Combinatorics of Words

Tim Carlson

B.I.R.S.

December 9, 2008

PARTITIONS

L a set.

L-partition of a set X :

- distinct block containing a for each $a \in L$
- free blocks

WORDS

Think of L as an alphabet.

Words over L :

$$
a_{0} a_{1} \cdots a_{n}
$$

$a_{0}, a_{1}, \ldots, a_{n} \in L$.

Infinite words over L :

$$
a_{n} \in L(n \in \omega) \text { a } a_{1} \cdots a_{n} \cdots
$$

VARIABLE WORDS

Fix an infinite list of variables:

$$
v_{0}, v_{1}, v_{2}, \ldots, v_{n}, \ldots
$$

Families of variable words:

- $W(L, m, n)$
- $W(L, m)$
- $W(L, m, n) \uparrow$

Allow n or m or both to be ω.

We can make the following identification

$$
\begin{gathered}
W(L, n, m)=L \text {-partitions of } m \text { with } n \text { free } \\
\text { blocks }
\end{gathered}
$$

THE HALES-JEWETT THEOREM

is the following generalization of van der Waerden's Theorem on arithmetic progressions:

For any finite alphabet L and any positive integer c, there is an integer n so large that for any coloring

$$
W(L, 0, n)=C_{1} \cup C_{2} \cup \cdots \cup C_{c}
$$

there is a monochromatic line i.e. a monochromatic set of the form

$$
\{w(a) \mid a \in L\}
$$

where $w \in W(L, 1, n)$.

HIGHER DIMENSIONAL HALES-JEWETT

THEOREM. (Hales-Jewett) For any finite alphabet L and any positive integers c and m, there is an integer n so large that for any coloring

$$
W(L, 0, n)=C_{1} \cup C_{2} \cup \cdots \cup C_{c}
$$

there is a monochromatic subspace of $W(L, 0, n)$ of dimension m i.e. a monochromatic set of the form

$$
\left\{w\left(a_{0} a_{1} \cdots a_{m-1}\right) \mid a_{0} a_{1} \cdots a_{m-1} \in W(L, 0, m)\right\}
$$

where $w \in W(L, m, n)$.

Remark: w can be chosen in $W(L, m, n) \uparrow$.

GRAHAM-ROTHSCHILD PARAMETER SET THEOREM

THEOREM (Graham-Rothschild) For any finite alphabet L and any positive integers c, m and k there is an integer n so large that for any coloring

$$
W(L, k, n)=C_{1} \cup C_{2} \cup \cdots \cup C_{c}
$$

there is a monochromatic subset of $W(L, k, n)$ of dimension m of the form

$$
\left\{w\left(a_{0} a_{1} \cdots a_{m-1}\right) \mid a_{0} a_{1} \cdots a_{m-1} \in W(L, k, m)\right\}
$$

where $w \in W(L, m, n)$.

Remark: The set in the conclusion is not quite a subspace by the conditions on the variables. However, notice that e.g.

$$
v_{0} v_{1} \cdots v_{k-1} a_{k} \cdots a_{m-1} \in W(L, k, m)
$$

for all $a_{k}, \ldots, a_{m-1} \in L \cup\left\{v_{0}, \ldots, v_{k-1}\right\}$.

AN INFINITARY VERSION OF THE GRAHAM-ROTHSCHILD THEOREM

THEOREM. (with Simpson) For any finite alphabet L, any positive integers c and k and any coloring

$$
W(L, k, \omega)=C_{1} \cup C_{2} \cup \cdots \cup C_{c}
$$

where each C_{i} is Borel there is a monochromatic subset of $W(L, k, \omega)$ of the form
$\left\{w\left(a_{0} a_{1} \cdots a_{m} \cdots\right) \mid a_{0} a_{1} \cdots a_{m} \cdots \in W(L, k, \omega)\right\}$
where $w \in W(L, \omega, \omega)$.

The case when $L=\emptyset$ is known at the Dual Ramsey Theorem.

STRENGTH?

PROBLEM: Determine the strength of the Dual Ramsey Theorem along with various restricted versions.

Some partial results:
(Slaman) The Dual Ramsey Theorem can be proved in $\Pi_{1}^{1}-C A_{0}$.

The Dual Ramsey Theorem for open colorings and partitions with $k+1$ blocks implies Ramsey's Theorem for sets of size k.
(Miller-Solomon) ($R C A_{0}$) The Dual Ramsey Theorem restricted to open colorings and paritions with 4 blocks implies $A C A_{0}$.
(Miller-Solomon) $W K L_{0}$ does not imply the Dual Ramsey Theorem for open colorings and partitions with 3 blocks.

DUAL GALVIN-PRIKRY THEOREM

THEOREM. (with Simpson) For any positive integer c and any coloring

$$
W(\emptyset, \omega, \omega)=C_{1} \cup \cdots \cup C_{c}
$$

where each C_{i} is Borel there is $w \in W(\emptyset, \omega, \omega)$ such that $\{w(u) \mid u \in W(\emptyset, \omega, \omega)\}$ is monochromatic.

The Dual Galvin-Prikry Theorem easily implies the Dual Ramsey Theorem and the GalvinPrikry Theorem.

LARGE PARTITIONS

$w \in W(\emptyset, k, n)$ is large if k is greater than the least occurrence of v_{1}.

COROLLARY of Dual G-P Thm. For any positive integers m, k and c, there is an integer n so large that for all colorings

$$
W(\emptyset, k, n)=C_{1} \cup \cdots \cup C_{c}
$$

there exists $m^{\prime} \geq m$ and large $w \in W\left(\emptyset, m^{\prime}, n\right)$ such that $\left\{w(u) \mid u \in W\left(\emptyset, k, m^{\prime}\right)\right\}$ is monochromatic.

The corollary easily implies the Paris-Harrington Theorem, so it can't be proved in $A C A_{0}$.

COMBINATORIAL CORE

The infinitary theorems discussed to this point are proved in two stages:

1. Establish the combinatorial core of the theorem.
2. Establish the full topological version by a fusion argument like that used to establish Ellentuck's Theorem.

All of the infinitary theorems to this point have the same combinatorial core:

For any coloring of $W(L, 0)$ with finitely many colors there is a $w \in W(L, \omega, \omega)$ such that the collection of initial parts of $w(u)(u \in W(L, \omega, \omega))$ is monochromatic.

REDUCTION RELATIONS

For u a variable word over L and $\vec{w}=w_{0}, \ldots, w_{n}$ a sequence of variable words over L define

$$
u \leq \vec{w}
$$

iff $u=w_{0}\left(t_{0}\right) \cdots w_{n}\left(t_{n}\right)$ for some variable words t_{0}, \ldots, t_{n}. For $\vec{u}=u_{0}, u_{1}, \ldots$ and $\vec{v}=w_{0}, w_{1}, \ldots$ infinite sequences of variable words define

$$
\vec{u} \leq \vec{w}
$$

iff there is an infinite subsequence \vec{w}^{\prime} of \vec{w} such that \vec{w}^{\prime} can be written as $\vec{w}_{0}^{\prime} * \vec{w}_{1}^{\prime} * \cdots$ where $u_{n} \leq \vec{w}_{n}^{\prime}$ for all $n \in \omega$.

For $e: \omega \rightarrow \omega, \mathcal{S}(L, e)$ is the set of infinite sequences

$$
w_{0}, w_{1}, \ldots, w_{n}, \ldots
$$

such that $w_{n} \in W(L, e(n))$.

STRONGER THEOREMS

THEOREM. For any finite L, all $e: \omega \rightarrow \omega$ and any coloring

$$
\mathcal{S}(L, e)=C_{1} \cup \cdots \cup C_{c}
$$

where each C_{i} is Borel there is $\vec{w} \in \mathcal{S}(L, e)$ such that the set of all \vec{u} in $\mathcal{S}(L, e)$ with $\vec{u} \leq \vec{v}$ is monochromatic.

This easily implies the Galvin-Prikry Theorem.
The combinatorial core is:
(CC) For any finite L, any positive integer n and any coloring

$$
W(L, n)=C_{1} \cup \cdots \cup C_{c}
$$

there is $\vec{w} \in \mathcal{S}(L,\langle n, n+1, \ldots\rangle)$ such that the set of $\vec{u}(0)$ where $\vec{u} \in \mathcal{S}(L,\langle n, n+1, \ldots\rangle)$ and $\vec{u} \leq \vec{w}$ is monochromatic.

For fixed n, this implies Ramsey's Theorem for sets of size n. Lower bounds for the case $n=1$?

ULTRAFILTERS

The previous theorem uses the general theory of families of idempotent ultrafilters (e.g. see recent work with Hindman and Strauss and their text Algebra in the Stone-Cech Compactification). What is the status of this theory in terms of reverse mathematics? Hirst, Simpson and Mummert have some results in this direction.

EXAMPLE. There exist ultrafilters V on $W(L, 0)$ and U on $W(L, 1)$ such that

- $V * V=V$
- $h_{a}(U)=V$ for all $a \in L$
- $V * U=U * V=U$
- $U * U=U$

The example is strong enough to prove the theorem on $\mathcal{S}(L,\langle 1,1,1, \ldots\rangle)$.

