Space Complexity of Abelian Groups

Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel, Zia Uddin

December 11, 2008

The Model of Computation

- Multi-tape Turing machine; independent heads.
- Read-only input tape.
- Write-only output tape.
- Space used on other tapes is counted.
- $F : \mathbb{N} \to \mathbb{N}$ is a proper complexity function if nondecreasing and there is Turing machine M which computes $1^{F(x)}$ in $\leq \mathcal{O}(|x| + F(|x|))$ steps and uses space $\leq \mathcal{O}(F(|x|))$.
- $LOG = \bigcup_n SPACE(c \ log \ n).$
- $PLOG = \bigcup_n SPACE((log n)^c).$
- $P = PTIME = \bigcup_n TIME(n^c).$

• FACTS:

- (a) $TIME(G) \subseteq SPACE(G)$;
- (b) $SPACE(G) \subseteq TIME(k^{G(n)+\log n});$
- (c) For $f \in LOG$, $|f(x)| \le |x|^k$.

Standard Universes

- $Tal(0) = Bin(0) = 0; Tal(n+1) = 1^{n+1}.$
- $B_k(n) = b_0 b_1 \dots b_r \in \{0, 1, \dots, k-1\}^{r+1}$ when $n = b_0 + b_1 k + \dots + b_r k^r$.
- $Tal(\mathbb{N}) = \{Tal(n) : n \in \mathbb{N}\};$ $B_k(\mathbb{N}) = \{B_k(n) : n \in \mathbb{N}\}; Bin(n) = B_2(n).$
- The sets $Tal(\mathbb{N})$ and $B_k(\mathbb{N})$ are said to be standard universes
- For computable algebra and model theory, every computable set is computably isomorphic to N, so a computable structure is assumed to have universe N without loss of generality.
- For complexity theoretic model theory and algebra, this is not the case. $Bin(\mathbb{N})$ and $Tal(\mathbb{N})$ are NOT PTIME isomorphic.
- Any computable relational structure is computably isomorphic to a *LOGSPACE* structure.
- However, there may not be a *PTIME* structure with a standard universe.

Examples

- In $Tal(\mathbb{N})$, addition, multiplication are ZEROSPACE.
- In *Bin*(ℕ), addition is *ZEROSPACE* and multiplication is *LOGSPACE* − NOT by the usual algorithm!
- In $Bin(\mathbb{N})$, 2^x is LINSPACE (essentially the same as converting to tally.)
- In Bin(ℕ), division (with remainder) is LOGSPACE
 − Chiu, Davida and Litow (Theor. Inform. Appl. 2001).
- In Bin(ℕ), primality is PTIME
 Agrawal, Kayhal and Saxena, Ann. Math. 2004.
- Intuition is that *PTIME* algorithms can be converted into *LOGSPACE*.

Composition Lemma

Lemma 1. Let F, G be proper nonconstant complexity functions, g a unary function in SPACE(G) and f an n-ary function in SPACE(F). Then the composition g ∘ f can be computed in SPACE ≤ G(2^{kF}) for some constant k.

Proof is a generalization of the standard proof that LOGSPACE is closed under composition.

• Corollary 1

- (a) $LOGSPACE \circ LINSPACE = LINSPACE$;
- (b) $PLOGSPACE \circ PLOGSPACE = PLOGSPACE$;
- (c) $PLOGSPACE \circ LINSPACE \subseteq PSPACE$;
- (d) $EXPSPACE \circ LOGSPACE = EXPSPACE$;

Logspace Set Isomorphisms

- Theorem 1. Let A ⊆ Tal(N) be LOGSPACE, and let A = {a₀ < a₁ < a₂ < ...}. The following are equivalent:
 - (a) A is LOGSPACE set-isomorphic to $Tal(\mathbb{N})$.
 - (b) For some k and all $n \ge 2$, we have $|a_n| \le n^k$.
 - (c) The canonical bijection between $Tal(\mathbb{N})$ and A mapping 1^n to a_n , $n \ge 0$, is LOGSPACE.

Sketch: To compute 1^n from $a \in A$, count the number of members of A which are less than a. Keep track of the numbers in binary and do the testing in tally. To compute a_n from 1^n , test $1^i \in A$ until n members are found. The test is a composition of (1) converting Bin(i) to Tal(i) and (2) testing $Tal(i) \in A$, which is LINSPACE in Bin(i) and hence LOGSPACE in Tal(n).

More Logspace Set Isomorphisms

- Lemma 2. (Radix Representation.) For $k \ge 2$, the following sets are LOGSPACE isomorphic:
 - (a) $Bin(\mathbb{N})$;
 - (b) $B_k(\mathbb{N})$;
 - (c) $\{0, 1, \ldots, k-1\}^*$.

Furthermore, for each isomorphism f above, $|f(x)| \le c|x|$ for some c.

- Definition. A⊕B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}. A ⊗ B = {⟨a,b⟩ : a ∈ A & b ∈ B}, where ⟨a,b⟩ is a (new) logspace pairing function.
- Lemma 3. Let $A \subseteq Tal(\mathbb{N})$ be nonempty LOGSPACE.
 - (a) $A \oplus Tal(\mathbb{N})$ is LOGSPACE isomorphic to $Tal(\mathbb{N})$ and $A \oplus Bin(\mathbb{N})$ is LOGSPACE isomorphic to $Bin(\mathbb{N})$.
 - (b) $A \otimes Tal(\mathbb{N})$ is LOGSPACE isomorphic to $Tal(\mathbb{N})$ and $A \otimes Bin(\mathbb{N})$ is LOGSPACE isomorphic to $Bin(\mathbb{N})$.
 - (c) $Bin(\mathbb{N}) \oplus Bin(\mathbb{N})$ and $Bin(\mathbb{N}) \otimes Bin(\mathbb{N})$ are LOGSPACE isomorphic to $Bin(\mathbb{N})$.

Logspace Structures

- Complexity Theoretic Model Theory and Algebra was developed by Nerode and others, focusing on *PTIME* structures. [Cenzer & Remmel, Handbook of Recursive Mathematics, 1998.]
- Lemma 4. If \mathcal{A} is a *LOGSPACE* structure and φ a *LOGSPACE* bijection from A to \mathcal{B} , then \mathcal{B} is *LOGSPACE*.

If \mathcal{M} is a structure with universe $M \subseteq \mathbb{N}$, then $Tal(\mathcal{M})$ denotes the representation of \mathcal{M} with universe Tal(M) and $Bin(\mathcal{M})$ the representation with universe Bin(M).

• Lemma 5.

- (a) If $Bin(\mathcal{M})$ is LOG, then $Tal(\mathcal{M})$ is PLOG.
- (b) If $Bin(\mathcal{M})$ is LINSPACE and for all functions $f, |f^{\mathcal{B}}(m_1, \ldots, m_n)| \leq c(|m_1| + \cdots + |m_n|)$ for some constant c, then $Tal(\mathcal{M})$ is LOGSPACE.

Abelian Groups

- \mathbb{Z} is the group of integers, and $\mathbb{Z}_k = \mathbb{Z} \mod k\mathbb{Z}$.
- $\mathbb Q$ is the group of rationals and $\mathbb Q \mod \mathbb Z,$ the quotient group.
- \mathbb{Q}_p is the *p*-adic rationals and $\mathbb{Z}(p^{\infty}) = \mathbb{Q}_p \mod \mathbb{Z}$.
- $\oplus_i \mathcal{A}_i$ is the direct sum of $\langle A_i \rangle_{i < \omega}$, that is, the set of (a_0, a_1, \ldots) where all but finitely many $a_i = 0$. $\oplus_{\omega} \mathcal{A}$ denotes $\oplus_i \mathcal{A}_i$ where each $\mathcal{A}_i = \mathcal{A}$.
- The sequence \mathcal{A}_i is fully uniformly LOGSPACE over $B = Bin(\mathbb{N})$ (and similarly for $B = Tal(\mathbb{N})$) if
 - (i) The set $\{\langle Bin(n), a \rangle : a \in A_n\}$ is *LOGSPACE*.
 - (ii) The functions $F(Bin(n), a, b) = a +_n b$ and $G(Bin(n), a, b) = a -_n b$, are LOGSPACE.
 - (iii) The function $e(Tal(i)) = e_i$, is LOGSPACE.

Direct Sums

- Lemma 6. Let *B* be either $Tal(\mathbb{N})$ or $Bin(\mathbb{N})$. Suppose that the sequence $\mathcal{A}_i = (A_i, +_i, -_i, e_i)$ of groups is fully uniformly *LOGSPACE* over *B*. Then
 - (a) $\oplus_i \mathcal{A}_i$ is computably isomorphic to a *LOGSPACE* group with universe contained in $Bin(\mathbb{N})$.
 - (b) If $A_i \subset A_{i+1}$ for all *i*, and if there is a LOGSPACE function $f : \{0,1\}^* \to B$ such that $a \in A_{f(a)}$, then $\bigcup_i A_i$ is a LOGSPACE group with universe contained in B.
 - (c) If each \mathcal{A}_i has universe $Bin(\mathbb{N})$, then $\bigoplus_i \mathcal{A}_i$ is computably isomorphic to a LOGSPACE group with universe $Bin(\mathbb{N})$.
 - (d) If each \mathcal{A}_i has universe $Tal(\mathbb{N})$ and there is a constant c such that for each i and any $a, b \in A_i$, $|a+_ib| \leq c(|a|+_i|b|)$ and $|a-_ib| \leq c(|a|+_i|b|)$, then $\bigoplus_i \mathcal{A}_i$ is computably isomorphic to a LOGSPACE group with universe $Tal(\mathbb{N})$.

LOGSPACE Representation of \mathbb{Q}

• Theorem 2. Let k > 1 be in \mathbb{N} and let p be a prime. Each of the groups \mathbb{Z} , $\bigoplus_{\omega} \mathbb{Z}_k$, $\mathbb{Z}(p^{\infty})$, and \mathbb{Q}_p are computably isomorphic to LOGSPACE groups \mathcal{A} with universe $Bin(\mathbb{N})$, and \mathcal{B} with universe $Tal(\mathbb{N})$.

Sketch: For \mathbb{Z} this follows from LOGSPACE addition.

For $\bigoplus_{\omega} Z_k$, there is a natural *LOGSPACE* model with universe $B_k(\mathbb{N})$. Lemma 2 gives universe $Bin(\mathbb{N})$ and Lemma 5 gives universe $Tal(\mathbb{N})$.

For $Z(p^{\infty})$, let $e_1e_2...e_n \in B_p(\mathbb{N})$ represent $\frac{e_1}{p} + \frac{e_2}{p^2} + \cdots + \frac{e_n}{p^n}$.

For \mathbb{Q}_p , let $\langle z,q \rangle$ represent z + q where $z \in \mathbb{Z}$ and $q \in Z(p^{\infty})$. For addition of $z_1 + q_1$ and $z_2 + q_2$, check whether $q_1 + q_2 \ge 1$.

• Theorem 3. \mathbb{Q} and \mathbb{Q} mod \mathbb{Z} are computably isomorphic to LOGSPACE groups with universe $Bin(\mathbb{N})$, and to LOGSPACE groups with universe $Tal(\mathbb{N})$.

Sketch: $\mathbb{Q} \mod \mathbb{Z} = \bigoplus_p \mathbb{Z}(p^{\infty})$. Use Lemma 6 and the fact that the primes are PTIME in binary and hence LOGTIME in tally.

For \mathbb{Q} , proceed as in Theorem 2 for \mathbb{Q}_p .

Typical Failure of Categoricity

- Lemma 7 For any p-time set $A = \{Bin(a_0) < Bin(a_1) < \cdots\}$, there is a set $M = M(A) = \{Bin(m_0) < Bin(m_1) < \cdots\}$ such that M is in LOGSPACE and the map which takes $Bin(m_i)$ to $Bin(a_i)$ is LOGSPACE, but there is no primitive recursive injection of A into M.
- Theorem 4 There is a countably infinite family of *LOGSPACE* groups each isomorphic to $\mathbb{Z}(p^{\infty})$ such that no two of these are primitive recursively isomorphic. These may be taken to have standard universe $Bin(\mathbb{N})$ or $Tal(\mathbb{N})$, as desired.
- Similar results obtain for the groups \mathbb{Q} and $\mathbb{Q} \mod \mathbb{Z}$.

Some Qualified Categoricity

- Let o(a) denote the order of a in a fixed group G.
 G is said to have *linear size order* if there exists c ≥ 1 such that for all a ∈ G:
 |Bin(o(a))| ≤ c|a| and |a| ≤ c|Bin(o(a))|.
- Theorem 5 Let G and H be two LINSPACE groups isomorphic to $Z(p^{\infty})$ and each having linear size order. Then there is a LINSPACE isomorphism between G and H.
- A similar result obtains for the group $\mathbb{Q}mod\mathbb{Z}$.

The End