lempp and Solomon: There is a Δ₂ A ⊂ ω such that neither A nor Ā contains an infinite low Δ₂ set.
- Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_2 set $A \subset \omega$ either contains or is disjoint from an infinite *incomplete* Δ_2 set.

- For $A riangle_2$, call any infinite $X \subset A$ or \overline{A} a solution for A.
- Interpreting these Δ_2 solutions in RCA₀ + $B\Sigma_2$:

- Downey, Hirschfeldt, Lempp and Solomon: There is a Δ₂ A ⊂ ω such that neither A nor Ā contains an infinite low Δ₂ set.
- Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ₂ set A ⊂ ω either contains or is disjoint from an infinite *incomplete* Δ₂ set.

- For $A riangle_2$, call any infinite $X \subset A$ or \overline{A} a solution for A.
- Interpreting these Δ_2 solutions in RCA₀ + $B\Sigma_2$:

- Downey, Hirschfeldt, Lempp and Solomon: There is a Δ₂ A ⊂ ω such that neither A nor Ā contains an infinite low Δ₂ set.
- Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ₂ set A ⊂ ω either contains or is disjoint from an infinite *incomplete* Δ₂ set.

For $A \Delta_2$, call any infinite $X \subset A$ or \overline{A} a solution for A.

Interpreting these Δ_2 solutions in RCA₀ + $B\Sigma_2$:

- Downey, Hirschfeldt, Lempp and Solomon: There is a Δ₂ A ⊂ ω such that neither A nor Ā contains an infinite low Δ₂ set.
- Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ₂ set A ⊂ ω either contains or is disjoint from an infinite *incomplete* Δ₂ set.

- For $A \Delta_2$, call any infinite $X \subset A$ or \overline{A} a solution for A.
- Interpreting these Δ_2 solutions in RCA₀ + $B\Sigma_2$:

Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If *G* is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore

- There is an *M* in which each of the three possibilities occurs;
- There is an *M* in which every Δ₂(*M*) *G* satisfies either *M*[*G*] ⊨ RCA₀ \ *I*Σ₁ plus *B*Σ₁ or *B*Σ₂ (and each possibility occurs).
- \mathcal{P} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution *G* exists with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0 + B\Sigma_2$
- \mathcal{Q} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution *G* with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0$ or $\operatorname{RCA}_0 + B\Sigma_2$.

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If *G* is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an *M* in which each of the three possibilities occurs;
 - There is an *M* in which every Δ₂(*M*) *G* satisfies either *M*[*G*] ⊨ RCA₀ \ *I*Σ₁ plus *B*Σ₁ or *B*Σ₂ (and each possibility occurs).
- \mathcal{P} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution G exists with an M-extension $\mathcal{M}[G] \models \operatorname{RCA}_0 + B\Sigma_2$
- \mathcal{Q} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution *G* with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0$ or $\operatorname{RCA}_0 + B\Sigma_2$.

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If *G* is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an *M* in which each of the three possibilities occurs;

There is an *M* in which every Δ₂(*M*) *G* satisfies either *M*[*G*] ⊨ RCA₀ \ *I*Σ₁ plus *B*Σ₁ or *B*Σ₂ (and each possibility occurs).

- \mathcal{P} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution *G* exists with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0 + B\Sigma_2$
- \mathcal{Q} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution *G* with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0$ or $\operatorname{RCA}_0 + B\Sigma_2$.

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If *G* is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an *M* in which each of the three possibilities occurs;
 - There is an *M* in which every Δ₂(*M*) *G* satisfies either *M*[*G*] ⊨ RCA₀ \ *I*Σ₁ plus *B*Σ₁ or *B*Σ₂ (and each possibility occurs).
- \mathcal{P} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution *G* exists with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0 + B\Sigma_2$
- \mathcal{Q} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution *G* with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0$ or $\operatorname{RCA}_0 + B\Sigma_2$.

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \mathsf{RCA}_0 + B\Sigma_2$. If *G* is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\mathsf{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an *M* in which each of the three possibilities occurs;
 - There is an *M* in which every Δ₂(*M*) *G* satisfies either *M*[*G*] ⊨ RCA₀ \ *I*Σ₁ plus *B*Σ₁ or *B*Σ₂ (and each possibility occurs).
- \mathcal{P} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution *G* exists with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0 + B\Sigma_2$
- \mathcal{Q} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution *G* with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0$ or $\operatorname{RCA}_0 + B\Sigma_2$.

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If *G* is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an *M* in which each of the three possibilities occurs;
 - There is an *M* in which every Δ₂(*M*) *G* satisfies either *M*[*G*] ⊨ RCA₀ \ *I*Σ₁ plus *B*Σ₁ or *B*Σ₂ (and each possibility occurs).
- \mathcal{P} : For every $\mathcal{M} \models \operatorname{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution *G* exists with an *M*-extension $\mathcal{M}[G] \models \operatorname{RCA}_0 + B\Sigma_2$
- \mathcal{Q} : For every $\mathcal{M} \models \mathsf{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution G with an M-extension $\mathcal{M}[G] \models \mathsf{RCA}_0$ or $\mathsf{RCA}_0 + B\Sigma_2$.

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an *M*-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an M-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

Conjecture 1: There is a countable $\mathcal{M} \models \mathsf{RCA}_0 + B\Sigma_2$ with an *M*-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

Conjecture 1: There is a countable $\mathcal{M} \models \mathsf{RCA}_0 + B\Sigma_2$ with an *M*-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an *M*-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an *M*-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

Conjectue 2: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an M-extension for the same theory in which every Δ_2 set has a solution, and in which there is a recursive 2-coloring of $[M]^2$ with no homogeneous set.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Corollary (to Conjecture 2): RT² does not imply SRT².

Conjectue 2: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an *M*-extension for the same theory in which every Δ_2 set has a solution, and in which there is a recursive 2-coloring of $[M]^2$ with no homogeneous set.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Corollary (to Conjecture 2): RT² does not imply SRT².

Conjectue 2: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an *M*-extension for the same theory in which every Δ_2 set has a solution, and in which there is a recursive 2-coloring of $[M]^2$ with no homogeneous set.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Corollary (to Conjecture 2): RT²₂ does not imply SRT²₂.