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A well partial order (wpo) is a partial order 〈X,≤X〉 such that for all infinite
sequences {xi}

∞
i=0 of elements in X there exist natural numbers i, j such that

i < j and xi ≤X xj . There are lots of examples for wpo’s known, for example
well orders or wpo’s resulting from Higman’s Lemma and Kruskal’s theorem. In
the context of reverse mathematics it is of interest to know which subsystems of
second order arithmetic are able to prove a given poset to be a wpo. A crucial
invariant for this enterprise is the maximal order type of a wpo. According to
a classical theorem of de Jongh and Parikh [2] there exists for any given wpo
〈X,≤X〉 a linear (or total) ordering ≤+ on X such that ≤X⊆≤+ and

otype(≤+) = o(X) := sup{otype(≤′) + 1 :≤X⊆≤′⊂ X × X and ≤′ is total}.

If one puts LX(x) := {y ∈ X : ¬x ≤X y} then one obtains the following formula
to compute o(X):

o(X) = sup{o(LX(x) + 1 : x ∈ X}.

If we have given two posets X0 and X1 we can define induced partial orders
on the disjoint union X0⊕X1 and the cartesian product X0⊗X1 in the natural
way. Moreover the set X∗ of finite sequences of elements over X can be partially
ordered using the natural pointwise ordering induced on subsequences (Higman
ordering). With ⊕ and ⊗ we denote the (commutative) natural sum and the
(commutative) natural product of ordinals. The following results are well known
(by de Jongh and Parikh [2] or Schmidt [5]).

1



Theorem 1. 1. If X0 and X1 are wpo’s then X0 ⊕ X1 and X0 ⊗ X1 are
wpo’s, o(X0 ⊕ X1) = o(X0) ⊕ o(X1) and o(X0 ⊗ X1) = o(X0) ⊗ o(X1).

2. If X is a wpo then X∗ is a wpo and

o(X∗) =



















ωωo(X)−1

if X is finite

ωωo(X)+1

if o(X) = ε + n where ε is an epsilon number

and n is finite

ωωo(X)

otherwise.

To describe the ordinals resulting from Kruskal’s theorem [3] we have to
introduce a certain ordinal function (also known as collapsing function). Let Ω
denote the first uncountable ordinal and εΩ+1 the first epsilon number above Ω.
First note that any ordinal α < εΩ+1 can be described uniquely in terms of its
Cantor normal form:

α = Ωα1β + · · · + Ωαn · βn

where α1 > . . . > αn and 0 < β1, . . . , βn < Ω. In this situation we define the
countable subterms Kα of α recursively via

Kα := Kα1 ∪ . . . ∪ Kαn ∪ {β1, . . . , βn}

where K0 := 0. Let AP = {ωδ : δ ∈ ON}. We can then put

ϑα := min{β ∈ AP : β ≥ max Kα ∧ ∀γ < α(Kγ < β → ϑγ < β}. (1)

One easily verifies ϑ < Ω by induction on α using a cardinality argument. It is
easy to verify that then ε0 = ϑΩ and Γ0 = ϑΩ2. (If we would have demanded
that ϑα := min{β ≥ max Kα ∧ ∀γ < α(Kγ < β → ϑγ < β} then this would
have changed the values of ϑα slightly but inessentially. This modified version
would fit more nicely into the following general formula when relative small
order types are involved.)

Let Tn the set of finite planar trees having outdegree exactly n (n-ary trees)
and let T<ω be the set of finite planar trees. These tree classes are wpo under
homeomorphic embedding (which preserves g.l.b). The following result has
been proved by Diana Schmidt [5] and for n = 2 by de Jongh and Parikh
(unpublished).

Theorem 2. 1. o(T 2) = ε0 for n = 2.

2. o(Tn) = ϑΩn for n ≥ 3.

3. o(T<ω) = ϑΩω.

(The same results also hold for non planar trees.) Diana Schmidt obtained
many more sharp results for labeled trees. For example if F is a countable
wpo and T (F ) denotes the set of planar labeled trees with labels from F then
o(T (F )) = ϑ(Ωω · o(F )). (For uncountable F one has to replace Ω by the suc-
cessor cardinal of the cardinality of F in the definition of ϑ and the formula
o(T (F )) = ϑ(Ωω · o(F )) then again is true.)
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H. Friedman proved a long time ago (private communication) that the as-
sertion ∀F (F wpo ⇒ T (F ) wpo ) yields ATR0 over RCA0. Now let T (F )′

be the set of F -labeled trees together with the Montalban embedding relation
(which does not request preservation of g.l.b) In joint work with H. Friedman
and A. Montalban we could show that ∀F (F wpo ⇒ T (F )′ wpo is equivalent
to ATR0 over RCA0. (Two reasons for this result are that o(F ) < Γ0 implies
o(T (F )′) < Γ0 and that Γ0 is the proof theoretic ordinal of ATR0.)

To investigate the maximal order types of the Friedman style (using a gap
condition) Kruskal theorems one has to extend the domain of ϑ to intrinsically
larger domains but this is rather easy. In a first step one defines a function ϑ1 :
εΩ2+1 → [Ω,Ω2[ in the same way as ϑ : εΩ+1 → Ω was defined previously. Here
Ω2 denotes the second uncountable ordinal and εΩ2+1 the next epsilon number
above Ω2. On the segment determined by ϑ1εΩ2+1 on can define the countable
coefficient sets Kα similarly as before using Kϑ1α = Kα. Using this one can
then define ϑ : ϑ1εΩ2+1 → Ω by (1). This process can be iterated through the
uncountable number classes to provide a function ϑ : ϑ1 . . . ϑnεΩn+1

→ Ω giving
an end-extension of the previously defined versions of ϑ. The limiting value of
ϑϑ1 . . . ϑnεΩn+1

as n → ∞ is known to be the ordinal related to the union of
Friedman’s assertions FKTn which rely on an embeddability relation satisfying
a gap condition. (Of course the iteration can be continued even further but this
will not be needed here.)

Our long term goal is to classify the strengths of the assertions FKTn for
fixed n and moreover of variations thereof. For this purpose we recently devel-
oped (in a joint research project with Michael Rathjen) a very satisfying and
general formula which predicts in all natural cases (at which we had a look
at) good upper bounds for the maximal order type of a tree-based wpo under
consideration.

To explain this formula informally let us consider a given explicit operator
W which maps a wpo X to a wpo W (X) so that the elements of W (X) can
be described as generalized terms in which the variables are replaced by con-
stants for the elements of X. We assume that the ordering between elements
of W (X) is induced effectively by the ordering from X. (This resembles Fefer-
man’s notion of effective relative categoricity.) In concrete situations W may
for example stand for an iterated application of basic constructions like disjoint
union and cartesian product, the set of finite sequences construction, the mul-
tiset construction, or a tree constructor and the like. We assume that for W we
have an explicit knowledge of o(W (X)) such that o(W (X)) = o(W (o(X))) and
such that this equality can be proved using an effective reification as in [4].

Using W we then build the set of W -constructor trees T (W (Rec)) as follows:

1. · ∈ T (W (Rec)).

2. If (si) is a sequence of elements in T (W (Rec)) and w((xi)) is a term from
W (X) then ·(w((si))) ∈ T (W (Rec)).

The embeddability relation E on T (W (Rec)) is defined recursively as follows:

1. · E t.
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2. If s E ti then s E ·(w((ti)))

3. If w((si) ≤ w′((tj) mod W is induced recursively by E then ·(w((si))) E

·(w′((tj))).

The general principle is now that

T (W (Rec)) is a wpo

and
o(〈T (W (Rec)),E〉) ≤ ϑo(W (Ω)) (2)

for o(W (Ω)) ∈ dom(ϑ) with o(W (Ω)) ≥ Ω3. [Moreover the reverse inequality
follows in many cases by direct inspection.] (For smaller values of o(W (Ω)) one
should use the slightly modified version of ϑ which does not necessarily enu-
merate additive principal numbers.) The formula (2) is true for several natural
examples which appear as suborderings of Friedman’s FKTn. We believe that
the formula will be the key property in finally analyzing Friedman’s FKTn and
we have already obtained far reaching applications.

In general this formula can be proved along the following general outline.
(This outline applies to all cases which we considered so far.)

Proof outline for (2). The inequality is proved by induction on o(W (Ω)). Let
t = w((tj)) ∈ T (W (Rec)). We claim o(LT (W (Rec))(t)) < ϑo(W (Ω)) and may
assume by induction hypothesis that

o(LT (W (Rec))(tj)) < ϑo(W (Ω)).

If now s ∈ LT (W (Rec))(t) then there will be natural quasi-embedding putting s

into a well partial order W ′(Rec, (ti)) such that

o(W ′(Ω, (ti))) < o(W (Ω))

and such that
K(o(Ω, (ti)))) ⊆ K(o(W (Ω)) ∪

⋃

Ktj).

This step uses the assumption that the maximal order type resulting from W can
be computed by an effective reification a la [4] or [6]. Therefore the definition
of ϑ can be used to show

ϑ(o(W ′(Ω, (ti))))) < ϑ(o(W (Ω)))).

By induction hypothesis

o(LT (W (Rec))(t)) ≤ o(T (W ′(Ω, (ti)))) ≤ ϑ(T (W ′(Ω, (ti))))

and we are done.

This proof outline can be used to prove (rigorously) the main results of
the Habilitationsschrift of Dianaschmidt in a short and uniform way, but there
already have been lots of more applications (which exceed he realm of the usual
Kruskal theorem).
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Examples 1. 1. If W (X) = X∗ then o(〈T (W (Rec)),E〉) = ϑo(Ωω) (since

ωωΩ+1

= Ωω).

2. If W (X) =
⊗

i<n X then o(〈T (W (Rec)),E〉) = ϑo(Ωn) (since
⊗

i<n Ω =
Ωn).

3. If W (X) = (X∗)∗ then o(〈T (W (Rec)),E〉) = ϑo(ΩΩΩω

).

Further examples arise from the multiset construction. Let M(x) be the set
of finite multisets over X ordered by m � m′ ⇐⇒ (∀x ∈ m \ m ∩ m′)(∃y ∈
m′ \ m ∩ m′)[x < y]. Further let B(X) be the set of binary trees labeled with
elements from X ordered under homeomorphic embeddability.

Examples 2. 1. If W (X) = M(X) then o(〈T (W (Rec)),E〉) = ϑo(Ω) (since
ωΩ+1 = Ω).

2. If W (X) = M(X ⊗X) then o(〈T (W (Rec)),E〉) = ϑo(ΩΩ) (since ωΩ⊗Ω =
ΩΩ).

3. If W (X) = B(X) then o(〈T (W (Rec)),E〉) = ϑo(εΩ+1). (since o(B(Ω)) =
εΩ+1.

Let M ′(X) be the set of finite multisets over X ordered by

m ≤� m′ ⇐⇒ (∃f : m\m∩m′ ↪→ m′\m∩m′)(∀x ∈ m\m∩m′)[x ≤ f(x) mod X].

During the workshop the following result (which sharpens a bound provided
by Aschenbrenner and Pong [1]) has been obtained (after a fruitful discussion
with A. Montalban). If o(X) = ωα1 + · · · + ωαn ≥ α1 ≥ . . . ≥ αn then

ord(M ′(X)) :=

{

ωωα1+···+ωαn

if α1 is not an epsilon number,

ωωα1+1+···+ωαn

if α1 is an epsilon number.

This result and the formula (2) lead to the correct maximal order types for
wpo’s resulting from non planar trees.

The formula (2) is also reflected in the proof strenth of subsystems of second
order arithmetic. To prove that T (W (Rec)) is a wpo one typically applies a
minimal bad sequence argument. Roughly speaking this means that Rec can
be considered as a wpo. Using a small amount of extra strength (extra compre-
hension or induction) one then can prove W (Rec) is a wpo hence T (W (Rec))
is also a wpo. In the joint project with Michael Rathjen we calibrate precisely
the proof-theoretic strength of various versions and extensions of Kruskal’s the-
orem in terms of systems of second order arithmetic. Among other things the
following results have been obtained so far:

Theorem 3. 1. (Π1
1 − CA)− + ACA0 0 T (B(Rec)) is a wpo .

2. (Π1
1 − CA)− + ACA0 ` T ((Rec)∗...∗) is a wpo .

3. (Π1
1 − CA)− + RCA0 0 T ((Rec)∗) is a wpo .
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4. (Π1
1 − CA)− + RCA0 ` T (

⊗

i<n(Rec)) is a wpo for every n ≥ 1.

5. (Π1
1 − CA)− + RCA0 0 T (M ′(Rec)) is a wpo .

6. (Π1
1 − CA)− + RCA0 ` T (M(Rec)) is a wpo .

Problems 1. 1. Is it true that (Π1
1 − CA)− + RCA∗

0 0 WO(ϕω0)? (We
already proved that (Π1

1 − CA)− + RCA∗

0 ` WO(α) for all α < ϕω0.)

2. If the answer for assertion 1 is no: Is it true that (Π1
1−CA)−+(∆0

0−CA) 0

WO(ϕω0)? This problem is interesting since, if the answer would be no,
then (Π1

1 −CA)−, which is commonly considered to be as the prototype of
an impredicative comprehension, will have a predicative interpretation in
a weak context.

3. How far does the general formula 2lead? Are there natural situations in
which it fails?

4. Assume that W as before is a natural operatar mapping countable wpo’s to
countable wpo’s and assume that o(W (Ω) ≥ Ω3. Does RCA0+∀X(WPO(X) →
WPO(T (W (X))) have proof-theoretic ordinal ϑo(W (Ω))?

5. Assume that W as before is a natural operatar mapping countable wpo’s
to countable wpo’s and assume that o(W (Ω) ≥ Ω3. Is it always true that
RCA0 ` WPO(T (W (Rec))) ↔ WO(ϑ(o(W (Ω))))?
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