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Finite graphs

Geodesic cycle ⇐⇒

⇐⇒

Shortest path between any two vx’s

No ‘shortcut’

Theorem
The cycle space of a finite graph is generated by geodesic
circuits.

Proof by picture.
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Infinite graphs

Our plan:

Extend theorem to locally finite graphs

Topological cycle space
Infinite geodesic circles?

Theorem is false for infinite graphs.
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A counterexample
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What now?

Wrong metric!

Need a metric on |G|.

Assign a length `(e) to every edge e.

Metric should induce the topology of |G|.

Infinite circles can have finite length.

`-Geodesic circles may be infinite, but always of finite length.
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The new theorem

Theorem
Given suitable edge-lengths `(e), the `-geodesic circuits
generate C(G).
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The proof

Problems:

Generating circuits is not enough.
Construct geodesic circuits.
Construct a thin family of geodesic circuits.
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Constructing geodesic circuits

Finite sets S0 ⊂ S1 ⊂ S2 ⊂ · · · with
⋃

Si = V (G).

Ŝi
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Constructing geodesic circuits

Finite theorem −→ Family of `i -geodesic circuits in each Ŝi

Compactness −→ Chain of families

Circuit in each Ŝi −→ Element of C(G)

`i -Geodesic circuit in each Ŝi −→ Circuit in |G|`i -Geodesic circuit in each Ŝi −→ `-Geodesic circuit in |G|
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Keeping the family thin

Using compactness will not yield a thin family.

Solution:

Only finitely many circuits at one time.
After i steps, C �G[Si ] is generated.
Let the lengths of this circuits tend to zero.

The family is thin.
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Final remark

Go to Angelos’ workshop!
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