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Overview

Definitions and Simple Examples

A relational structure is a realization of a lan-

guage whose non-logical symbols are predicates.

This is a pair R := (E, (ρi)i∈I) made of a set

E and of a family of mi-ary relations ρi on E.

The set E is the domain or base of R. The

family µ := (mi)i∈I is the signature of R.

The substructure induced by R on a subset A

of E, simply called the restriction of R to A,

is the relational structure R�A := (A, (Ami ∩
ρi)i∈I). Notions of isomorphism and local iso-

morphism from a relational structure to an

other one are defined in a natural way as well

as the notion of isomorphic type. In the sequel,

τ(R) stands for the isomorphic type of a rela-

tional structure R and Ωµ stands for the set of



isomorphic types of finite relational structures

with signature µ.

The profile of R is the function ϕR which counts

for every integer n the number ϕR(n) of sub-

structures of R induced on the n-element sub-

sets, isomorphic substructures being identified.

Clearly, this function only depends upon the

set A(R) of finite substructures of R consid-

ered up to an isomorphism, a set introduced

by R. Fräıssé under the name of age of R .

If the signature µ is finite (in the sense that I is

finite), there are only finitely many relational

structures with signature µ on an n-element

domain, hence ϕR(n) is necessarily an integer

for each integer n. In order to capture ex-

amples coming from algebra and group theory,

we cannot preclude I to be infinite. But then,

ϕR(n) could be an infinite cardinal.



As far as we will be concerned by the behavior

of ϕR, we will exclude this case. Indeed, we

have:

Fact 1. Let n < |E|. Then

ϕR(n) ≤ (n+ 1)ϕR(n+ 1) (1)

In particular if ϕR(n) is infinite then:

ϕR(n) ≤ ϕR(n+ 1). (2)

Except in very few occasions, I make the as-

sumption that ϕR is integer valued, no matter

how large I is. With this assumption, profiles

of relational structures with bounded signature

are profiles of relational structures with finite

signature, structures that R. Fräıssé call mul-

tirelations.

Several counting functions are profiles. Here is

some simple minded examples.



1. The binomial coefficient
(
n+k
k

)
. Let R :=

(Q,≤, u1, . . . , uk) where ≤ is the natural or-

der on the set Q of rational numbers, u1, . . . , uk
are k unary relations which divide Q into

k + 1 intervals. Then ϕR(n) =
(
n+k
k

)
.

2. The exponential n ↪→ kn. Let R := (Q,≤
, u1, . . . , uk), where again u1, . . . , uk are k

unary relations, but which divide Q into k

“colors” in such a way that between two

rational numbers all colors appear. Then

ϕR(n) = kn.

3. The factorial n ↪→ n!. Let R := (Q,≤,≤′),

where ≤′ is an other linear order on Q such

a way that the finite restrictions induce all

possible pairs of two linear orders on a finite

set (eg take for ≤′ an order with the same

type as the natural order on the set N of

non-negative integers). Then ϕR(n) = n!



4. The partition function which counts the

number p(n) of partitions of the integer n.

Let R := (N, ρ) be the infinite path on the

integers whose edges are pairs {x, y} such

that y = x + 1. Then ϕR(n) = p(n). The

determination of its asymptotic growth is

a famous achievement, the difficulties en-

countered to prove that p(n) ' 1
4
√

3n
e
π
√

2n
3

(Hardy and Ramanujan, 1918) suggest some

difficulties in the general study of profiles.

Orbital profiles An important class of func-

tions comes from permutation groups. The

orbital profile of a permutation group G acting

on a set E is the function θG which counts for

each integer n the number, possibly infinite, of

orbits of the n-element subsets of E. As it is

easy to see, θG is the profile of some relational

structure R := (E, (ρi)i∈I) on E. In fact, as it

is easy to see:



Lemma 1. For every permutation group G act-

ing on a set E there is a relational structure R

on E such that:

1. Every isomorphism f from a finite restric-

tion of R onto an other extends to an au-

tomorphism of R.

2. Aut(R) = G where G is the topological

adherence of G into the symmetric group

G(E), equipped with the topology induced

by the product topology on EE, E being

equipped with the discrete topology.

Structures satisfying condition 1) are called

homogeneous (or ultrahomogeneous). They

are now considered as one of the basic objects

of model theory. Ages of such structures are

called Fräıssé classes after their characteriza-

tion by R.Fräıssé in 1954. In many cases, I



is infinite, even if θG(n) is finite. Groups for

which θG(n) is always finite are said oligomor-

phic by P.J.Cameron. The study of their profile

is whole subject by itself. Their relevance to

model theory stems from the following result

of Ryll-Nardzewski.

Theorem 2. Let G acting on a denumerable

set E and R be a relational structure such that

AutR = G. Then G is oligomorphic if and only

if the complete theory of R is ℵ0-categorical.

A Sample of Results

The Profile grows

Inequality (1) given in the previous subsection

can be substantially improved:

Theorem 3. If R is a relational structure on

an infinite set then ϕR is non-decreasing.

This result was conjectured with R.Fräıssé. We

proved it in 1971; the proof - for a single



relation- appeared in 1971 in R.Fräıssé’s course

in logic, Exercise 8 p. 113. The proof relies on

Ramsey theorem. Later on we gave a proof

using linear algebra.

Jumps in the Growth of the Profile Beyond

bounded profiles, and provided that the rela-

tional structures satisfy some mild conditions,

there are jumps in the behavior of the profiles:

eg. no profile grows as log n or nlog n.

Let ϕ : N→ N and ψ : N→ N. Recall that ϕ =

O(ψ) and ψ grows as fast as ϕ if ϕ(n) ≤ aψ(n)

for some positive real number a and n large

enough. We say that ϕ and ψ have the same

growth if ϕ grows as fast as ψ and ψ grows as

fast as ϕ. The growth of ϕ is polynomial of

degree k if ϕ has the same growth as n ↪→ nk;

in other words there are positive real numbers

a and b such that ank ≤ ϕ ≤ bnk for n large

enough. Note that the growth of ϕ is as fast as



every polynomial if and only if limn→+∞
ϕ(n)
nk

=

+∞ for every non negative integer k.

Theorem 4. Let R := (E, (ρi)i∈I) be a rela-

tional structure. The growth of ϕR is either

polynomial or as fast as every polynomial pro-

vided that either the signature µ := (ni)i∈I is

bounded or the kernel K(R) of R is finite.

The kernel of R is the set K(R) of x ∈ E such

that A(R�E\{x}) 6= A(R). Relational struc-

tures with empty kernel are those for which

their age has the disjoint embedding property,

meaning that two arbitrary members of the age

can be embedded into a third in such a way

that their domains are disjoint. In Fräıssé’s

terminology, ages with the disjoint embedding

property are said inexhaustible and relational

structures whose age is inexhaustible are said

age-inexhaustible. We will say that relational

structures with finite kernel are almost age-

inexhaustible.



At this point, enough to know that the kernel

of any relational structure which encodes an

oligomorphic permutation group is finite (this

fact immediate: if R encodes a permutation

group G acting on a set E then K(R) is the set

union of the orbits of the 1-element subsets of

E which are finite. Since the number of these

orbits is at most θG(1), if G is oligomorphic

then K(R) is finite).

Corollary 1. The orbital profile of an oligomor-

phic group is either polynomial or faster than

every polynomial.

Groups with orbital profile equal to 1 were

described by P.Cameron in 1976 . From his

characterization, Cameron obtained that the

growth rate of an orbital profile is ultimately

constant, or it grows as fast as a linear func-

tion with slope 1
2.

For groups, and graphs, there is a much more

precise result than Theorem 4. It is due to

Macpherson, 1985.



Theorem 5. The profile of a graph or a per-

mutation groups grows either as a polynomial

or as fast as fε, where fε(n) = en
1
2−ε, this for

every ε > 0.

Note that the fε are somewhat similar to the

partition function. Such growth cannot be pre-

vented. Indeed, the partition function is the

orbital profile of the automorphim group of

an equivalence relation having infinitely many

classes, all being infinite. Such a group is im-

primitive. In fact, according to Macpherson

1987

Theorem 6. If G is primitive then either θG(n) =

1 for all n ∈ N, or θG(n) > cn for all n ∈ N ,

where c := 2
1
5 − ε.

Some hypotheses on R are needed in Theorem

4, indeed

Theorem 7. For every non-decreasing and un-

bounded map ϕ : N → N, there is a relational



structure R such that ϕR is unbounded and

eventually bounded above by ϕ.

More is true.

Let f : N → N be a non-decreasing map such

that 1 ≤ f(n) ≤ n + 1 for all n ∈ N. Let

A := {n : f(n′) < f(n + 1) for all n′ < n +

1}. Let R := (N, (ρn)n∈A) in which each ρn is

n+ 1-ary, with (x1, . . . , xn+1) ∈ ρn if and only

if {x1, . . . , xn+1} = {0, . . . , n}. Then ϕR = f .

The reader will notice that if f is unbounded

then the signature of R is unbounded and also

the kernel of R is infinite (equal to N).

The hypothesis about the kernel is not ad hoc.

As it turns out, if the growth of the profile of a

relational structure with a bounded signature

is bounded by a polynomial then its kernel is

finite.



Theorems 4 and 7 were obtained in 1978. The-

orem 7 and a part of Theorem 4 appeared

in 1981, with a detailed proof showing that

the growth of unbounded profiles of relational

structures with bounded signature is at least

linear. The notion of kernel is in several pa-

pers.

Two proofs of the growth of the profile

Relational structures with bounded profile

Infinite relational structures with profile con-

stant, equal to 1, were called monomorphic

and characterized by R. Fräıssé who proved

that they where chainable. Later on, those

with profile bounded, called finimorphic, were

characterized as almost chainable.

According to R.Fräıssé who introduced this no-

tion in 1954 in his thesis, a relational structure



R := (E, (ρi)i∈I) for which ϕR(n) = 1 for every

n ≤ |E| is monomorphic.

Example 1. There are eight kinds of monomor-

phic directed graphs, four made of reflexive di-

rected graphs, four made of irreflexive graphs.

For the reflexive ones, there are the chains,

the reflexive cliques , the antichains, plus the

3-element oriented reflexive cycle. Whereas,

for the irreflexive ones, there are the acyclic

(oriented) graphs, the cliques, the independent

sets, and the 3-element oriented irreflexive cy-

cle.

Fräıssé gave a characterization of infinite monomor-

phic relational structures by means of his no-

tion of chainability:

A relational structure R := (E, (ρi)i∈I) is chain-

able if there is a linear ordering ≤ on E such

that every local isomorphism of L := (E,≤) is

a local isomorphism of R.



Since chains are monomorphic, chainable rela-

tional structures are also monomorphic. The

converse does not hold, as shown by a 3-element

cycle. Fräıssé proved that it holds if the struc-

ture is infinite.

Theorem 8. An infinite relational structure is

monomorphic if and only if it is chainable.

His proof, given for relational structures of fi-

nite signature, was based on Ramsey’s theorem

[0] and the compactness theorem of first order

logic. The extension to arbitrary signature re-

quires an other application of the compactness

theorem.

Let R := (E, (ρi)i∈I) be a relational structure

and F be a subset of E. The relational struc-

ture R is F -monomorphic if for every non-negative

integer n and every A,A′ ∈ [E \ F ]n there is

an isomorphism from R�A onto R�A′ which ex-

tends by the identity on F to an isomorphism



of RA∪F onto RA′∪F ′. This relational struc-

ture is F -chainable if there is a linear order ≤
on E \ F such that every local isomorphism of

L := (E \ F,≤), once extended by the identity

on F , is a local isomorphism of R. This rela-

tional structure is almost monomorphic, resp.

almost chainable, if it is F -monomorphic, resp.

F -chainable for some finite subset F of E.

From Ramsey’s theorem, Fräıssé deduced the

following lemma.

Lemma 9. Let R be a relational structure with

domain E and F be a finite subset of E. If

the signature of R is finite then there is an

infinite subset E′ of E containing F on which

the restriction R′ := R�E′ is F -chainable.

Then he applied the compactness theorem of

first order logic (in a weaker form, given by his

“coherence lemma”). Indeed, from Lemma 9

above, if a monomorphic relational structure



R of finite signature is infinite, it contains an

infinite induced substructure R′ which is chain-

able. Since R is monomorphic, each finite sub-

structure of R is isomorphic to some finite sub-

structure of R′, hence is chainable. The com-

pactness theorem insures that R is chainable.

As said, this conclusion holds if the signature

is arbitrary.

An illustration: a proof of Theorem 3

Let R := (E, (ρi)i∈I) be a relational structure.

Suppose E be infinite. Let n be a non negative

integer. We claim that ϕR(n) ≤ ϕR(n+ 1).

Case 1. ϕR(n) is infinite. Then, as stated in

Fact 1, ϕR(n) ≤ ϕR(n+ 1) as claimed.

Case 2. ϕR(n) is finite. We reduce the claim

to the case of an almost monomorphic rela-

tional structure.



Claim 1. There is some finite subset I ′ of I

and some infinite subset E′ of E such that the

reduct R′ := R
�I ′

�E′ is almost monomorphic and

ϕR′(n) = ϕR(n).

Proof of Claim 1. There is some finite subset

I ′ of I such that the reduct R�I ′ := (E, (ρi)i∈I ′)
satisfies ϕ

R�I′(n) = ϕR(n). Let m := ϕ
R�I′(n).

Select F1, . . . Fm in [E]n such that the restric-

tions R�I ′

�F1
, . . . , R

�I ′

�Fm
are pairwise non-isomorphic.

Set F := F1 ∪ · · · ∪ Fm. According to Lemma

9, there is an infinite subset E′ of E contain-

ing F such that the restriction R′ := R
�I ′

�E′ is F -

chainable. This restriction is almost monomor-

phic. From our construction, ϕR′(n) = m.

This proves Claim 1. �

Claim 2. If an infinite relational structure R′ :=
(E′, (ρi)i∈I ′) is almost monomorphic then ϕR′ is

non-decreasing.



Proof of Claim 2. Let F be a finite subset of
E′ such that R′ is F -monomorphic. Let n be
a non-negative integer. Let m := ϕR′(n) and
let τ1, . . . , τm be the isomorphic types of the
n-element restrictions of R′. Select F1, · · · , Fm
such that for each i, 1 ≤ i ≤ m, R′�Fi has type τi
and |F ∩Fi| is minimum. Pick x ∈ E′ \ (F ∪F1∪
· · ·∪Fm) and set F ′i := Fi∪{x} for i, 1 ≤ i ≤ m.
We claim that the restrictions R′�F ′1

, . . . , R′�F ′m
are pairwise non-isomorphic, from which the
inequality ϕR′(n) ≤ ϕR′(n + 1) will follow. In-
deed, suppose that there is some isomorphism
f from R′�F ′i

onto R′�F ′j
. With no loss of gen-

erality, we may suppose |Fi ∩ F | ≥ |Fj ∩ F |.
Then f(x) 6∈ F , otherwise R′�F ′′j

, where F ′′j :=

F ′j \ {f(x)}, has type τi and |F ′′j ∩ F | < |Fi ∩ F |,
contradicting the choice of Fi. Hence f(x) ∈
F ′j \ F . Since R′ is F -monomorphic, the re-
striction R′�F ′j\{f(x)} and R′�F ′j\{x}

are isomor-

phic. Since their types are respectively τi and
τj, we have i = j. �



The proof based on linear algebra. It says

more:

Theorem 10. If R is a relational structure on

a set E having at least 2n + k elements then

ϕR(n) ≤ ϕR(n+ k).

Meaning that if |E| := m then ϕR increases up

to m
2 ; and, for n ≥ m

2 the value in n is at least

the value of the symmetric of n w.r.t. m
2 .

The result is a straightforward consequence of

the following property of incidence matrices.

Let n, k,m be three non-negative integers and

E be an m-element set. Let Mn,n+k be the ma-

trix whose rows are indexed by the n-element

subsets P of E and columns by the n + k-

element subsets Q of E, the coefficient aP,Q
being equal to 1 if P ⊆ Q and equal to 0 oth-

erwise.



Theorem 11. If 2n + k ≤ m then Mn,n+k has

full row rank (over the the field of rational

numbers).

With this result the proof of Theorem 10 goes

as follows:

We suppose that ϕR(n + k) is finite (other-

wise, from Fact 1, the stated inequality holds).

Thus, we may suppose also that E is finite

(otherwise, for each isomorphic type τ of n+k-

element restriction of R we select a subset Q

of E such that R�Q has type τ and we replace

E by the union of the Q′s). We consider the

matrix whose rows are indexed by the isomor-

phic types τ of the restrictions of R to the

n-element subsets of E and columns by the n-

element subsets P of E, the coefficient aτ,P
being equal to 1 if R�P has type τ and equal

to 0 otherwise. Trivially, this matrix has full

row rank, hence if we multiply it (from the



left) with Mn,n+k the resulting matrix has full

row rank. Thus, there are ϕ(n) linearly in-

dependent colums. These columns being dis-

tinct, the restrictions of R to the corresponding

(n+k)-element subsets have diff erent isomor-

phic types, hence ϕR(n) ≤ ϕR(n+ k).

We proved Theorem 10 in 1976 (MZ). The

same conclusion was obtained first for orbits of

finite permutation groups by Livingstone and

Wagner, 1965, and extended to arbitrary per-

mutation groups by Cameron, 1976. His proof

uses the dual version of Theorem 11. Later

on, he discovered a nice translation in terms

of his age algebra.

Theorem 11 is in W.Kantor 1972, with simi-

lar results for affine and vector subspaces of a

vector space. Over the last 30 years, it as been

applied and rediscovered many times; recently,

it was pointed out that it appeared in a 1966



paper of D.H.Gottlieb. Nowadays, this is one

of the fundamental tools in algebraic combina-

torics. A proof, with a clever argument leading

to further developments, was given by Fräıssé

in the 1986 edition of his book, Theory of re-

lations.

Polynomial Growth

It is natural to ask:

Problem 1. If the profile of a relational struc-

ture R with finite kernel has polynomial growth,

is ϕR(n) ' cnk
′

for some positive real c and

some non-negative integer k′?

The problem was raised by P.J.Cameron for

the special case of orbital profiles. Up to now,

it is unsolved, even in this special case.

An example, pointed out by P.J.Cameron, sug-

gests that a stronger property holds.



Let G′ be the wreath product G′ := G o Sω

of a permutation group G acting on {1, . . . , k}
and of Sω, the symmetric group on ω. Look-

ing at G′ as a permutation group acting on

E′ := {1, . . . , k} × ω, then - as observed by

Cameron- θG′ is the Hilbert function hInv(G)
of the subalgebra Inv(G) of C[x1, . . . , xk] con-

sisting of polynomials in the k indeterminates

x1, . . . , xk which are invariant under the action

of G. The value of hInv(G)(n) is, by definition,

the dimension dim(Invn(G)) of the subspace

of homogeneous polynomials of degree n. As

it is well known, the Hilbert series of Inv(G),

H(Inv(G), x) :=
∞∑
n=0

hInv(G)(n)xn

is a rational fraction of the form

P (x)

(1− x) · · · (1− xk)
(3)

with P (0) = 1, P (1) > 0, and all coefficients

of P being non negative integers.



Problem 2. Find an example of a permutation
group G′ acting on a set E with no finite orbit,
such that the orbital profile of G′ has polyno-
mial growth, but is not the Hilbert function
of the invariant ring Inv(G) associated with a
permutation group G acting on a finite set.

Let us associate to a relational structure R

whose profile takes only finite values its gener-
ating series

HϕR :=
∞∑
n=0

ϕR(n)xn

Problem 3. If R has a finite kernel and ϕR
is bounded above by some polynomial, is the
series HϕR a rational fraction of the form

P (x)

(1− x)(1− x2) · · · (1− xk)

with P ∈ Z[x]?

Under the hypothesis above we do not know if
HϕR is a rational fraction.



It is well known that if a generating function is

of the form P (x)
(1−x)(1−x2)···(1−xk)

then for n large

enough, an is a quasi-polynomial of degree k′,
with k′ ≤ k−1, that is a polynomial ak′(n)nk

′
+

· · ·+ a0(n) whose coefficients ak′(n), . . . , a0(n)

are periodic functions. Hence, a subproblem

is:

Problem 4. If R has a finite kernel and ϕR is

bounded above by some polynomial, is ϕR(n)

a quasi-polynomial for n large enough?

Remark 2. Since the profile is non-decreasing,

if ϕR(n) is a quasi-polynomial for n large enough

then ak′(n) is eventually constant. Hence the

profile has polynomial growth in the sense that

ϕR(n) ∼ cnk′ for some positive real c and k′ ∈ N.

Thus, in this case, Problem 1 has a positive

solution.

In the theory of languages, one of the basic

results is that the generating series of a regular

language is a rational fraction. This result is



not far away from our considerations. Indeed,

if A is a finite alphabet, with say k elements,

and A∗ is the set of words over A, then each

word can be viewed as a finite chain coloured

by k colors and A∗ can be viewed as the age

of the relational structure made of the chain

Q of rational numbers divided into k colors in

such a way that, between two distinct rational

numbers, all colors appear. This structure was

Example (2) in Subsection 1.1.

Problem 5. Does the members of the age of

a relational structure with polynomial growth

can be coded by words forming a regular lan-

guage?

Problem 6. Extend the properties of regular

languages to subsets of Ωµ.

Morphology of Relational Structures with

Polynomial Growth We only have a partial

description of relational structures with poly-

nomial growth.



Let us say that a relational structure R :=

(E, (ρi)i∈I) is almost multichainable if there

is a finite subset F of E and an enumera-

tion (ax,y)(x,y)∈V×L of the elements of E \ F
by a set V × L, where V is finite and L is

a linearly ordered set, such that for every lo-

cal isomorphism f of L the map (1V , f) ex-

tended by the identity on F is a local iso-

morphism of R (the map (1V , f) is defined by

(1V , f)(x, y) := (x, f(y))).

Note that if L is infinite, K(R), the kernel of

R, is a subset of F . Thus we have:

Fact 2. An almost multichainable relational struc-

ture has a finite kernel.

The profile of an almost multichainable re-

lational structure is not necessarily bounded

above by a polynomial.

Problem 7. If the profile of an almost multi-

chainable relational structure is not bounded



above by a polynomial, does his profile has ex-

ponential growth? Is the generating series a

rational fraction?

Theorem 12. If the profile of a relational struc-

ture R with bounded signature or finite kernel

is bounded above by a polynomial then R is

almost multichainable.

There are two cases, in fact opposite cases,

for which the profile of an almost multichain-

able relational structure is bounded above by

a polynomial.

1. Case 1. (1V , f) extended by the identity

on F is an automorphism of R for every

permutation f of L.

2. Case 2. For every family (fx)x∈V of local

isomorphisms of L, the map ∪{fx : x ∈ V }
extended by the identity on F is a local



isomorphism of f (the map ∪{fx : x ∈ V }
associates (x, fx(y)) to (x, y)).

A relational structure for which there are F and

(ax,y)(x,y)∈V×L such that Case 1 holds is cel-

lular. This notion was introduced by Schmerl

[0].

The Case of Graphs A directed graph is a

pair G := (E, ρ) where ρ is a binary relation on

E. Ordered sets and tournaments are special

case of directed graphs. We will use the term

graph if ρ is irreflexive and symmetric. In this

case ρ is identified with the set E of pairs {x, y}
of members of E such that xρy, G is identified

with (E, E); the members of E and E are the

vertices and edges of G. We denote by V (G),

resp. E(G), the set of vertices, resp. edges,

of G.

In terms of profile, the class of graphs provides

interesting examples.



Examples 13. 1. ϕG(n) is constant, equal to

1, for every n ≤ |V (G)|, if and only if ϕG(2) ≤
1, that is G is a clique or an independent

set (trivial).

2. ϕG is bounded if and only if G is “almost

constant” in the Fräıssé’s terminology, that

is there is a finite subset FG of vertices

such that two pairs {x, y} and {x′, y′} of

vertices having the same intersection on FG
are both edges or both non-edges.

3. If G is the direct sum of infinitely many

edges, or the direct sum Kω⊕Kω of two in-

finite cliques, then ϕG(n) = bn2c+1, whereas

HϕG = 1
(1−x)(1−x2)

.

4. Let G be the direct sum K(1,ω) ⊕ Kω of

an infinite wheel and an infinite indepen-

dent set, or the direct sum Kω ⊕ Kω of



an infinite clique and an infinite indepen-

dent set. Then ϕG(n) = n. Hence HϕG =

1 + x
(1−x)2, that we may write 1−x+x2

(1−x)2 , as

well as 1+x3

(1−x)(1−x2)
.

5. Let G be the direct sum of infinitely many

k-element cliques or the direct sum of k

infinite cliques. Then ϕG(n) = pk(n) '
nk−1

(k−1)!k! and HϕG = 1
(1−x)···(1−xk)

.

6. If G is either the direct sum of infinitely

many infinite cliques -or an infinite path-

then ϕG(n) = p(n) the partition function.

7. Let C := (E,≤) be a chain and K
C,12

be

the graph whose vertex set is 2 × E and

the edge set is {{(0, i), (1, j)} : i < j in C}.
Such a graph is an half-complete bipar-

tite graph. If C is infinite, then 2n−2 ≤



ϕK
C,12

(n) ≤ 2n−1 [0], hence its growth is

exponential. In fact, one can check that:

HK
C,12

= 1−2x−x2+3x3−x4

(1−x)(1−2x)(1−2x2)
= 1+x+2x2+

3x3 + 6x4 + 10x5 + 20x6 + 36x7 + 72x8 +

136x9 +O(x10).

8. Let K̃
C,12

be the graph obtained from K
C,12

by adding all possible edges between ver-

tices of the form (1, i), for i ∈ E. Then

ϕK̃
C,12

(n) = 2n−1.

Theorem 14. The profile of a graph is bounded

by a polynomial if and only if this graph is cel-

lular.

A straightforward computation shows that the

profile of a cellular graph is bounded by a poly-

nomial. The converse follows directly from

Theorem 12 and Lemma 15 below. A self-

contained proof will hopefully appear in a joint

work with S. Thomassé and R. Woodrow.



Lemma 15. The growth of the profile of al-

most multichainable graph which is not cellular

is at least exponential

Indeed, let G be an almost multichainable graph.

The sets F , V and L which appear in the defi-

nition of the almost multichainability of G sat-

isfy the following conditions: F, V are finite,

V (G) = F ∪ V × L and:

{a, (x, i)} ∈ E(G) if and only if {a, (x, j)} ∈ E(G)

(4)

for all a ∈ F, x ∈ V, j ∈ L

{(x, i), (y, j)} ∈ E(G) if and only if {(x, i′), (y, j′)} ∈ E(G)

(5)

for all x, y ∈ V, i, j, i′, j′ ∈ L such that iρj and

i′ρj′ where ρ is either the equality relation on

L or the strict order < on L.

If G is not cellular then there is some permu-

tation f of L such that (1V , f) extended by



the identity on F is not an automorphism of

G. The map f does not preserve the order on

L, hence, there are i0, j0 ∈ L and x, y ∈ V such

that {(x, i0), (y, j0)} ∈ E(G) and {(x, j0), (y, i0)} 6∈
E(G).

Let H := G�{x,y}×L. This graph is multichain-

able, hence it is entirely determined by the

edges belonging to [{x, y}×{i0, j0}]2\{(x, j0), (y, j0)}.
There are 16 possible graphs. But, if L is

infinite, these graphs yield only two distinct

ages, namely the age of K
C,12

and the age of

K̃
C,12

, two graphs described in (7) and (8) of

Examples 13. Hence, they yield at most two

distinct profiles. Their growth rates, as com-

puted in Examples 13, are exponential, hence

the growth rate of ϕG is at least exponential

as claimed.

We do not know if Problem 1 has a positive

answer for cellular graphs. Problem 3 has a



positive answer for a special class of relational

structures described in the following subsec-

tion.

Relational Structures Admitting a Finite

Monomorphic Decomposition

A monomorphic decomposition of a relational

structure R is a partition P of E into blocks

such that for every integer n, the induced struc-

tures on two n-elements subsets A and A′ of

E are isomorphic whenever the intersections

A ∩B and A′ ∩B over each block B of P have

the same size.

This notion was introduced with N. Thiéry.

If an infinite relational structure R has a monomor-

phic decomposition into finitely many blocks,

whereof k are infinite, then the profile is bounded



by some polynomial, whose degree itself is bounded

by k− 1. Indeed, as one may immediately see:

ϕR(n) ≤
∑
s≤r

(r
s

)(n+ k − 1− s
k − 1

)
≤ 2r

(n+ k − 1

k − 1

)
(6)

where r is the cardinality of the union of the

finite blocks.

One can say more:

Theorem 16 ([0]). Let R be an infinite rela-

tional structure R with a monomorphic decom-

position into finitely many blocks (Ei, i ∈ X), k

of which being infinite. Then, the generating

series HϕR is a rational fraction of the form:

P (x)

(1− x)(1− x2) · · · (1− xk)
.

Corollary 2 ([0]). Let R a relational structure

as above, then ϕR has a polynomial growth

and in fact ϕR(n) ∼ ank′ for some positive real

a, some non-negative integer k′.



Recently, with N.Thiéry, we proved:

Lemma 17. If k is the least number of infinite

blocks that a monomorphic decomposition of

R may have then ϕR(n) ∼ ank−1 .

The proof of this result relies on Proposition 1

below for which we introduce the following def-

inition. Let R be a relational structure on E;

a subset B of E is a monomorphic part of

R if for every integer n and every pair A,A′

of n-element subsets of E the induced struc-

tures on A and A′ are isomorphic whenever

A \B = A′ \B.

Proposition 1 ([0]). 1. For every x ∈ E, the

set-union R(x) of all the monomorphic parts

of R containing x is a monomorphic part,

the largest monomorphic part of R con-

taining x.

2. The largest monomorphic parts form a monomor-

phic decomposition of R of which every



monomorphic decomposition of R is a re-

finement.

We will call canonical the decomposition of R

into maximal monomorphic parts. This de-

composition has the least possible number of

parts.

Despite the apparent simplicity of relational

structures admitting a finite monomorphic de-

composition, there are many significant exam-

ples.

Quasi-Symmetric Polynomials

Let x1, . . . , xk be k-indeterminates and n1, . . . , nl
be a sequence of non-negative integers, 1 ≤ l ≤
k. The polynomial∑

1≤i1<···<il≤k
x
n1
i1
. . . x

nl
il



is a quasi-monomial of degree n, where n =:

n1 + · · · + nl. The vector space spanned by

the quasi-monomials forms the space QSk of

quasi-polynomials as introduced by I. Gessel.

As in the example above, the Hilbert series of

QSk+1 is defined as

HQSk :=
∞∑
n=0

dimQSk,nxn.

As shown by F. Bergeron, C. Retenauer, see

[0], this series is a rational fraction of the form
Pk

(1−x)(1−x2)...(1−xk)
where the coefficients Pk are

non negative. Let R be the poset product

of a k-element chain by a denumerable an-

tichain. More formally, R := (E, ρ) where E :=

{1, . . . , k}×N and ρ := {((i, n), (j,m)) ∈ E such

that i ≤ j}. Each isomorphic type of an n-

element restriction may be identified to a quasi-

polynomial, hence the generating series asso-

ciated to the profile of R is the Hilbert se-

ries defined above. Since R decomposes into



k monomorphic components, the rationality of

this series is a special case of Theorem 16. The

reason for which the coefficients of this frac-

tion are non-negative was elucidated only re-

cently by Garsia and Wallach [0]. They proved

that QSk is Cohen-Macaulay.

Tournaments

With Y.Boudabbous [0] we proved:

Theorem 18. [0] The growth of the profile of

a tournament T is either polynomial, in which

case T is a lexicographic sum of acyclic tour-

naments indexed by a finite tournament, or it

is at least exponential.

Here is an outline:

Let T be a tournament, a subset A of V (T )

is autonomous if for every x 6∈ A, y, y′ ∈ V (T ),

(x, y) ∈ E(T ) if and only if (x, y′) ∈ E(T ). A



tournament is acyclically prime if no acyclic

autonomous subset has more than one ele-

ment. (this notion was recently introduced by

J.F.Culus and B.Jouve).

Proposition 2. Every tournament T is a lexi-

cographical sum of acyclic tournament indexed

by an acyclically prime tournament and up to

isomorphy this tournament is unique.

We denote it by Ť .

Hint:An acyclic component of a tournament T

is a subset of V (T ) which is maximal w.r.t. in-

clusion among the acyclic autonomous subsets

of V (T ). Clearly, every acyclic autonomous

subset is contained into an acyclic component.

As it is easy to see, the acyclic components of

a tournament form a partition of its vertex set.

From this result, a tournament is a lexico-

graphic sum of acyclic tournaments indexed by



a finite tournament iff it contains no infinite

acyclically prime tournament.

We proved:

Theorem 19. There are twelve infinite acycli-

cally prime tournaments such that each infinite

acyclically prime tournament contains a copy

of one of them.

To conclude it was enough to prove that the

profiles of these tournaments are exponential.

Enough to say that to an acyclic tournament

α, where α is either the acyclic tournament n

on n-vertices, or the tournament ω on the set N
of integers or the dual tournament ω∗, we asso-

ciate a set Bα consisting of (at most ) six tour-

naments denoted respectively C3.α, Vα, Tα, Hα, Uα,Kα,

and we set B = Bω ∪ Bω∗. Not all members

of B are acyclically prime (eg: Kω and Uω).

But, all the X̌α ∈ B are infinite. They form



the list. The proof of Theorem 19 is based on
a separation lemma and Ramsey Theorem.

Our result has a finitary version.

For that, let n be a non-negative integer, set
B̌n := {Ť : T ∈ Bn}.
Theorem 20. For every non-negative integer
n there is an integer a(n) such that every fi-
nite tournament of size at least a(n) which is
acyclically prime embeds a member of B̌n.

An upper bound for a(n) can be deduced from
a careful analysis of the proof of Theorem 19.
An existence proof is readily obtained by means
of the compactness theorem of first order logic.

The Age Algebra of Cameron P. J. Cameron
associates to A(R), the age of a relational
structure R, its age algebra, a graded commu-
tative algebra K.A(R) over a field K of char-
acteristic zero. He shows that if ϕR takes only



finite values, then the dimension of K.A(R)n,

the homogeneous component of degree n of

K.A(R), is ϕR(n). Hence, in this case, the

generating series of the profile is simply the

Hilbert series of K.A(R).

P.J Cameron mentions several interesting ex-

amples of algebras which turn to be age alge-

bras. The most basic one is the shuffle alge-

bra on the set A∗ of words on a finite alphabet

A [0]. Indeed, as mentionned at the end of

Subsection 2.3, A∗ is the age of the relational

structure (Q, (Ua)a∈A) where the Ua’s are unary

relations forming a coloring of Q into distinct

colors, in such a way that between two distinct

rational numbers, all colors appear. And the

shuffle algebra is isomorphic to the age algebra

of (Q, (Ua)a∈A).

The Set Algebra



Let E be a set and let [E]<ω be the set of

finite subsets of E (including the empty set

∅). Let K be a field and K[E]<ω be the set of

maps f : [E]<ω → K. Endowed with the usual

addition and scalar multiplication of maps, this

set is a vector space over K. Let f, g ∈ K[E]<ω

and Q ∈ [E]<ω. Set

fg(Q) =
∑

P∈[Q]<ω
f(P )g(Q \ P ) (7)

. With this operation added, the above vec-

tor space becomes a K-algebra. This algebra

is commutative and it has a unit, denoted by

1. This is the map taking the value 1 on the

empty set and the value 0 everywhere else.

The set algebra is the subalgebra made of the

maps such that f(P ) = 0 for every P ∈ [E]<ω

with |P | large enough. This algebra is graded,

the homogeneous component of degree n be-

ing made of maps which take the value 0 on

every subset of size different from n.



Let ≡ be an equivalence relation on [E]<ω. A

map f : [E]<ω → K is ≡-invariant, or briefly,

invariant, if f is constant on each equivalence

class. Invariant maps form a subspace of the

vector space K[E]<ω.

if R is a relational structure with domain E,

set F ≡R F ′ for F, F ′ ∈ [E]<ω if the restrictions

R �F and R �F ′ are isomorphic. The resulting

equivalence on [E]<ω is such that the invariant

maps form a subalgebra . Let K.A(R) be the

intersection of the subalgebra of K[E]<ω made

of invariant maps with the set algebra. This is

a graded algebra, the age algebra of Cameron.

The name comes from the fact that this alge-

bra depends only upon the age of R.

If ϕR takes only integer values, K.A(R) identi-

fies with the set of (finite) linear combinations

of members of A(R). This explain the fact



that, in this case, ϕR(n) is the dimension of

the homogeneous component of degree n of

K.A(R). In a special case, we have

Theorem 21. [0] If R has a monomorphic de-

composition into finitely many blocks E1, . . . , Ek,

all infinite, then the age algebra K.A(R) is a

polynomial algebra, isomorphic to a subalge-

bra K[x1, . . . , xk]R of K[x1, . . . , xk], the algebra

of polynomials in the indeterminates x1, . . . , xk.

Behavior of the Profile

In the frame of its age algebra, Cameron gave

the following proof of the fact that the profile

does not decrease.

Let R be a relational structure on a set E,

let e :=
∑
P∈[E]1 P (that we could view as the

sum of isomorphic types of the one-element re-

strictions of R) and U be the subalgebra gen-

erated by e. Members of U are of the form



λmem + · · ·+ λ1e+ λ01 where 1 is the isomor-

phic type of the empty relational structure and

λm, . . . , λ0 are in K. Hence U is graded, with

Un, the homogeneous component of degree n,

equals to K.en.

Theorem 22. If R is infinite then for every

u ∈ K.A(R), eu = 0 if and only if u = 0

This innocent looking result implies that ϕR is

non decreasing. Indeed, the image of a ba-

sis of K.A(R)n by multiplication by em is an

independent subset of K.A(R)n+m.

Finite generation

If a graded algebra A is finitely generated, then,

since A is a quotient of the polynomial ring

K[x1, . . . , xk], its Hilbert function is bounded

above by a polynomial. In fact, as it is well

known, its Hilbert series is a fraction of form



P (x)
(1−x)d

, thus of the form given in (3) of subsec-

tion . Moreover, one can choose a numerator

with non-negative coefficients whenever the al-

gebra is Cohen-Macaulay. Due to Problem 3,

one could be tempted to conjecture that these

sufficient conditions are necessary in the case

of age agebras. Indeed, from Theorem 22 one

deduces easily:

Theorem 23. The profile of R is bounded if

and only if K.A(R) is finitely generated as a

module over U . In particular, if one of these

equivalent conditions holds, then K.A(R) is finitely

generated

But this case is exceptional. Indeed, on one

hand, as we have mentionned in , there are

tournaments whose profile has arbitrarily large

polynomial growth rate. On an other hand,

with N.Thiery we proved:

Theorem 24. The age algebra of a tourna-

ment is finitely generated if and only if the

profile is bounded.



The Behavior of the Hilbert Function; a

Conjecture of Cameron

Cameron [0] made an important observation

about the behavior of the Hilbert fonction.

Theorem 25. Let A be a graded algebra over

an algebraically closed field of characteristic

zero. If A is an integral domain the values of

the Hilbert function hA satisfy the inequality

hA(n) + hA(m)− 1 ≤ hA(n+m) (8)

for all non-negative integers n and m.

In 1981, he made the conjecture that if R

codes a permutation groups with no finite or-

bits then the age algebra over C is an integral

domain. I solved it positively in a slightly more

general setting:

Theorem 26. Let R be a relational structure

with possibly infinitely many non isomorphic



types of n-element substructures. If the ker-

nel of R is empty, then K.A(R) is an integral

domain.

Since the kernel of a relational structure R en-

coding a permutation group G is the union of

its finite orbits, if G has no finite orbit, the

kernel of R is empty. Thus from this result,

K.A(R) is an integral domain, as conjectured

by Cameron.

At the core of the solution is this lemma:

Lemma 27. Let m,n be two non negative inte-

gers. There is an integer t such that for every

set E, every field K with characteristic zero,

every pair of maps f : [E]m → K, g : [E]n → K,

if fg(Q) :=
∑
P∈[Q]m f(P )g(Q \ P ) = 0 for ev-

ery Q ∈ [E]m+n but f and g are not identically

zero, then f and g are zero on [E \ S]m and

[E \ S]n where S is a finite subset of E with

size at most t



If the age is inexhaustible, then in order to
prove that there is no zero divisor, the only part
of the lemma we need to apply is the assertion
that S is finite.

The fact that S can be bounded independently
of f and g, and the value of the least up-
per bound τ(n,m), seem to be of indepen-
dent interest. The only exact value we know
is τ(1, n) = 2n, a fact which amounts to a
weighted version of Theorem 11. Our exis-
tence proof of τ(m,n) yields astronomical up-
per bounds. For example, it gives τ(2,2) ≤
2(R2

k(4) + 2), where k := 530 and R2
k(4) is the

Ramsey number equals to the least integer p
such that for every colouring of the pairs of
{1, . . . , p} into k colors there are four integers
whose all pairs have the same colour. The only
lower bound we have is τ(2,2) ≥ 7 and more
generally τ(m,n) ≥ (m+1)(n+1)−2. We can-
not preclude a extremely simple upper bound
for τ(m,n), eg quadratic in n+m.



For example, our 1971 proof of Theorem 3

consisted to show that ϕR(n) ≤ ϕR(n + 1)

provided that E is large enough, the size of

E being bounded by some Ramsey number,

whereas, according to Theorem 11, 2n+1 suf-

fices [0].
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