Π_{1}^{1} Conservation of COH Over $B \Sigma_{2}$ (Joint work with Ted Slaman and Yue Yang)

C T Chong

National University of Singapore
chongct@math.nus.edu.sg
8 December 2008

Hierarchy of the Induction Scheme

Fix $\mathcal{M}=\langle M, \mathbb{X},+, \cdot, 0,1\rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

■ $\mathcal{M} \models I \Sigma_{n}\left(\Sigma_{n}\right.$ induction) if it satisfies every Σ_{n} instance (with parameters in \mathcal{M}) of the induction scheme.

■ $\mathcal{M} \vDash B \Sigma_{n}\left(\Sigma_{n}\right.$ bounding) if every Σ_{n} definable function maps an M-finite set onto an M-finite set.

- We take as base theory RCA_{0} (Recursive Comprehension Axiom plus $/ \Sigma_{1}$).

Hierarchy of the Induction Scheme

Fix $\mathcal{M}=\langle M, \mathbb{X},+, \cdot, 0,1\rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

■ $\mathcal{M} \models I \Sigma_{n}\left(\Sigma_{n}\right.$ induction) if it satisfies every Σ_{n} instance (with parameters in \mathcal{M}) of the induction scheme.

\square $\Sigma_{n+1} \rightarrow B \Sigma_{n+1} \rightarrow I \Sigma_{n} \rightarrow$

- We take as base theory RCA $_{0}$ (Recursive Comprehension Axiom plus $/ \Sigma_{1}$).

Hierarchy of the Induction Scheme

Fix $\mathcal{M}=\langle M, \mathbb{X},+, \cdot, 0,1\rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

■ $\mathcal{M} \models I \Sigma_{n}\left(\Sigma_{n}\right.$ induction) if it satisfies every Σ_{n} instance (with parameters in \mathcal{M}) of the induction scheme.

■ $\mathcal{M} \vDash B \Sigma_{n}\left(\Sigma_{n}\right.$ bounding) if every Σ_{n} definable function maps an M-finite set onto an M-finite set.

- Kirby-Paris: $/ \Sigma_{n+1} \rightarrow B \Sigma_{n+1}$
- We take as base theory RCA $_{0}$ (Recursive Comprehension Axiom plus $/ \Sigma_{1}$).

Hierarchy of the Induction Scheme

Fix $\mathcal{M}=\langle M, \mathbb{X},+, \cdot, 0,1\rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

■ $\mathcal{M} \models I \Sigma_{n}\left(\Sigma_{n}\right.$ induction) if it satisfies every Σ_{n} instance (with parameters in \mathcal{M}) of the induction scheme.

■ $\mathcal{M} \vDash B \Sigma_{n}\left(\Sigma_{n}\right.$ bounding) if every Σ_{n} definable function maps an M-finite set onto an M-finite set.

■ Kirby-Paris: $\cdots \rightarrow I \Sigma_{n+1} \rightarrow B \Sigma_{n+1} \rightarrow I \Sigma_{n} \rightarrow \cdots$

- We take as base theory RCA $_{0}$ (Recursive Comprehension Axiom plus $/ \Sigma_{1}$).

Hierarchy of the Induction Scheme

Fix $\mathcal{M}=\langle M, \mathbb{X},+, \cdot, 0,1\rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

■ $\mathcal{M} \models I \Sigma_{n}\left(\Sigma_{n}\right.$ induction) if it satisfies every Σ_{n} instance (with parameters in \mathcal{M}) of the induction scheme.

■ $\mathcal{M} \models B \Sigma_{n}\left(\Sigma_{n}\right.$ bounding) if every Σ_{n} definable function maps an M-finite set onto an M-finite set.

■ Kirby-Paris: $\cdots \rightarrow I \Sigma_{n+1} \rightarrow B \Sigma_{n+1} \rightarrow I \Sigma_{n} \rightarrow \cdots$

■ We take as base theory RCA $_{0}$ (Recursive Comprehension Axiom plus $/ \Sigma_{1}$).

The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_{S}=\{t \mid(s, t) \in R\} . C \subset M$ is cohesive for R if for all s, either $C \cap R_{S}$ is M-finite or $C \cap \bar{R}_{S}$ is M-finite.
$\mathrm{COH}: \mathcal{M} \equiv \mathrm{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.
An M-extension of \mathcal{M} is a structure $\mathcal{M}^{*}=\left\langle M^{*}, \mathbb{X}^{*},+, \cdot, 0,1\right\rangle$ such that $M=M^{*}$ and $\mathbb{X} \subseteq \mathbb{X}^{*}$.

Theorem

(Cholak Jockusch and Slaman) Let $n=1,2$. Every countable $\mathcal{M}=R C A_{0}+I \Sigma_{n}$ has an M-extension
$\mathcal{M}^{*}=R C A_{0}+C O H+I \Sigma_{n}$.

The Combinatorial Principle COH

Definition
Let $R \in \mathbb{X}$ and $R_{s}=\{t \mid(s, t) \in R\} . C \subset M$ is cohesive for R if for all s, either $C \cap R_{s}$ is M-finite or $C \cap \bar{R}_{s}$ is M-finite.
$\mathrm{COH}: \mathcal{M}=\mathrm{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is
cohesive for R.
An M-extension of M is a structure $\mathcal{M}^{*}=\left\langle M^{*}, X^{*},+, \cdot 0,1\right.$
such that $M=M^{*}$ and

Theorem
(Cholak Jockusch and Slaman) Let $n=1,2$. Every countable $\mathcal{M}=R C A_{0}+I \Sigma_{n}$ has an M-extension $\mathcal{M}^{*} \mid=R C A_{0}+C O H+I \Sigma_{n}$

The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_{s}=\{t \mid(s, t) \in R\} . C \subset M$ is cohesive for R if for all s, either $C \cap R_{s}$ is M-finite or $C \cap \bar{R}_{s}$ is M-finite.
$\mathrm{COH}: \mathcal{M} \equiv \mathrm{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.
An M-extension of \mathcal{M} is a structure $\mathcal{M}^{*}=\left\langle M^{*}, \mathbb{X}^{*},+, \cdot \cdot, 0,1\right.$
such that $M=M^{*}$ and

Theorem
(Cholak, Jockusch and Slaman) Let $n=1,2$. Every countable $\mathcal{M}=R C A_{0}+I \Sigma_{n}$ has an M-extension $\mathcal{M}^{*}=R C A_{0}+C O H+I \Sigma_{n}$

The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_{s}=\{t \mid(s, t) \in R\} . C \subset M$ is cohesive for R if for all s, either $C \cap R_{s}$ is M-finite or $C \cap \bar{R}_{s}$ is M-finite.
$\mathrm{COH}: \mathcal{M} \equiv \mathrm{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.
An M-extension of \mathcal{M} is a structure $\mathcal{M}^{*}=\left\langle M^{*}, \mathbb{X}^{*},+, \cdot, 0,1\right\rangle$ such that $M=M^{*}$ and $\mathbb{X} \subseteq \mathbb{X}^{*}$.
\square
(Cholak. Jockusch and Slaman) Let $n=1,2$. Every countable $\mathcal{M}=R C A_{0}+I \Sigma_{n}$ has an M-extension $\mathcal{M}^{*} \models R C A_{0}+C O H+I \Sigma_{n}$.

The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_{s}=\{t \mid(s, t) \in R\} . C \subset M$ is cohesive for R if for all s, either $C \cap R_{s}$ is M-finite or $C \cap \bar{R}_{s}$ is M-finite.
$\mathrm{COH}: \mathcal{M} \equiv \mathrm{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.
An M-extension of \mathcal{M} is a structure $\mathcal{M}^{*}=\left\langle M^{*}, \mathbb{X}^{*},+, \cdot, 0,1\right\rangle$ such that $M=M^{*}$ and $\mathbb{X} \subseteq \mathbb{X}^{*}$.

Theorem

(Cholak, Jockusch and Slaman) Let $n=1,2$. Every countable $\mathcal{M} \equiv R C A_{0}+I \Sigma_{n}$ has an M-extension $\mathcal{M}^{*} \models R C A_{0}+C O H+I \Sigma_{n}$.

COH and $B \Sigma_{2}$

Corollary

$\mathrm{COH}+R C A_{0}+I \Sigma_{n}$ is Π_{1}^{1} conservative over $R C A_{0}+I \Sigma_{n}$ ，i．e．if φ is Π_{1}^{1} and $R C A_{0}+C O H+I \Sigma_{n} \vdash \varphi$ ，then $R C A_{0}+I \Sigma_{n} \vdash \varphi$ ．

Theorem

Every countable $M=R C A_{0}+B \Sigma_{2}$ has an M－extension $\mathcal{M}^{*}=R C A_{0}+\mathrm{COH}+B \Sigma_{2}$.

Corollary

$\mathrm{COH}+R C A_{0}+B \Sigma_{2} i s \Pi_{1}^{1}$ conservative over $R C A_{0}+B \Sigma_{2}$.

COH and $B \Sigma_{2}$

Corollary

$C O H+R C A_{0}+I \Sigma_{n}$ is Π_{1}^{1} conservative over $R C A_{0}+I \Sigma_{n}$, i.e. if φ is Π_{1}^{1} and $R C A_{0}+C O H+I \Sigma_{n} \vdash \varphi$, then $R C A_{0}+I \Sigma_{n} \vdash \varphi$.

Theorem
 Everv countable $M=R C A_{0}+B \Sigma_{2}$ has an M-extension $\mathcal{M}^{*}=R C A_{0}+C O H+B \Sigma_{2}$

Corollary
$\mathrm{COH}+R C A_{0}+B \Sigma_{2}$ is \prod_{1}^{1} conservative over $R C A_{0}+B \Sigma_{2}$

COH and $B \Sigma_{2}$

Corollary

$\mathrm{COH}+R C A_{0}+I \Sigma_{n}$ is Π_{1}^{1} conservative over $R C A_{0}+I \Sigma_{n}$, i.e. if φ is Π_{1}^{1} and $R C A_{0}+C O H+I \Sigma_{n} \vdash \varphi$, then $R C A_{0}+I \Sigma_{n} \vdash \varphi$.

Theorem

Every countable $\mathcal{M}=R C A_{0}+B \Sigma_{2}$ has an M-extension $\mathcal{M}^{*} \mid=R C A_{0}+C O H+B \Sigma_{2}$.

Corollary
$\mathrm{COH}+R C A_{0}+B \Sigma_{2}$ is Π_{1}^{1} conservative over $R C A_{0}+B \Sigma_{2}$

COH and $B \Sigma_{2}$

Corollary

$\mathrm{COH}+R C A_{0}+I \Sigma_{n}$ is Π_{1}^{1} conservative over $R C A_{0}+I \Sigma_{n}$, i.e. if φ is Π_{1}^{1} and $R C A_{0}+C O H+I \Sigma_{n} \vdash \varphi$, then $R C A_{0}+I \Sigma_{n} \vdash \varphi$.

Theorem

Every countable $\mathcal{M} \vDash R C A_{0}+B \Sigma_{2}$ has an M-extension $\mathcal{M}^{*}=R C A_{0}+C O H+B \Sigma_{2}$.

Corollary

$C O H+R C A_{0}+B \Sigma_{2}$ is Π_{1}^{1} conservative over $R C A_{0}+B \Sigma_{2}$.

An M-extension Theorem

Theorem

I et $\mathcal{M}=R C A_{0}+B \Sigma_{2}$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^{*}=\mathcal{M}[G]=R C A_{0}+B \Sigma_{2}$ such that G is cohesive for R.

This is established using a two stage forcing construction.

An M-extension Theorem

Theorem
Let $\mathcal{M} \models R C A_{0}+B \Sigma_{2}$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^{*}=\mathcal{M}[G] \models R C A_{0}+B \Sigma_{2}$ such that G is cohesive for R.

This is established using a two stage forcing construction.

An M-extension Theorem

Theorem
Let $\mathcal{M} \models R C A_{0}+B \Sigma_{2}$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^{*}=\mathcal{M}[G] \models R C A_{0}+B \Sigma_{2}$ such that G is cohesive for R.

This is established using a two stage forcing construction.

A Two-Stage Construction for M-Extension

- Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

- Build a uniformly R^{\prime}-recursive nested sequence $\left\{C_{i} \mid i \in I\right\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:
(i) $C_{i} \supset C_{i+1}$
(ii) Every unbounded path on C_{i} is cohesive for $R_{S}, s<g(i)$
(III) Every unbounded path on C_{i} is 1-generic on C_{i} for $\exists x \varphi_{s}$, $s<g(i)$, where φ_{s} is Δ_{0}
(iv) $T=\cap C_{j}$

A Two-Stage Construction for M-Extension

$■$ Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv{ }_{T} X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

- Build a uniformly R^{\prime}-recursive nested sequence $\left\{C_{i} \mid i \in I\right.$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:

A Two-Stage Construction for M-Extension

$■$ Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv{ }_{T} X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

A Two-Stage Construction for M-Extension

$■$ Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv{ }_{T} X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

■ Build a uniformly R^{\prime}-recursive nested sequence $\left\{C_{i} \mid i \in I\right\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:

A Two-Stage Construction for M-Extension

■ Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv{ }_{T} X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

■ Build a uniformly R^{\prime}-recursive nested sequence $\left\{C_{i} \mid i \in I\right\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:
(i) $C_{i} \supset C_{i+1}$

A Two-Stage Construction for M-Extension

■ Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv{ }_{T} X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

■ Build a uniformly R^{\prime}-recursive nested sequence $\left\{C_{i} \mid i \in I\right\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:
(i) $C_{i} \supset C_{i+1}$
(ii) Every unbounded path on C_{i} is cohesive for $R_{s}, s<g(i)$

A Two-Stage Construction for M-Extension

■ Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv{ }_{T} X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

■ Build a uniformly R^{\prime}-recursive nested sequence $\left\{C_{i} \mid i \in I\right\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:
(i) $C_{i} \supset C_{i+1}$
(ii) Every unbounded path on C_{i} is cohesive for $R_{s}, s<g(i)$
(III) Every unbounded path on C_{i} is 1-generic on C_{i} for $\exists x \varphi_{s}$, $s<g(i)$, where φ_{s} is Δ_{0}

A Two-Stage Construction for M-Extension

■ Stage 1. Build an R^{\prime}-recursive tree T for which every unbounded path X on T is cohesive for R and GL_{1} relative to R, i.e. $X \oplus R^{\prime} \equiv{ }_{T} X^{\prime}$.

Let I be a Σ_{2} cut in \mathcal{M} and $g: I \rightarrow M$ be Σ_{2}, increasing and cofinal.

■ Build a uniformly R^{\prime}-recursive nested sequence $\left\{C_{i} \mid i \in I\right\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:
(i) $C_{i} \supset C_{i+1}$
(ii) Every unbounded path on C_{i} is cohesive for $R_{s}, s<g(i)$
(III) Every unbounded path on C_{i} is 1-generic on C_{i} for $\exists x \varphi_{s}$, $s<g(i)$, where φ_{s} is Δ_{0}
(iv) $T=\bigcap C_{i}$.

A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R^{\prime} is deployed to achieve GL_{1}. However,

■ For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_{s}$ for all $s<g(i)$.

- Effectively we are constructing T so that each $X \in[T]$ is hyperregular.
- This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_{2}(R)$ set is coded".

A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R^{\prime} is deployed to achieve GL_{1}. However,

\square For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_{s}$ for all $s<g(i)$.

- Effectively we are constructing T so that each $X \in[T]$ is hyperregular.

■ This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_{2}(R)$ set is coded"

A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R^{\prime} is deployed to achieve GL_{1}. However,

■ For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_{s}$ for all $s<g(i)$.

- Effectively we are constructing T so that each $X \in[T]$ is hyperregular.
- This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_{2}(R)$ set is coded"

A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R^{\prime} is deployed to achieve GL_{1}. However,

■ For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_{s}$ for all $s<g(i)$.

■ Effectively we are constructing T so that each $X \in[T]$ is hyperregular.

- This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_{2}(R)$ set is coded"

A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R^{\prime} is deployed to achieve GL_{1}. However,

■ For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_{s}$ for all $s<g(i)$.

■ Effectively we are constructing T so that each $X \in[T]$ is hyperregular.

■ This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_{2}(R)$ set is coded".

A Two-Stage Forcing Construction

■ Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \vDash B \Sigma_{2}$.
\square Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

- $T_{n} \supset T_{n+1}$ are recursive in R^{\prime}

■ $\sigma_{n} \in T_{n}, \sigma_{n} \leq \sigma_{n+1}$

- $\sigma_{n} \otimes R^{\prime}$ forces $B \Sigma_{1}\left(G \oplus R^{\prime}\right)$ for the nth $\Sigma_{1}\left(G \oplus R^{\prime}\right)$ sentence.
- T_{n} above σ_{n} is \mathcal{M}-infinite.

Put $G=\bigcup_{n} \sigma_{n}$.

A Two-Stage Forcing Construction

\square Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B \Sigma_{2}$.

\square Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

A Two-Stage Forcing Construction

■ Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B \Sigma_{2}$.

■ Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

A Two-Stage Forcing Construction

■ Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B \Sigma_{2}$.

■ Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

■ $T_{n} \supset T_{n+1}$ are recursive in R^{\prime}

A Two-Stage Forcing Construction

■ Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B \Sigma_{2}$.

■ Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

- $T_{n} \supset T_{n+1}$ are recursive in R^{\prime}
- $\sigma_{n} \in T_{n}, \sigma_{n} \leq \sigma_{n+1}$
- $\sigma_{n} \oplus R^{\prime}$ forces $B \Sigma_{1}\left(G \oplus R^{\prime}\right)$ for the nth $\Sigma_{1}\left(G \oplus R^{\prime}\right)$ sentence
- T_{n} above σ_{n} is \mathcal{M}-infinite.

A Two-Stage Forcing Construction

■ Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B \Sigma_{2}$.

■ Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

- $T_{n} \supset T_{n+1}$ are recursive in R^{\prime}
- $\sigma_{n} \in T_{n}, \sigma_{n} \leq \sigma_{n+1}$

■ $\sigma_{n} \oplus R^{\prime}$ forces $B \Sigma_{1}\left(G \oplus R^{\prime}\right)$ for the nth $\Sigma_{1}\left(G \oplus R^{\prime}\right)$ sentence.

A Two-Stage Forcing Construction

■ Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B \Sigma_{2}$.

■ Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

- $T_{n} \supset T_{n+1}$ are recursive in R^{\prime}
- $\sigma_{n} \in T_{n}, \sigma_{n} \leq \sigma_{n+1}$

■ $\sigma_{n} \oplus R^{\prime}$ forces $B \Sigma_{1}\left(G \oplus R^{\prime}\right)$ for the nth $\Sigma_{1}\left(G \oplus R^{\prime}\right)$ sentence.

- T_{n} above σ_{n} is \mathcal{M}-infinite.

A Two-Stage Forcing Construction

■ Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \vDash B \Sigma_{2}$.

■ Define countable sequences $\left\{T_{n}\right\}$ and $\left\{\sigma_{n}\right\}, n<\omega$, such that for each n,

- $T_{n} \supset T_{n+1}$ are recursive in R^{\prime}
- $\sigma_{n} \in T_{n}, \sigma_{n} \leq \sigma_{n+1}$

■ $\sigma_{n} \oplus R^{\prime}$ forces $B \Sigma_{1}\left(G \oplus R^{\prime}\right)$ for the nth $\Sigma_{1}\left(G \oplus R^{\prime}\right)$ sentence.

- T_{n} above σ_{n} is \mathcal{M}-infinite.

Put $G=\bigcup_{n} \sigma_{n}$.

Ramsey's Theorem For Pairs

Let $\mathcal{M}=\mathrm{RCA}_{0}$.

$R T_{2}^{2}$: Every two coloring of $[M]^{2}$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.
SRT ${ }_{2}^{2}$: Every stable two coloring of $[M]^{2}$ has a homogeneous set in $\mathcal{M}\left(f:[M]^{2} \rightarrow 2\right.$ is stable if for all $x, \lim _{y} f(x, y)$ exists).

Hirst: Over $\mathrm{RCA}_{0}, \mathrm{RT}_{2}^{2} \rightarrow B \Sigma_{2}$
Cholak, Jockusch and Slaman: Over RCA ${ }_{0}$,
$\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH}+\mathrm{SRT}_{2}^{2}$.
Question: Over RCA , does $R T_{2}^{2} \rightarrow I \Sigma_{2}$? Does $\mathrm{SRT}_{2}^{2} \rightarrow \mathrm{RT}_{2}^{2}$?

Ramsey's Theorem For Pairs

Let $\mathcal{M}=\mathrm{RCA}_{0}$.
$R T_{2}^{2}$: Every two coloring of $[M]^{2}$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.
SRT ${ }_{2}^{2}$: Every stable two coloring of $[M]^{2}$ has a homogeneous set in $\mathcal{M}\left(f:[M]^{2} \rightarrow 2\right.$ is stable if for all $x, \lim _{y} f(x, y)$ exists).

Hirst: Over $\mathrm{RCA}_{0}, \mathrm{RT}_{2}^{2} \rightarrow B \Sigma_{2}$
Cholak, Jockusch and Slaman: Over RCA0,
$\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH}+\mathrm{SRT}_{2}^{2}$.
Question: Over RCA_{0}, does $\mathrm{RT}_{2}^{2} \rightarrow I \Sigma_{2}$? Does $\mathrm{SRT}_{2}^{2} \rightarrow \mathrm{RT}_{2}^{2}$?

Ramsey's Theorem For Pairs

Let $\mathcal{M}=\mathrm{RCA}_{0}$.
RT_{2}^{2} : Every two coloring of $[M]^{2}$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.

Cholak, Jockusch and Slaman: Over RCA , $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH}+\mathrm{SRT}_{2}^{2}$.

Question: Over $R C A_{0}$, does $R T_{2}^{2} \rightarrow I \Sigma_{2}$? Does $\mathrm{SRT}_{2}^{2} \rightarrow \mathrm{RT}_{2}^{2}$?

Ramsey's Theorem For Pairs

$$
\text { Let } \mathcal{M} \models \mathrm{RCA}_{0} \text {. }
$$

RT_{2}^{2} : Every two coloring of $[M]^{2}$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.
SRT_{2}^{2} : Every stable two coloring of $[M]^{2}$ has a homogeneous set in $\mathcal{M}\left(f:[M]^{2} \rightarrow 2\right.$ is stable if for all $x, \lim _{y} f(x, y)$ exists $)$.

Cholak, Jockusch and Slaman: Over RCA 0 , $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH}+\mathrm{SRT}_{2}^{2}$.

Question: Over $R C A_{0}$, does $R T_{2}^{2} \rightarrow I \Sigma_{2}$? Does $\mathrm{SRT}_{2}^{2} \rightarrow \mathrm{RT}_{2}^{2}$?

Ramsey's Theorem For Pairs

Let $\mathcal{M} \models \mathrm{RCA}_{0}$.
RT_{2}^{2} : Every two coloring of $[M]^{2}$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.
SRT_{2}^{2} : Every stable two coloring of $[M]^{2}$ has a homogeneous set in $\mathcal{M}\left(f:[M]^{2} \rightarrow 2\right.$ is stable if for all $x, \lim _{y} f(x, y)$ exists $)$.

Hirst: Over $\mathrm{RCA}_{0}, \mathrm{RT}_{2}^{2} \rightarrow B \Sigma_{2}$
Cholak, Jockusch and Slaman: Over RCA , $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH}+\mathrm{SRT}_{2}^{2}$.

Question: Over $R C A_{0}$, does $\mathrm{RT}_{2}^{2} \rightarrow I \Sigma_{2}$? Does $\mathrm{SRT}_{2}^{2} \rightarrow \mathrm{RT}_{2}^{2}$?

Ramsey's Theorem For Pairs

Let $\mathcal{M} \models \mathrm{RCA}_{0}$.
RT_{2}^{2} : Every two coloring of $[M]^{2}$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.
SRT_{2}^{2} : Every stable two coloring of $[M]^{2}$ has a homogeneous set in $\mathcal{M}\left(f:[M]^{2} \rightarrow 2\right.$ is stable if for all $x, \lim _{y} f(x, y)$ exists $)$.

Hirst: Over $\mathrm{RCA}_{0}, \mathrm{RT}_{2}^{2} \rightarrow B \Sigma_{2}$
Cholak, Jockusch and Slaman: Over RCA ${ }_{0}$, $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH}+\mathrm{SRT}_{2}^{2}$.

Question: Over RCA_{0}, does $\mathrm{RT}_{2}^{2} \rightarrow I \Sigma_{2}$? Does $\mathrm{SRT}_{2}^{2} \rightarrow \mathrm{RT}_{2}^{2}$?

Ramsey's Theorem For Pairs

Let $\mathcal{M}=\mathrm{RCA}_{0}$.
RT_{2}^{2} : Every two coloring of $[M]^{2}$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.
SRT_{2}^{2} : Every stable two coloring of $[M]^{2}$ has a homogeneous set in $\mathcal{M}\left(f:[M]^{2} \rightarrow 2\right.$ is stable if for all $x, \lim _{y} f(x, y)$ exists $)$.

Hirst: Over $\mathrm{RCA}_{0}, \mathrm{RT}_{2}^{2} \rightarrow B \Sigma_{2}$
Cholak, Jockusch and Slaman: Over RCA ${ }_{0}$, $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH}+\mathrm{SRT}_{2}^{2}$.

Question: Over RCA_{0}, does $\mathrm{RT}_{2}^{2} \rightarrow I \Sigma_{2}$? Does $\mathrm{SRT}_{2}^{2} \rightarrow \mathrm{RT}_{2}^{2}$?

Nonstandard Methods in RT_{2}^{2}

－Downey，Hirschfeldt，Lempp and Solomon：There is a Δ_{2} $A \subset \omega$ such that neither A nor \bar{A} contains an infinite low Δ_{2} set．

■ Hirschfeldt，Jockusch，Kjos－Hansen，Lempp and Slaman： Every Δ_{2} set $A \subset \omega$ either contains or is disjoint from an infinite incomplete \triangle_{2} set．
－For $A \Delta_{2}$ ，call any infinite $X \subset A$ or \bar{A} a solution for A ．
－Interpreting these Δ_{2} solutions in $R C A_{0}+B \Sigma_{2}$ ：

Nonstandard Methods in RT_{2}^{2}

- Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_{2} $A \subset \omega$ such that neither A nor \bar{A} contains an infinite low Δ_{2} set.

■ Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_{2} set $A \subset \omega$ either contains or is disjoint from an infinite incomplete Δ_{2} set

■ For $A \Delta_{2}$, call any infinite $X \subset A$ or \bar{A} a solution for A.

■ Interpreting these Δ_{2} solutions in $R C A_{0}+B \Sigma_{2}$

Nonstandard Methods in RT_{2}^{2}

■ Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_{2} $A \subset \omega$ such that neither A nor \bar{A} contains an infinite low Δ_{2} set.

■ Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_{2} set $A \subset \omega$ either contains or is disjoint from an infinite incomplete Δ_{2} set.

■ For $A \Delta_{2}$, call any infinite $X \subset A$ or \bar{A} a solution for A.
\square Interpreting these Δ_{2} solutions in $R C A_{0}+B \Sigma_{2}$:

Nonstandard Methods in RT_{2}^{2}

■ Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_{2} $A \subset \omega$ such that neither A nor \bar{A} contains an infinite low Δ_{2} set.

■ Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_{2} set $A \subset \omega$ either contains or is disjoint from an infinite incomplete Δ_{2} set.
$■$ For $A \Delta_{2}$, call any infinite $X \subset A$ or \bar{A} a solution for A.

- Interpreting these Δ_{2} solutions in $R C A_{0}+B \Sigma_{2}$:

Nonstandard Methods in RT_{2}^{2}

■ Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_{2} $A \subset \omega$ such that neither A nor \bar{A} contains an infinite low Δ_{2} set.

■ Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_{2} set $A \subset \omega$ either contains or is disjoint from an infinite incomplete Δ_{2} set.

■ For $A \Delta_{2}$, call any infinite $X \subset A$ or \bar{A} a solution for A.
\square Interpreting these Δ_{2} solutions in $R C A_{0}+B \Sigma_{2}$:

Nonstandard Methods in RT_{2}^{2}

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$. If G is $\Delta_{2}(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $R C A_{0} \backslash / \Sigma_{1}$ plus either $B \Sigma_{1}, I \Sigma_{1}$ or $B \Sigma_{2}$. Furthermore
- There is an \mathcal{M} in which each of the three possibilities occurs;
- There is an \mathcal{M} in which every $\Delta_{2}(\mathcal{M}) G$ satisfies either $M[G]=R C A_{0} \backslash / \Sigma_{1}$ plus $B \Sigma_{1}$ or $B \Sigma_{2}$ (and each possibility occurs).
\mathcal{P} : For every $\mathcal{M} \models R C A_{0}+B \Sigma_{2}$, there is a $\Delta_{2} A \subset M$ for which no Δ_{2} solution G exists with an M-extension $M[G]=R C A_{0}+B \Sigma_{2}$
Q : For every $\mathcal{M} \models R C A_{0}+B \Sigma_{2}$ and every $\triangle_{2} A \subset M$, there is a Δ_{2} solution G with an M-extension $\mathcal{M}[G] \models R C A_{0}$ or $R C A_{0}+B \Sigma_{2}$.

Nonstandard Methods in RT_{2}^{2}

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$. If G is $\Delta_{2}(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $R C A_{0} \backslash I \Sigma_{1}$ plus either $B \Sigma_{1}, I \Sigma_{1}$ or $B \Sigma_{2}$. Furthermore

For every $\mathcal{M} \vDash R_{C A}+B \Sigma_{2}$, there is a $\Delta_{2} A \subset M$ for

which no Δ_{2} solution G exists with an M-extension $\mathcal{M}[G]=R C A_{0}+B \Sigma_{2}$ For every $\mathcal{M} \models R C A_{0}+B \Sigma_{2}$ and every $\Delta_{2} A \subset M$, there is a Δ_{2} solution G with an M-extension $\mathcal{M}[G] \models R^{2} A_{0}$ or $R C A_{0}+B \Sigma_{2}$

Nonstandard Methods in RT_{2}^{2}

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$. If G is $\Delta_{2}(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $R C A_{0} \backslash I \Sigma_{1}$ plus either $B \Sigma_{1}, I \Sigma_{1}$ or $B \Sigma_{2}$. Furthermore

■ There is an \mathcal{M} in which each of the three possibilities occurs;

Nonstandard Methods in RT_{2}^{2}

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$. If G is $\Delta_{2}(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $R C A_{0} \backslash I \Sigma_{1}$ plus either $B \Sigma_{1}, I \Sigma_{1}$ or $B \Sigma_{2}$. Furthermore

■ There is an \mathcal{M} in which each of the three possibilities occurs;
■ There is an \mathcal{M} in which every $\Delta_{2}(\mathcal{M}) G$ satisfies either $\mathcal{M}[G] \vDash R^{2} A_{0} \backslash / \Sigma_{1}$ plus $B \Sigma_{1}$ or $B \Sigma_{2}$ (and each possibility occurs).

Nonstandard Methods in RT_{2}^{2}

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models$ RCA $_{0}+B \Sigma_{2}$. If G is $\Delta_{2}(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $R C A_{0} \backslash I \Sigma_{1}$ plus either $B \Sigma_{1}, I \Sigma_{1}$ or $B \Sigma_{2}$. Furthermore

■ There is an \mathcal{M} in which each of the three possibilities occurs;
■ There is an \mathcal{M} in which every $\Delta_{2}(\mathcal{M}) G$ satisfies either $\mathcal{M}[G] \models \mathrm{RCA}_{0} \backslash / \Sigma_{1}$ plus $B \Sigma_{1}$ or $B \Sigma_{2}$ (and each possibility occurs).
\mathcal{P} : For every $\mathcal{M} \equiv \mathrm{RCA}_{0}+B \Sigma_{2}$, there is a $\Delta_{2} A \subset M$ for which no Δ_{2} solution G exists with an M-extension $\mathcal{M}[G] \models \mathrm{RCA}_{0}+B \Sigma_{2}$

Nonstandard Methods in RT_{2}^{2}

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models$ RCA $_{0}+B \Sigma_{2}$. If G is $\Delta_{2}(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $R C A_{0} \backslash I \Sigma_{1}$ plus either $B \Sigma_{1}, I \Sigma_{1}$ or $B \Sigma_{2}$. Furthermore

■ There is an \mathcal{M} in which each of the three possibilities occurs;
■ There is an \mathcal{M} in which every $\Delta_{2}(\mathcal{M}) G$ satisfies either $\mathcal{M}[G] \vDash \mathrm{RCA}_{0} \backslash / \Sigma_{1}$ plus $B \Sigma_{1}$ or $B \Sigma_{2}$ (and each possibility occurs).
\mathcal{P} : For every $\mathcal{M} \equiv \mathrm{RCA}_{0}+B \Sigma_{2}$, there is a $\Delta_{2} A \subset M$ for which no Δ_{2} solution G exists with an M-extension $\mathcal{M}[G] \models R^{\prime} A_{0}+B \Sigma_{2}$
\mathcal{Q} : For every $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$ and every $\Delta_{2} A \subset M$, there is a Δ_{2} solution G with an M-extension $\mathcal{M}[G] \models R^{2} A_{0}$ or $R C A_{0}+B \Sigma_{2}$.

Nonstandard Methods in RT_{2}^{2}

Either \mathcal{P} or \mathcal{Q} is false.
Conjecture 1: There is a countable $\mathcal{M}=R C A_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every \triangle_{2} set has a solution.

Corollary (to Conjecture 1): RT_{2}^{2} does not imply $/ \Sigma_{2}$.
Jockusch: There is a recursive two coloring of [wi12 with no \triangle_{2} homogeneous set.

Theorem

There is a (first order) $M=B \Sigma_{2}$ with a recursive two coloring of $[M]^{2}$ having no regular $\emptyset^{\prime \prime}$-recursive homogeneous set.

Nonstandard Methods in RT_{2}^{2}

Either \mathcal{P} or \mathcal{Q} is false.
Conjecture 1: There is a countable $\mathcal{M}=R C A_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution.

Corollary (to Conjecture 1): RT_{2}^{2} does not imply $/ \Sigma_{2}$.
Jockusch: There is a recursive two coloring of $[T]^{2}$ with no \triangle_{2} homogeneous set.

Theorem

There is a (first order) $M=B \Sigma_{2}$ with a recursive two coloring of $[M]^{2}$ having no regular $\emptyset^{\prime \prime}$-recursive homogeneous set.

Nonstandard Methods in RT_{2}^{2}

Either \mathcal{P} or \mathcal{Q} is false.
Conjecture 1: There is a countable $\mathcal{M} \equiv \mathrm{RCA}_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution.

Corollary (to Conjecture 1): RT_{2}^{2} does not imply $I \Sigma_{2}$ Jockusch: There is a recursive two coloring of $[N]^{2}$ with no Δ_{2} homogeneous set.

Theorem
There is a (first order) $\mathcal{M}=B \Sigma_{2}$ with a recursive two coloring of $[M]^{2}$ having no regular $\emptyset^{\prime \prime}$-recursive homogeneous set.

Nonstandard Methods in RT_{2}^{2}

Either \mathcal{P} or \mathcal{Q} is false.
Conjecture 1: There is a countable $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution.

Corollary (to Conjecture 1): RT_{2}^{2} does not imply $/ \Sigma_{2}$.
Jockusch: There is a recursive two coloring of $[\mathbb{N}]^{2}$ with no Δ_{2}
homogeneous set.
Theorem
There is a (first order) $\mathcal{M}=B \Sigma_{2}$ with a recursive two coloring of $[M]^{2}$ having no regular $\emptyset^{\prime \prime}$-recursive homogeneous set.

Nonstandard Methods in RT_{2}^{2}

Either \mathcal{P} or \mathcal{Q} is false.
Conjecture 1: There is a countable $\mathcal{M} \equiv \mathrm{RCA}_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution.

Corollary (to Conjecture 1): RT_{2}^{2} does not imply $/ \Sigma_{2}$. Jockusch: There is a recursive two coloring of $[\mathbb{N}]^{2}$ with no Δ_{2} homogeneous set.

> Theorem
There is a (first order) $\mathcal{M}=B \Sigma_{2}$ with a recursive two coloring of $[M]^{2}$ having no regular $\emptyset^{\prime \prime}$-recursive homogeneous set.

Nonstandard Methods in RT_{2}^{2}

Either \mathcal{P} or \mathcal{Q} is false.
Conjecture 1: There is a countable $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution.

Corollary (to Conjecture 1): RT_{2}^{2} does not imply $/ \Sigma_{2}$.
Jockusch: There is a recursive two coloring of $[\mathbb{N}]^{2}$ with no Δ_{2} homogeneous set.

Theorem

There is a (first order) $\mathcal{M} \models B \Sigma_{2}$ with a recursive two coloring of $[M]^{2}$ having no regular $\emptyset^{\prime \prime}$-recursive homogeneous set.

Nonstandard Methods in RT_{2}^{2}

Conjectue 2: There is a countable $\mathcal{M} \models R C A_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution, and in which there is a recursive 2 -coloring of $[M]^{2}$ with no homogeneous set.

Corollary (to Conjecture 2): RT_{2}^{2} does not imply SRT_{2}^{2}.

Nonstandard Methods in RT_{2}^{2}

Conjectue 2: There is a countable $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution, and in which there is a recursive 2-coloring of $[M]^{2}$ with no homogeneous set.

Corollary (to Conjecture 2): RT_{2}^{2} does not imply SRT_{2}^{2}.

Nonstandard Methods in RT_{2}^{2}

Conjectue 2: There is a countable $\mathcal{M} \models \mathrm{RCA}_{0}+B \Sigma_{2}$ with an M-extension for the same theory in which every Δ_{2} set has a solution, and in which there is a recursive 2-coloring of $[M]^{2}$ with no homogeneous set.

Corollary (to Conjecture 2): RT_{2}^{2} does not imply SRT_{2}^{2}.

