Authors Introduction The atoms of \mathcal{G}_{ω^n} The case ω^{ω} Ultrametric spaces

The Quasi Order of Graphs on an Ordinal

Norbert Sauer

University of Calgary Department of Mathematics and Statistics

4:55-5:45; 18.10.2007

イロト イヨト イヨト イヨト

Authors

Introduction The atoms of $\mathcal{G}_{\omega}{}^{n}_{\omega}$ The case ω^{ω} Ultrametric spaces

Authors

Introduction

The atoms of \mathcal{G}_{ω^n}

The case ω^{ω}

Ultrametric spaces

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 $\begin{array}{c} {\rm Authors} \\ {\rm Introduction} \\ {\rm The\ atoms\ of\ } {\mathcal G}_{\omega}{}^n \\ {\rm The\ case\ } \omega^{\omega} \\ {\rm Ultrametric\ spaces} \end{array}$

A large part of the talk is from a paper with Jean Larson and Péter Komjáth.

・ロン ・回と ・ヨン・

Authors Introduction The atoms of \mathcal{G}_{ω^n} The case ω^{ω} Ultrametric spaces

Authors

Introduction

The atoms of \mathcal{G}_{ω^n}

The case ω^{ω}

Ultrametric spaces

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Authors Introduction The atoms of \mathcal{G}_{ω}^{n} The case ω^{ω} Ultrametric spaces

Let K_{\aleph_0} be the complete graph and \mathcal{G}_{\aleph_0} be the set of all functions $\mathrm{F}:[\aleph_0]^2\to\{0,1\}.$

・ロン ・回と ・ヨン・

Let K_{\aleph_0} be the complete graph and \mathcal{G}_{\aleph_0} be the set of all functions $\mathrm{F}:[\aleph_0]^2\to\{0,1\}.$

For $F, G \in \mathcal{G}$ we write $F \preceq G$ if there is an injection h of \aleph_0 into \aleph_0 so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in \aleph_0$.

・ロン ・回と ・ヨン・

Let K_{\aleph_0} be the complete graph and \mathcal{G}_{\aleph_0} be the set of all functions $F : [\aleph_0]^2 \to \{0, 1\}.$

For $F, G \in \mathcal{G}$ we write $F \preceq G$ if there is an injection h of \aleph_0 into \aleph_0 so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in \aleph_0$.

Of course \mathcal{G} is just the set of all graphs with vertex set \aleph_0 and \preceq the embedding partial quasiorder $(\mathcal{G}_{\aleph_0}; \preceq)$ of graphs with vertex set \aleph_0 .

★週 → ★ 注 → ★ 注 →

Let K_{\aleph_0} be the complete graph and \mathcal{G}_{\aleph_0} be the set of all functions $\mathrm{F}:[\aleph_0]^2\to\{0,1\}.$

For $F, G \in \mathcal{G}$ we write $F \preceq G$ if there is an injection h of \aleph_0 into \aleph_0 so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in \aleph_0$.

Of course \mathcal{G} is just the set of all graphs with vertex set \aleph_0 and \preceq the embedding partial quasiorder $(\mathcal{G}_{\aleph_0}; \preceq)$ of graphs with vertex set \aleph_0 .

Hence $(\mathcal{G}_{\aleph_0}; \leq)$ can be seen as the quasiorder of graphs, whose order is countably infinite, under embedding.

・ロン ・回と ・ヨン・

Let K_{\aleph_0} be the complete graph and \mathcal{G}_{\aleph_0} be the set of all functions $\mathrm{F}:[\aleph_0]^2\to\{0,1\}.$

For $F, G \in \mathcal{G}$ we write $F \preceq G$ if there is an injection h of \aleph_0 into \aleph_0 so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in \aleph_0$.

Of course \mathcal{G} is just the set of all graphs with vertex set \aleph_0 and \preceq the embedding partial quasiorder $(\mathcal{G}_{\aleph_0}; \preceq)$ of graphs with vertex set \aleph_0 .

Hence $(\mathcal{G}_{\aleph_0}; \leq)$ can be seen as the quasiorder of graphs, whose order is countably infinite, under embedding.

This partial quasiorder $(\mathcal{G}_{\aleph_0}; \preceq)$ is atomic with exactly two atoms.

・ロト ・回ト ・ヨト ・ヨト

For $F, G \in \mathcal{G}$ we write $F \leq G$ if there is a strictly order preserving function h of ω into ω so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in \omega$.

イロト イポト イヨト イヨト

For $F, G \in \mathcal{G}$ we write $F \leq G$ if there is a strictly order preserving function h of ω into ω so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in \omega$.

Of course $(\mathcal{G}_{\omega}, \preceq)$ may be interpreted as the quasiorder of graphs whose set of vertices is enumerated into an ω -order, under strictly order preserving embedding.

・ロン ・回と ・ヨン ・ヨン

For $F, G \in \mathcal{G}$ we write $F \leq G$ if there is a strictly order preserving function h of ω into ω so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in \omega$.

Of course $(\mathcal{G}_{\omega}, \preceq)$ may be interpreted as the quasiorder of graphs whose set of vertices is enumerated into an ω -order, under strictly order preserving embedding.

This partial quasiorder $(\mathcal{G}_{\omega}, \preceq)$ is atomic with exactly two atoms.

More generally let G be a graph.

Let $\mathcal{G}(G)$ be the set of all functions $f : E(G) \to \{0, 1\}$ and $(\mathcal{G}(G); \preceq)$ the partial quasiorder on $\mathcal{G}(G)$ for which $f \preceq g$ if there exists an embedding $h : G \to G$ with $f\{x, y\} = g\{h(x), h(y)\}$ for all $x, y \in V(G)$.

More generally let G be a graph.

Let $\mathcal{G}(G)$ be the set of all functions $f : E(G) \to \{0, 1\}$ and $(\mathcal{G}(G); \preceq)$ the partial quasiorder on $\mathcal{G}(G)$ for which $f \preceq g$ if there exists an embedding $h : G \to G$ with $f\{x, y\} = g\{h(x), h(y)\}$ for all $x, y \in V(G)$.

For example, let R be the Rado graph. Then $(\mathcal{G}(R); \preceq)$ is atomic with four atoms. Similar for the countable triangle free homogeneous graph.

・ロト ・回ト ・ヨト ・ヨト

Authors Introduction The atoms of \mathcal{G}_{ω}^n The case ω^{ω} Ultrametric spaces

Or, let $(S; \leq)$ be a total order.

Let $\mathcal{G}_{(S;\leq)}$ be the set of all functions $F: [S]^2 \to \{0,1\}$.

Let $(\mathcal{G}_{(S;\leq)}; \preceq)$ be the partial quasiorder for which $F \preceq G$ if there exists a strictly order preserving function h of S to S so that $F\{x, y\} = G\{h(x), h(y)\}$ for all $x, y \in S$.

・ロン ・回と ・ヨン・

Authors Introduction The atoms of \mathcal{G}_{ω}^n The case ω^{ω} Ultrametric spaces

Or, let $(S; \leq)$ be a total order.

Let $\mathcal{G}_{(S;\leq)}$ be the set of all functions $F : [S]^2 \to \{0,1\}$. Let $(\mathcal{G}_{(S;\leq)}; \preceq)$ be the partial quasiorder for which $F \preceq G$ if there exists a strictly order preserving function h of S to S so that

 $F\{x, y\} = G\{h(x), h(y)\} \text{ for all } x, y \in S.$

Then $(\mathcal{G}_{\mathbb{Q}}; \preceq)$ is atomic with exactly four atoms. We have seen that $(\mathcal{G}_{\omega}; \preceq)$ is atomic with two atoms.

Authors Introduction The atoms of \mathcal{G}_{ω^n} The case ω^{ω} Ultrametric spaces

How about $K_{\omega,\omega}$ or K_{\aleph_0,\aleph_0} or $\mathcal{G}_{\omega+\omega}$?

◆□> ◆□> ◆臣> ◆臣> ―臣 …の�?

Authors Introduction The atoms of $\mathcal{G}_{\omega}{}^{n}_{\omega}$ The case ω^{ω} Ultrametric spaces

How about $K_{\omega,\omega}$ or K_{\aleph_0,\aleph_0} or $\mathcal{G}_{\omega+\omega}$?

Problem: Let μ be an ordinal. Is the partial quasiorder $(\mathcal{G}_{\mu}; \preceq)$ atomic? If so, how many atoms? If not, what is the coinitiality of $(\mathcal{G}_{\mu}; \preceq)$?

・ロン ・回と ・ヨン・

Authors Introduction The atoms of \mathcal{G}_{ω^n} The case ω^{ω} Ultrametric spaces

Authors

Introduction

The atoms of \mathcal{G}_{ω^n}

The case ω^{ω}

Ultrametric spaces

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

We represent the elements of ω^n as strictly increasing sequences of length *n* with entries in ω . This set $\mathcal{W}(n)$ is of order type ω^n under lexicographic ordering.

・ロト ・回ト ・ヨト ・ヨト

We represent the elements of ω^n as strictly increasing sequences of length *n* with entries in ω . This set $\mathcal{W}(n)$ is of order type ω^n under lexicographic ordering.

Let $\mathcal{G}(n)$ be the set of graphs with vertex set $\mathcal{W}(n)$

・ 回 と ・ ヨ と ・ ヨ と

We represent the elements of ω^n as strictly increasing sequences of length *n* with entries in ω . This set $\mathcal{W}(n)$ is of order type ω^n under lexicographic ordering.

Let $\mathcal{G}(n)$ be the set of graphs with vertex set $\mathcal{W}(n)$

For $F, G \in \mathcal{G}(n)$ we write $F \leq G$ if there is a strictly order preserving function $h: \mathcal{W}(n) \to \mathcal{W}(n)$ so that $\{x, y\} \in E(F)$ if and only if $\{h(x), h(y)\} \in E(G)$.

イロト イポト イヨト イヨト

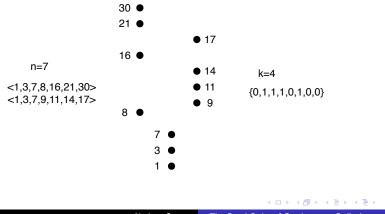
Authors Introduction The atoms of \mathcal{G}_{ω^n} The case ω^{ω} Ultrametric spaces

```
Given two elements of W(n), they exhibit a pattern: (regular, singular)
```

・ロン ・回と ・ヨン ・ヨン

Authors Introduction The atoms of \mathcal{G}_{ω} n The case ω^{ω} Ultrametric spaces

Given two elements of $\mathcal{W}(n)$, they exhibit a *pattern*: (regular, singular)



If $1 \le k \le n$ then a *k*-pattern is a function

 $u: \{1, 2, \dots, 2k\} \rightarrow \{0, 1\}$ with

 $u(1) = 0, |u^{-1}(0)| = k, |u^{-1}(1)| = k.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

If $1 \le k \le n$ then a *k*-pattern is a function

$$u: \{1, 2, \dots, 2k\} \to \{0, 1\}$$
 with

$$u(1) = 0, |u^{-1}(0)| = k, |u^{-1}(1)| = k.$$

Note: The number of k-patterns is

$$\binom{2k-1}{k-1}$$

The number of all regular patterns is

$$T_n = \sum_{k=1}^n \binom{2k-1}{k-1}$$

・ロン ・回と ・ヨン ・ヨン

Authors Introduction The atoms of \mathcal{G}_{ω}^n The case ω^{ω} Ultrametric spaces

The pair $(\mathbf{a}_1, \mathbf{b}_1)$ of elements of $\mathcal{W}(n)$ is equivalent to the pair $(\mathbf{a}_2, \mathbf{b}_2)$, written $(\mathbf{a}_1, \mathbf{b}_1) \equiv (\mathbf{a}_2, \mathbf{b}_2)$, if the pattern of $(\mathbf{a}_1, \mathbf{b}_1)$ is equal to the pattern of $(\mathbf{a}_2, \mathbf{b}_2)$.

・ロン ・回と ・ヨン・

Authors Introduction The atoms of \mathcal{G}_{ω}^n The case ω^{ω} Ultrametric spaces

The pair $(\mathbf{a}_1, \mathbf{b}_1)$ of elements of $\mathcal{W}(n)$ is equivalent to the pair $(\mathbf{a}_2, \mathbf{b}_2)$, written $(\mathbf{a}_1, \mathbf{b}_1) \equiv (\mathbf{a}_2, \mathbf{b}_2)$, if the pattern of $(\mathbf{a}_1, \mathbf{b}_1)$ is equal to the pattern of $(\mathbf{a}_2, \mathbf{b}_2)$.

A graph $G \in \mathcal{G}(n)$ is *pattern uniform* if E(G) is the union of \equiv equivalence classes.

・ロン ・回と ・ヨン ・ヨン

Authors Introduction The atoms of \mathcal{G}_{ω} n The case ω^{ω} Ultrametric spaces

Lemma

For every graph $G \in \mathcal{G}(n)$ there exists a pattern uniform graph A with $A \preceq G$.

・ロト ・回ト ・ヨト ・ヨト

Authors Introduction The atoms of \mathcal{G}_{ω} n The case ω^{ω} Ultrametric spaces

Lemma

For every graph $G \in \mathcal{G}(n)$ there exists a pattern uniform graph A with $A \preceq G$.

Proof.

Note that if u is a k-pattern and $\mathbf{c} \in (W)(n+k)$ then there is a unique pair (\mathbf{a}, \mathbf{b}) of elements in $\mathcal{W}(n)$ whose pattern is u and for which the entries of \mathbf{c} are the entries of \mathbf{a} union the entries of \mathbf{b} .

- 4 同 6 4 日 6 4 日 6

Lemma

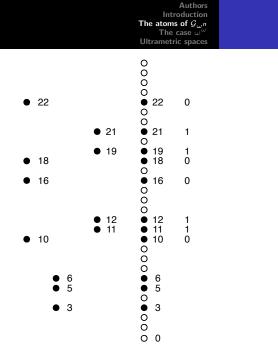
For every graph $G \in \mathcal{G}(n)$ there exists a pattern uniform graph A with $A \preceq G$.

Proof.

Note that if u is a k-pattern and $\mathbf{c} \in (W)(n+k)$ then there is a unique pair (\mathbf{a}, \mathbf{b}) of elements in $\mathcal{W}(n)$ whose pattern is u and for which the entries of \mathbf{c} are the entries of \mathbf{a} union the entries of \mathbf{b} .

For every pair (\mathbf{a}, \mathbf{b}) of elements in $\mathcal{W}(n)$ whose pattern is a *k*-pattern there exists an element $\mathbf{c} \in (W)(n + k)$ for which the entries of \mathbf{c} are the entries of \mathbf{a} union the entries of \mathbf{b} .

イロト イポト イヨト イヨト



æ

Authors Introduction The atoms of \mathcal{G}_{ω}^n The case ω^{ω} Ultrametric spaces

Let $G \in \mathcal{G}(n)$ and u a k-pattern. We define a labeling $l : \mathcal{W}(n+k) \rightarrow \{0,1\}$ as follows:

・ロン ・回と ・ヨン ・ヨン

Let $G \in \mathcal{G}(n)$ and u a k-pattern. We define a labeling $l : \mathcal{W}(n+k) \rightarrow \{0,1\}$ as follows:

Given $\mathbf{c} \in \mathcal{W}(n+k)$ let (\mathbf{a}, \mathbf{b}) be the pair of elements in $\mathcal{W}(n)$ having k-pattern u and whose union is \mathbf{c} .

・ロン ・回と ・ヨン ・ヨン

Let $G \in \mathcal{G}(n)$ and u a k-pattern. We define a labeling $l : \mathcal{W}(n+k) \rightarrow \{0,1\}$ as follows:

Given $\mathbf{c} \in \mathcal{W}(n+k)$ let (\mathbf{a}, \mathbf{b}) be the pair of elements in $\mathcal{W}(n)$ having k-pattern u and whose union is \mathbf{c} .

If $\{a, b\}$ is an edge of G then l(c) = 1 and otherwise l(c) = 0.

Apply Ramsey's theorem. Let f(u) = 1 if there is an infinite subset S of ω so that for every $\mathbf{c} \in \mathcal{W}(n) \cap S^{n+k}$ we have $l(\mathbf{c}) = 1$) and f(u) = 0 otherwise. Repeat for all k-patterns and all $1 \le k \le n$.

イロト イポト イヨト イヨト

Apply Ramsey's theorem. Let f(u) = 1 if there is an infinite subset S of ω so that for every $\mathbf{c} \in \mathcal{W}(n) \cap S^{n+k}$ we have $l(\mathbf{c}) = 1$) and f(u) = 0 otherwise. Repeat for all k-patterns and all $1 \le k \le n$.

We obtain an infinite subset S of ω and a function f of all patterns into $\{0,1\}$ so that for all $\mathbf{a}, \mathbf{b} \in \mathcal{W}(n) \cap S^n$ the pair $\{\mathbf{a}, \mathbf{b}\}$ is an edge of G if and only if f(u) = 1 for the pattern u of (\mathbf{a}, \mathbf{b}) .

Note that every order preserving map of $\mathcal{W}(n)$ into $\mathcal{W}(n)$ preserves patterns. Hence:

Lemma

Let A and B be pattern regular graphs in $\mathcal{G}(n)$ with $A \preceq B$. Then $B \preceq A$.

イロン イヨン イヨン イヨン

Combining both Lemmas we obtain:

Theorem

In the partial quasiorder of graphs G with $V(G) = \omega^n$ ordered under order preserving embeddings there is an atom below every graph and the number of atoms is

$$2^{T_n}$$
 with $T_n = \sum_{k=1}^n \binom{2k-1}{k-1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Assume that $\alpha < \omega^{\omega}$. In the partial quasiorder of graphs G with $V(G) = \alpha$ ordered under order preserving embeddings there is an atom below every graph. If α has the Hausdorff normal form $\alpha = \omega^{n_0} + \cdots + \omega^{n_k}$ with $n_0 \ge \cdots \ge n_k$ then the number of atoms is 2^{a+b} where

$$a = \sum_{i=0}^{k} T_{n_i}$$

and

$$b = \sum_{i < j} \binom{n_i + n_j}{n_i}.$$

イロト イポト イヨト イヨト

3

Authors

Introduction

The atoms of \mathcal{G}_{ω^n}

The case ω^{ω}

Ultrametric spaces

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Theorem

In the partial quasiorder of graphs G with $V(G) = \omega^{\omega}$ ordered under order preserving embeddings there is an atom below every graph. This quasiorder of graphs has 2^{\aleph_0} atoms.

Authors

Introduction

The atoms of \mathcal{G}_{ω^n}

The case ω^{ω}

Ultrametric spaces

◆□ > ◆□ > ◆臣 > ◆臣 > ○

An ultrametric space is a metric space satisfying the inequality

$$d(x,z) \le \max\{d(x,y), d(y,z)\}$$

for all points x, y, z in the metric space.

・ロン ・回と ・ヨン・

An ultrametric space is a metric space satisfying the inequality

$$d(x,z) \le \max\{d(x,y), d(y,z)\}$$

for all points x, y, z in the metric space.

A metric space is *homogeneous* if every isometry of finite subspaces extends to an automorphism of the metric space.

(4月) (1日) (日)

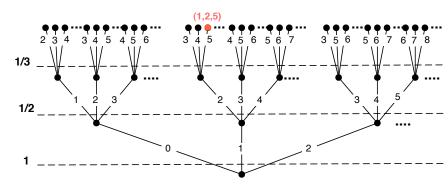
Let
$$n \in \omega$$
 and $\mathbf{a}, \mathbf{b} \in \mathcal{W}(n)$ with $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$.

If $\mathbf{a} \neq \mathbf{b}$ let $d(\mathbf{a}, \mathbf{b}) = 1/i$ where *i* is the smallest index for which $a_i \neq b_i$.

If $\mathbf{a} = \mathbf{b}$ let $d(\mathbf{a}, \mathbf{b}) = 0$.

・ロン ・回 と ・ ヨ と ・ ヨ と

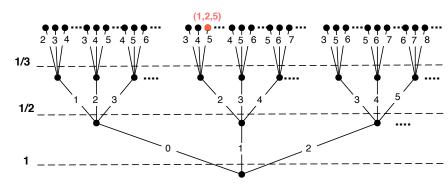
W(3):



< □ > < □ > < □ > < Ξ > < Ξ > ...

æ

W(3):



 $(\mathcal{W}(n), d)$ is a countable homogeneous ultrametric space, its big Ramsey degree has been determined by Lionel Nguyen Van Thé. $\mathbf{z} = \mathbf{v}_{\mathbf{Q}}$

Let V be a countable set of non negative real numbers which is dually well ordered. Using the idea of Fraïssé limits one can show that there exists a homogeneous ultrametric space \mathbb{U}/t_V whose set of finite subspaces is the set of all finite ultrametric spaces whose set of distances is a subset of V.

Let V be a countable set of non negative real numbers which is dually well ordered. Using the idea of Fraïssé limits one can show that there exists a homogeneous ultrametric space \mathbb{U}/t_V whose set of finite subspaces is the set of all finite ultrametric spaces whose set of distances is a subset of V.

The *Nerv* of an ultrametric space is the set of closed balls of the ultrametric space, whose diameter is attained.

Theorem

Let ${\rm M}$ be a denumerable ultrametric space. The following properties are equivalent:

- (i) M is isometric to some $\mathbb{U}It_V$, where V is dually well-ordered;
- (ii) M is point-homogeneous, $P := (Nerv(M), \supseteq)$ is well founded and the degree of every non maximal element is infinite;
- (iii) M is homogeneous and indivisible;

イロト イポト イヨト イヨト