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T he Model of Computationl

Multi-tape Turing machine; independent heads.
Read-only input tape.

Write-only output tape.

Space used on other tapes is counted.

F :N — N is a proper complexity function if
nondecreasing and there is Turing machine M which
computes 17®) in < O(|z| + F(|z|) steps and uses
space < O(F(|x|).

LOG =, SPACE(c log n).
PLOG =, SPACE((log n)°).
P = PTIME =], TIME(n®).

FACTS:

(a) TIME(G) C SPACE(G);

(b) SPACE(G) C TIME(kC(m)+log ny.
(c) For fe LOG, |f(z)] < |z|*.



Standard Universes|

Tal(0) = Bin(0) = 0; Tal(n + 1) = 1+,

Bi(n) = bgby...b, € {0,1,...,]€— 1}T+1 when
n=bo+brik+- -+ bk".

Tal(N) = {Tal(n) : n € N}
Br(N) = {Br(n) : n € N}, Bin(n) = Ba(n).

The sets Tal(N) and By (N) are said to be
standard universes

For computable algebra and model theory, every
computable set is computably isomorphic to N, so
a computable structure is assumed to have universe
N without loss of generality.

For complexity theoretic model theory and algebra,
this is not the case. Bin(N) and Tal(N) are NOT
PTIME isomorphic.

Any computable relational structure is computably
isomorphic to a LOGSPACE structure.

However, there may not be a PT'IM E structure with
a standard universe.



Examplesl

In Tal(N), addition, multiplication are ZEROSPACE.

In Bin(N), addition is ZEROSPACE and
multiplication is LOGSPACE
— NOT by the usual algorithm!

In Bin(N), 2% is LINSPACE (essentially the same
as converting to tally.)

In Bin(N), division (with remainder) is LOGSPACE
— Chiu, Davida and Litow (Theor. Inform. Appl.
2001).

In Bin(N), primality is PTIMFE
— Agrawal, Kayhal and Saxena, Ann. Math. 2004.

Intuition is that PTIMZFE algorithms can be
converted into LOGSPACE.



Composition Lemmal

e Lemma 1. Let F,G be proper nonconstant
complexity functions, g a unary function in
SPACE(G) and f an n-ary function in SPACE(F).
Then the composition go f can be computed in
SPACE < G(2FF) for some constant k.

Proof is a generalization of the standard proof that
LOGSPACE is closed under composition.

e Corollary 1
(a) LOGSPACE o LINSPACE = LINSPACE;
(b) PLOGSPACEoPLOGSPACE = PLOGSPACE;
(c) PLOGSPACE o LINSPACE C PSPACE;
(d) EXPSPACE o LOGSPACE = EXPSPACE;



Logspace Set Isomorphismsl

e Theorem 1. Let A C Tal(N) be LOGSPACE, and
let A = {ap < a1 < a2 < ...}. The following are
equivalent:

(a) Ais LOGSPACE set-isomorphic to Tal(N).
(b) For some k and all n > 2, we have |a,| < nF.

(c) The canonical bijection between Tal(N) and A
mapping 1" to a,, n > 0, is LOGSPACE.

Sketch: To compute 1™ from a € A, count the
number of members of A which are less than a.
Keep track of the numbers in binary and do the
testing in tally. To compute a, from 17", test 1* € A
until n members are found. The test is a
composition of (1) converting Bin(:) to Tal(i) and
(2) testing Tal(i) € A, which is LINSPACE in
Bin(7) and hence LOGSPACE in Tal(n).



More Logspace Set Isomorphismsl

e Lemma 2. (Radix Representation.) For k > 2,
the following sets are LOGSPACE isomorphic:

(2)
(b)
(c)

Bin(N);
Br(N);
(0,1,... k—1}*

Furthermore, for each isomorphism f above,
|f(z)| < c|z| for some c.

e Definition. A B={2n:nec A}Uu{2n+1:n € B}.
A®R B = {{(a,b) : a € A & b € B}, where (a,b) is a
(new) logspace pairing function.

e Lemma 3. Let A C Tal(N) be nonempty LOGSPACE.

(2)

(b)

(c)

AP Tal(N) is LOGSPACE isomorphic to Tal(N)
and A @ Bin(N) is LOGSPACE isomorphic to
Bin(N).

A®Tal(N) is LOGSPACE isomorphic to Tal(N)
and A ® Bin(N) is LOGSPACE isomorphic to
Bin(N).

Bin(N) & Bin(N) and Bin(N) ® Bin(N) are
LOGSPACE isomorphic to Bin(N).



Logspace Structuresl

e Complexity Theoretic Model Theory and Algebra
was developed by Nerode and others, focusing on
PTIME structures. [Cenzer & Remmel, Handbook
of Recursive Mathematics, 1998.]

e Lemma 4. If Ais a LOGSPACE structure and
0 a LOGSPACE bijection from A to B, then B is
LOGSPACE.

If M is a structure with universe M C N, then
Tal(M) denotes the representation of M with
universe Tal(M) and Bin(M) the representation
with universe Bin(M).

e Lemma 5.

(a) If Bin(M) is LOG, then Tal(M) is PLOG.

(b) If Bin(M) is LINSPACE and for all functions

£, 1fB(ma,...,my)| < e(|ma|+---4|my|) for some
constant ¢, then Tal(M) is LOGSPACE.




Abelian Groupsl

Z, is the group of integers, and Z, = Z mod kZ.

Q is the group of rationals and Q@ mod Z, the quo-
tient group.

Qp is the p-adic rationals and Z(p>*) = Q, mod Z.

@;A; is the direct sum of (A;);<,, that is, the set of
(ag,a1,...) where all but finitely many a; = 0. ®.,A4
denotes @;A; where each A; = A.

The sequence A, is fully uniformly LOGSPACE over
B = Bin(N) (and similarly for B = Tal(N)) if
(i) The set {(Bin(n),a):a € Ay} is LOGSPACE.

(ii) The functions F(Bin(n),a,b) = a -+, b and
G(Bin(n),a,b) =a —y, b, are LOGSPACE.

(iii) The function e(Tal(7)) = e;, is LOGSPACE.



Direct Sums|

e Lemma 6. Let B be either Tal(N) or Bin(N).
Suppose that the sequence A; = (A;, 4+, —i,e;) of
groups is fully uniformly LOGSPACE over B. Then

(2)

(b)

(d)

@;A; is computably isomorphic to a LOGSPACE
group with universe contained in Bin(N).

If A; C A;4q for all ¢,and if thereisa LOGSPACE
function f : {0,1}* — B such that a € Ay,
then |, A; is a LOGSPACE group with universe
contained in B.

If each A; has universe Bin(N), then @;A; is
computably isomorphic to a LOGSPACE group
with universe Bin(N).

If each A; has universe Tal(N) and there is a
constant ¢ such that for each 7 and any a,b € A;,
la+:b| < ¢(|a]+:]b]) and |a—;b] < c(lal+]b]), then
®;A; is computably isomorphic to a LOGSPACE
group with universe Tal(N).
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LOGSPACE Representation of Ql

e Theorem 2. Let £k > 1 be in N and let p be a
prime. Each of the groups Z, @, Z, Z(p>), and Q,
are computably isomorphic to LOGSPACE groups
A with universe Bin(N), and B with universe Tal(N).

Sketch: For Z this follows from
LOGSPACE addition.

For &®,Z;, there is a natural LOGSPACE model
with universe B (N). Lemma 2 gives universe Bin(N)
and Lemma 5 gives universe Tal(N).

For Z(p*>), let eiex...e, € By(N)

represent & + £ 4 ... 5%
p p+p2+ pn

For Qp, let (z,q) represent z + ¢ where z € Z and

q € Z(p*>). For addition of z1 +¢1 and z»+¢», check
whether g1 +g> > 1.

e Theorem 3. Q and Q mod Z are computably iso-
morphic to LOGSPACE groups with universe Bin(N),
and to LOGSPACE groups with universe Tal(N).

Sketch: Q mod Z = @,Z(p*°). Use Lemma 6 and
the fact that the primes are PI'IME in binary and
hence LOGTIME in tally.

For Q, proceed as in Theorem 2 for Q.
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Typical Failure of Categoricityl

e Lemma 7 For any p-time set
A = {Bin(ap) < Bin(a1) < ---}, there is a set
M = M(A) = {Bin(mo) < Bin(mi) < ---} such
that M is in LOGSPACFE and the map which takes
Bin(m;) to Bin(a;) is LOGSPACE, but there is no
primitive recursive injection of A into M.

e Theorem 4 There is a countably infinite family
of LOGSPACE groups each isomorphic to Z(p*>)
such that no two of these are primitive recursively
isomorphic. These may be taken to have standard
universe Bin(N) or Tal(N), as desired.

e Similar results obtain for the groups Q and Q mod Z.
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Some Qualified Categoricity|

e Let o(a) denote the order of a in a fixed group G.

(G is said to have linear size order if there exists
c > 1 such that for all a € G-

|Bin(o(a))| < cla| and |a| < ¢|Bin(o(a)).

e Theorem 5 Let G and H betwo LINSPACE groups
isomorphic to Z(p*°) and each having linear size or-
der. Then there is a LINSPACFE isomorphism be-
tween G and H.

e A similar result obtains for the group QmodZ.
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The End
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