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PARTITIONS

L a set.

L-partition of a set X:

• distinct block containing a for each a ∈ L

• free blocks
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WORDS

Think of L as an alphabet.

Words over L:

a0a1 · · · an

a0, a1, . . . , an ∈ L.

Infinite words over L:

a0a1 · · · an · · ·

an ∈ L (n ∈ ω)
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VARIABLE WORDS

Fix an infinite list of variables:

v0, v1, v2, . . . , vn, . . .

Families of variable words:

• W (L, m, n)

• W (L, m)

• W (L, m, n) ↑

Allow n or m or both to be ω.

We can make the following identification

W (L, n, m) = L-partitions of m with n free
blocks
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THE HALES-JEWETT
THEOREM

is the following generalization of van der Waer-

den’s Theorem on arithmetic progressions:

For any finite alphabet L and any positive in-

teger c, there is an integer n so large that for

any coloring

W (L, 0, n) = C1 ∪ C2 ∪ · · · ∪ Cc

there is a monochromatic line i.e. a monochro-

matic set of the form

{w(a) | a ∈ L}

where w ∈W (L, 1, n).
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HIGHER DIMENSIONAL
HALES-JEWETT

THEOREM. (Hales-Jewett) For any finite al-

phabet L and any positive integers c and m,

there is an integer n so large that for any col-

oring

W (L, 0, n) = C1 ∪ C2 ∪ · · · ∪ Cc

there is a monochromatic subspace of W (L, 0, n)

of dimension m i.e. a monochromatic set of

the form

{w(a0a1 · · · am−1) | a0a1 · · · am−1 ∈W (L, 0, m)}

where w ∈W (L, m, n).

Remark: w can be chosen in W (L, m, n) ↑.
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GRAHAM-ROTHSCHILD
PARAMETER SET

THEOREM

THEOREM (Graham-Rothschild) For any fi-
nite alphabet L and any positive integers c, m

and k there is an integer n so large that for
any coloring

W (L, k, n) = C1 ∪ C2 ∪ · · · ∪ Cc

there is a monochromatic subset of W (L, k, n)
of dimension m of the form

{w(a0a1 · · · am−1) | a0a1 · · · am−1 ∈W (L, k, m)}

where w ∈W (L, m, n).

Remark: The set in the conclusion is not quite
a subspace by the conditions on the variables.
However, notice that e.g.

v0v1 · · · vk−1ak · · · am−1 ∈W (L, k, m)

for all ak, . . . , am−1 ∈ L ∪ {v0, . . . , vk−1}.
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AN INFINITARY VERSION OF
THE GRAHAM-ROTHSCHILD

THEOREM

THEOREM. (with Simpson) For any finite

alphabet L, any positive integers c and k and

any coloring

W (L, k, ω) = C1 ∪ C2 ∪ · · · ∪ Cc

where each Ci is Borel there is a monochro-

matic subset of W (L, k, ω) of the form

{w(a0a1 · · · am · · ·) | a0a1 · · · am · · · ∈W (L, k, ω)}

where w ∈W (L, ω, ω).

The case when L = ∅ is known at the Dual

Ramsey Theorem.
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STRENGTH?

PROBLEM: Determine the strength of the Dual
Ramsey Theorem along with various restricted
versions.

Some partial results:

(Slaman) The Dual Ramsey Theorem can be
proved in Π1

1 − CA0.

The Dual Ramsey Theorem for open colorings
and partitions with k + 1 blocks implies Ram-
sey’s Theorem for sets of size k.

(Miller-Solomon) (RCA0) The Dual Ramsey
Theorem restricted to open colorings and pari-
tions with 4 blocks implies ACA0.

(Miller-Solomon) WKL0 does not imply the
Dual Ramsey Theorem for open colorings and
partitions with 3 blocks.
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DUAL GALVIN-PRIKRY
THEOREM

THEOREM. (with Simpson) For any positive

integer c and any coloring

W (∅, ω, ω) = C1 ∪ · · · ∪ Cc

where each Ci is Borel there is w ∈ W (∅, ω, ω)

such that {w(u) |u ∈ W (∅, ω, ω)} is monochro-

matic.

The Dual Galvin-Prikry Theorem easily implies

the Dual Ramsey Theorem and the Galvin-

Prikry Theorem.
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LARGE PARTITIONS

w ∈ W (∅, k, n) is large if k is greater than the

least occurrence of v1.

COROLLARY of Dual G-P Thm. For any

positive integers m, k and c, there is an integer

n so large that for all colorings

W (∅, k, n) = C1 ∪ · · · ∪ Cc

there exists m′ ≥ m and large w ∈ W (∅, m′, n)

such that {w(u) |u ∈W (∅, k, m′)} is monochro-

matic.

The corollary easily implies the Paris-Harrington

Theorem, so it can’t be proved in ACA0.
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COMBINATORIAL CORE

The infinitary theorems discussed to this point

are proved in two stages:

1. Establish the combinatorial core of the the-

orem.

2. Establish the full topological version by a

fusion argument like that used to establish

Ellentuck’s Theorem.

All of the infinitary theorems to this point have

the same combinatorial core:

For any coloring of W (L, 0) with finitely many

colors there is a w ∈ W (L, ω, ω) such that the

collection of initial parts of w(u) (u ∈W (L, ω, ω))

is monochromatic.
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REDUCTION RELATIONS

For u a variable word over L and ~w = w0, . . . , wn

a sequence of variable words over L define

u ≤ ~w

iff u = w0(t0) · · ·wn(tn) for some variable words

t0, . . . , tn. For ~u = u0, u1, . . . and ~v = w0, w1, . . .

infinite sequences of variable words define

~u ≤ ~w

iff there is an infinite subsequence ~w′ of ~w such

that ~w′ can be written as ~w′0 ∗ ~w′1 ∗ · · · where

un ≤ ~w′n for all n ∈ ω.

For e : ω → ω, S(L, e) is the set of infinite

sequences

w0, w1, . . . , wn, . . .

such that wn ∈W (L, e(n)).
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STRONGER THEOREMS

THEOREM. For any finite L, all e : ω → ω
and any coloring

S(L, e) = C1 ∪ · · · ∪ Cc

where each Ci is Borel there is ~w ∈ S(L, e)
such that the set of all ~u in S(L, e) with ~u ≤ ~v
is monochromatic.

This easily implies the Galvin-Prikry Theorem.

The combinatorial core is:

(CC) For any finite L, any positive integer n
and any coloring

W (L, n) = C1 ∪ · · · ∪ Cc

there is ~w ∈ S(L, 〈n, n + 1, . . .〉) such that the
set of ~u(0) where ~u ∈ S(L, 〈n, n + 1, . . .〉) and
~u ≤ ~w is monochromatic.

For fixed n, this implies Ramsey’s Theorem
for sets of size n. Lower bounds for the case
n = 1?
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ULTRAFILTERS

The previous theorem uses the general the-

ory of families of idempotent ultrafilters (e.g.

see recent work with Hindman and Strauss and

their text Algebra in the Stone-Cech Compact-

ification). What is the status of this theory in

terms of reverse mathematics? Hirst, Simp-

son and Mummert have some results in this

direction.
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EXAMPLE. There exist ultrafilters V on W (L, 0)

and U on W (L, 1) such that

• V ∗ V = V

• ha(U) = V for all a ∈ L

• V ∗ U = U ∗ V = U

• U ∗ U = U

The example is strong enough to prove the

theorem on S(L, 〈1, 1, 1, . . .〉).
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