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The Model of Computation

• Multi-tape Turing machine; independent heads.

• Read-only input tape.

• Write-only output tape.

• Space used on other tapes is counted.

• F : N→ N is a proper complexity function if
nondecreasing and there is Turing machine M which
computes 1F (x) in ≤ O(|x|+ F (|x|) steps and uses
space ≤ O(F (|x|).

• LOG =
⋃
n SPACE(c log n).

• PLOG =
⋃
n SPACE((log n)c).

• P = PTIME =
⋃
n TIME(nc).

• FACTS:

(a) TIME(G) ⊆ SPACE(G);

(b) SPACE(G) ⊆ TIME(kG(n)+log n);

(c) For f ∈ LOG, |f(x)| ≤ |x|k.
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Standard Universes

• Tal(0) = Bin(0) = 0; Tal(n+ 1) = 1n+1.

• Bk(n) = b0b1 . . . br ∈ {0,1, . . . , k − 1}r+1 when
n = b0 + b1k + · · ·+ brkr.

• Tal(N) = {Tal(n) : n ∈ N};
Bk(N) = {Bk(n) : n ∈ N}; Bin(n) = B2(n).

• The sets Tal(N) and Bk(N) are said to be
standard universes

• For computable algebra and model theory, every
computable set is computably isomorphic to N, so
a computable structure is assumed to have universe
N without loss of generality.

• For complexity theoretic model theory and algebra,
this is not the case. Bin(N) and Tal(N) are NOT
PTIME isomorphic.

• Any computable relational structure is computably
isomorphic to a LOGSPACE structure.

• However, there may not be a PTIME structure with
a standard universe.
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Examples

• In Tal(N), addition, multiplication are ZEROSPACE.

• In Bin(N), addition is ZEROSPACE and
multiplication is LOGSPACE
– NOT by the usual algorithm!

• In Bin(N), 2x is LINSPACE (essentially the same
as converting to tally.)

• In Bin(N), division (with remainder) is LOGSPACE
– Chiu, Davida and Litow (Theor. Inform. Appl.
2001).

• In Bin(N), primality is PTIME
– Agrawal, Kayhal and Saxena, Ann. Math. 2004.

• Intuition is that PTIME algorithms can be
converted into LOGSPACE.
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Composition Lemma

• Lemma 1. Let F,G be proper nonconstant
complexity functions, g a unary function in
SPACE(G) and f an n-ary function in SPACE(F ).
Then the composition g ◦ f can be computed in
SPACE ≤ G(2kF) for some constant k.

Proof is a generalization of the standard proof that
LOGSPACE is closed under composition.

• Corollary 1

(a) LOGSPACE ◦ LINSPACE = LINSPACE;

(b) PLOGSPACE◦PLOGSPACE = PLOGSPACE;

(c) PLOGSPACE ◦ LINSPACE ⊆ PSPACE;

(d) EXPSPACE ◦ LOGSPACE = EXPSPACE;
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Logspace Set Isomorphisms

• Theorem 1. Let A ⊆ Tal(N) be LOGSPACE, and
let A = {a0 < a1 < a2 < . . . }. The following are
equivalent:

(a) A is LOGSPACE set-isomorphic to Tal(N).

(b) For some k and all n > 2, we have |an| ≤ nk.

(c) The canonical bijection between Tal(N) and A
mapping 1n to an, n ≥ 0, is LOGSPACE.

Sketch: To compute 1n from a ∈ A, count the
number of members of A which are less than a.
Keep track of the numbers in binary and do the
testing in tally. To compute an from 1n, test 1i ∈ A
until n members are found. The test is a
composition of (1) converting Bin(i) to Tal(i) and
(2) testing Tal(i) ∈ A, which is LINSPACE in
Bin(i) and hence LOGSPACE in Tal(n).
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More Logspace Set Isomorphisms

• Lemma 2. (Radix Representation.) For k ≥ 2,
the following sets are LOGSPACE isomorphic:

(a) Bin(N);

(b) Bk(N);

(c) {0,1, . . . , k − 1}∗.

Furthermore, for each isomorphism f above,
|f(x)| ≤ c|x| for some c.

• Definition. A⊕B = {2n : n ∈ A}∪{2n+ 1 : n ∈ B}.
A ⊗ B = {〈a, b〉 : a ∈ A & b ∈ B}, where 〈a, b〉 is a
(new) logspace pairing function.

• Lemma 3. Let A ⊆ Tal(N) be nonempty LOGSPACE.

(a) A⊕Tal(N) is LOGSPACE isomorphic to Tal(N)
and A ⊕ Bin(N) is LOGSPACE isomorphic to
Bin(N).

(b) A⊗Tal(N) is LOGSPACE isomorphic to Tal(N)
and A ⊗ Bin(N) is LOGSPACE isomorphic to
Bin(N).

(c) Bin(N)⊕Bin(N) and Bin(N)⊗Bin(N) are
LOGSPACE isomorphic to Bin(N).
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Logspace Structures

• Complexity Theoretic Model Theory and Algebra
was developed by Nerode and others, focusing on
PTIME structures. [Cenzer & Remmel, Handbook
of Recursive Mathematics, 1998.]

• Lemma 4. If A is a LOGSPACE structure and
ϕ a LOGSPACE bijection from A to B, then B is
LOGSPACE.

If M is a structure with universe M ⊆ N, then
Tal(M) denotes the representation of M with
universe Tal(M) and Bin(M) the representation
with universe Bin(M).

• Lemma 5.

(a) If Bin(M) is LOG, then Tal(M) is PLOG.

(b) If Bin(M) is LINSPACE and for all functions
f , |fB(m1, . . . ,mn)| 6 c(|m1|+· · ·+|mn|) for some
constant c, then Tal(M) is LOGSPACE.
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Abelian Groups

• Z is the group of integers, and Zk = Z mod kZ.

• Q is the group of rationals and Q mod Z, the quo-
tient group.

• Qp is the p-adic rationals and Z(p∞) = Qp mod Z.

• ⊕iAi is the direct sum of 〈Ai〉i<ω, that is, the set of
(a0, a1, . . . ) where all but finitely many ai = 0. ⊕ωA
denotes ⊕iAi where each Ai = A.

• The sequence Ai is fully uniformly LOGSPACE over
B = Bin(N) (and similarly for B = Tal(N)) if

(i) The set {〈Bin(n), a〉 : a ∈ An} is LOGSPACE.

(ii) The functions F (Bin(n), a, b) = a+n b and
G(Bin(n), a, b) = a−n b, are LOGSPACE.

(iii) The function e(Tal(i)) = ei, is LOGSPACE.
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Direct Sums

• Lemma 6. Let B be either Tal(N) or Bin(N).
Suppose that the sequence Ai = (Ai,+i,−i, ei) of
groups is fully uniformly LOGSPACE over B. Then

(a) ⊕iAi is computably isomorphic to a LOGSPACE
group with universe contained in Bin(N).

(b) If Ai ⊂ Ai+1 for all i,and if there is a LOGSPACE
function f : {0,1}∗ → B such that a ∈ Af(a),
then

⋃
iAi is a LOGSPACE group with universe

contained in B.

(c) If each Ai has universe Bin(N), then ⊕iAi is
computably isomorphic to a LOGSPACE group
with universe Bin(N).

(d) If each Ai has universe Tal(N) and there is a
constant c such that for each i and any a, b ∈ Ai,
|a+ib| 6 c(|a|+i |b|) and |a−ib| 6 c(|a|+i |b|), then
⊕iAi is computably isomorphic to a LOGSPACE
group with universe Tal(N).
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LOGSPACE Representation of Q

• Theorem 2. Let k > 1 be in N and let p be a
prime. Each of the groups Z,

⊕
ω Zk, Z(p∞), and Qp

are computably isomorphic to LOGSPACE groups
A with universe Bin(N), and B with universe Tal(N).

Sketch: For Z this follows from
LOGSPACE addition.

For ⊕ωZk, there is a natural LOGSPACE model
with universe Bk(N). Lemma 2 gives universe Bin(N)
and Lemma 5 gives universe Tal(N).

For Z(p∞), let e1e2 . . . en ∈ Bp(N)
represent e1

p
+ e2

p2 + · · · en
pn

.

For Qp, let 〈z, q〉 represent z + q where z ∈ Z and
q ∈ Z(p∞). For addition of z1 +q1 and z2 +q2, check
whether q1 + q2 ≥ 1.

• Theorem 3. Q and Q mod Z are computably iso-
morphic to LOGSPACE groups with universe Bin(N),
and to LOGSPACE groups with universe Tal(N).

Sketch: Q mod Z = ⊕pZ(p∞). Use Lemma 6 and
the fact that the primes are PTIME in binary and
hence LOGTIME in tally.

For Q, proceed as in Theorem 2 for Qp.
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Typical Failure of Categoricity

• Lemma 7 For any p-time set
A = {Bin(a0) < Bin(a1) < · · · }, there is a set
M = M(A) = {Bin(m0) < Bin(m1) < · · · } such
that M is in LOGSPACE and the map which takes
Bin(mi) to Bin(ai) is LOGSPACE, but there is no
primitive recursive injection of A into M .

• Theorem 4 There is a countably infinite family
of LOGSPACE groups each isomorphic to Z(p∞)
such that no two of these are primitive recursively
isomorphic. These may be taken to have standard
universe Bin(N) or Tal(N), as desired.

• Similar results obtain for the groups Q and Q mod Z.
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Some Qualified Categoricity

• Let o(a) denote the order of a in a fixed group G.

G is said to have linear size order if there exists
c ≥ 1 such that for all a ∈ G:

|Bin(o(a))| ≤ c|a| and |a| ≤ c|Bin(o(a))|.

• Theorem 5 Let G and H be two LINSPACE groups
isomorphic to Z(p∞) and each having linear size or-
der. Then there is a LINSPACE isomorphism be-
tween G and H.

• A similar result obtains for the group QmodZ.
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The End
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