Depth of Dead Ends in Cayley Graphs

Jörg Lehnert

University of Frankfurt

Banff, 16.10.2007

lehnert@math.uni-frankfurt.de

Dead Ends in one-ended graphs

Strong depth of dead ends

Notations

- Γ is always a graph.
- \triangleright $V(\Gamma)$ is its set of vertices, $E(\Gamma)$ is its set of edges.
- $ightharpoonup d(\cdot,\cdot)=d_{\Gamma}(\cdot,\cdot)$ denotes the induced metric on $V(\Gamma)$.
- $B_n(v) := \{ w \in V(\Gamma) | d(v, w) \leq n \}.$

Let G be a group and X be a finite set of generators. The Cayley graph $\Gamma(G,X)$ is defined by $V(\Gamma(G,X)):=G$ and $E(\Gamma(G,X):=\{(g,gx)|g\in G,x\in X\}.$

Conventions

- ► All graphs are locally finite.
- All graphs are vertex transitive, i.e. $Aut(\Gamma)$ always acts transitively on $V(\Gamma)$.

Notations

- Γ is always a graph.
- \triangleright $V(\Gamma)$ is its set of vertices, $E(\Gamma)$ is its set of edges.
- $ightharpoonup d(\cdot,\cdot)=d_{\Gamma}(\cdot,\cdot)$ denotes the induced metric on $V(\Gamma)$.
- $B_n(v) := \{ w \in V(\Gamma) | d(v, w) \leq n \}.$

Let G be a group and X be a finite set of generators. The Cayley graph $\Gamma(G,X)$ is defined by $V(\Gamma(G,X)):=G$ and $E(\Gamma(G,X):=\{(g,gx)|g\in G,x\in X\}.$

Conventions

- All graphs are locally finite.
- ▶ All graphs are vertex transitive, i.e. $Aut(\Gamma)$ always acts transitively on $V(\Gamma)$.

Dead Ends in one-ended graphs

Strong depth of dead ends

Definition (Dead end)

Let Γ be a graph and $v_0 \in V(\Gamma)$. A vertex $v_1 \in V(\Gamma)$ is a dead end with respect to v_0 if $B_1(v_1) \subseteq B_{d(v_0,v_1)}(v_0)$. If Γ is a Cayley graph $\Gamma(G,X)$, we always choose $v_0=1_G$

Examples

- $\Gamma(\mathbb{Z}, \{2,3\})$ d(0,1)=2 and d(0,1+2)=d(0,1-3)=1, d(0,1-2)=d(0,1+3)=2. Hence 1 is a dead end.
- ► $\Gamma(\mathbb{Z}, \{3, 5\})$ d(0, 4) = 4. Adding ± 3 or ± 5 reduces the distance, because $4 = 2 \cdot 5 - 2 \cdot 3 = 3 \cdot 3 - 1 \cdot 5$.

Dead Ends in one-ended graphs

Strong depth of dead ends

Definition (Dead end)

Let Γ be a graph and $v_0 \in V(\Gamma)$. A vertex $v_1 \in V(\Gamma)$ is a dead end with respect to v_0 if $B_1(v_1) \subseteq B_{d(v_0,v_1)}(v_0)$. If Γ is a Cayley graph $\Gamma(G,X)$, we always choose $v_0=1_G$

Examples

- $\Gamma(\mathbb{Z}, \{2,3\})$ d(0,1) = 2 and d(0,1+2) = d(0,1-3) = 1, d(0,1-2) = d(0,1+3) = 2. Hence 1 is a dead end.
- ► $\Gamma(\mathbb{Z}, \{3, 5\})$ d(0, 4) = 4. Adding ± 3 or ± 5 reduces the distance, because $4 = 2 \cdot 5 - 2 \cdot 3 = 3 \cdot 3 - 1 \cdot 5$.

Dead Ends in one-ended graphs

Strong depth of dead ends

Definition (Dead end)

Let Γ be a graph and $v_0 \in V(\Gamma)$. A vertex $v_1 \in V(\Gamma)$ is a dead end with respect to v_0 if $B_1(v_1) \subseteq B_{d(v_0,v_1)}(v_0)$. If Γ is a Cayley graph $\Gamma(G,X)$, we always choose $v_0=1_G$

Examples

- $\Gamma(\mathbb{Z},\{2,3\})$ d(0,1)=2 and d(0,1+2)=d(0,1-3)=1, d(0,1-2)=d(0,1+3)=2. Hence 1 is a dead end.
- ► $\Gamma(\mathbb{Z}, \{3, 5\})$ d(0, 4) = 4. Adding ± 3 or ± 5 reduces the distance, because $4 = 2 \cdot 5 - 2 \cdot 3 = 3 \cdot 3 - 1 \cdot 5$.

Dead Ends in one-ended graphs

Strong depth of dead ends

Definition (Dead end)

Let Γ be a graph and $v_0 \in V(\Gamma)$. A vertex $v_1 \in V(\Gamma)$ is a dead end with respect to v_0 if $B_1(v_1) \subseteq B_{d(v_0,v_1)}(v_0)$. If Γ is a Cayley graph $\Gamma(G,X)$, we always choose $v_0=1_G$

Examples

- $\Gamma(\mathbb{Z},\{2,3\})$ d(0,1)=2 and d(0,1+2)=d(0,1-3)=1, d(0,1-2)=d(0,1+3)=2. Hence 1 is a dead end.
- ► $\Gamma(\mathbb{Z}, \{3, 5\})$ d(0, 4) = 4. Adding ± 3 or ± 5 reduces the distance, because $4 = 2 \cdot 5 - 2 \cdot 3 = 3 \cdot 3 - 1 \cdot 5$.

Dead Ends in one-ended graphs

Strong depth of dead ends

Definition (Dead end)

Let Γ be a graph and $v_0 \in V(\Gamma)$. A vertex $v_1 \in V(\Gamma)$ is a dead end with respect to v_0 if $B_1(v_1) \subseteq B_{d(v_0,v_1)}(v_0)$. If Γ is a Cayley graph $\Gamma(G,X)$, we always choose $v_0=1_G$

Examples

- $\Gamma(\mathbb{Z},\{2,3\})$ d(0,1)=2 and d(0,1+2)=d(0,1-3)=1, d(0,1-2)=d(0,1+3)=2. Hence 1 is a dead end.
- ► $\Gamma(\mathbb{Z}, \{3, 5\})$ d(0, 4) = 4. Adding ± 3 or ± 5 reduces the distance, because $4 = 2 \cdot 5 - 2 \cdot 3 = 3 \cdot 3 - 1 \cdot 5$.

Dead Ends in one-ended graphs

Strong depth of dead ends

Definition (Depth of a dead end)

Let v_1 be a dead end with respect to v_0 . The *depth* of v_1 is the maximal nonnegative integer k such that $B_k(v_1) \subseteq B_{d(v_0,v_1)}(v_0)$.

Remarks

- In the upper examples the depth of 1 in $\Gamma(\mathbb{Z}, \{2, 3\})$ is 1, and the depth of 4 in $\Gamma(\mathbb{Z}, \{3, 5\})$ is 2.
- ► There exist graphs with arbitrary deep dead ends.

Dead Ends in one-ended graphs

Strong depth of dead ends

Definition (Depth of a dead end)

Let v_1 be a dead end with respect to v_0 . The *depth* of v_1 is the maximal nonnegative integer k such that $B_k(v_1) \subseteq B_{d(v_0,v_1)}(v_0)$.

Remarks

- In the upper examples the depth of 1 in $\Gamma(\mathbb{Z}, \{2, 3\})$ is 1, and the depth of 4 in $\Gamma(\mathbb{Z}, \{3, 5\})$ is 2.
- There exist graphs with arbitrary deep dead ends.

First statement

Depth of Dead Ends in Cayley Graphs

Jörg Lehnert

Introduction

Dead Ends in one-ended graphs

Strong depth of dead ends

Theorem

Let Γ be a graph with more than one end. Then the depth of dead ends in Γ is bounded.

Proof of Theorem

Sketch of proof

Choose k > 0 such that for one (hence for each) $v_1 \in V(\Gamma)$ the graph $\Gamma \setminus B_k(v_1)$ has more than one unbounded component. We calculate the depth of v_1 with respect to v_0 .

Figure: The depth of the dead end v_1 is bounded above by 2k: The ray starting in v_0 and ending in a different component of $\Gamma \setminus B_k(v_1)$ has to hit the ball $B_k(v_1)$. The distance $d(v_0, v_2) \ge d(v_0, w_1) + d(w_2, v_2) \ge d(v_0, v_1) + 1$ and $d(v_1, v_2) \le 2k + 1$.

Depth of Dead Ends in Cayley Graphs

Jörg Lehnert

Introduction

Dead Ends in one-ended graphs

Strong depth of dead ends

Depth of Dead Ends in Cayley Graphs

Jörg Lehnert

Introduction

Dead Ends in one-ended graphs

Strong depth of dead ends

Known results

- Existence of dead ends is not a property preserved by quasi-isometries.
- ▶ Results concerning dead ends in Cayley graphs were obtained (a.o.) by Bogopolski (97), Cleary Taback (04), Cleary Riley (04&05), L. (07), Sunic (07), Warshall (07).
- ► Even the property of having dead ends of unbounded depth (in a Cayley graph) is not a group invariant. [Riley Warshall(06)]
- Hence this property is also not preserved by Quasi-isometries.

Depth of Dead Ends in Cayley Graphs

Jörg Lehnert

Introduction

Dead Ends in one-ended graphs

Strong depth of dead ends

Known results

- Existence of dead ends is not a property preserved by quasi-isometries.
- ► Results concerning dead ends in Cayley graphs were obtained (a.o.) by Bogopolski (97), Cleary Taback (04), Cleary Riley (04&05), L. (07), Sunic (07), Warshall (07).
- ► Even the property of having dead ends of unbounded depth (in a Cayley graph) is not a group invariant. [Riley Warshall(06)]
- Hence this property is also not preserved by Quasi-isometries.

Known results

- Existence of dead ends is not a property preserved by quasi-isometries.
- ▶ Results concerning dead ends in Cayley graphs were obtained (a.o.) by Bogopolski (97), Cleary Taback (04), Cleary Riley (04&05), L. (07), Sunic (07), Warshall (07).
- Even the property of having dead ends of unbounded depth (in a Cayley graph) is not a group invariant. [Riley Warshall(06)]
- Hence this property is also not preserved by Quasi-isometries.

Definition (Quasi-Automorphism)

Let Γ be a graph. A quasi-automorphism ϕ of Γ is a bijection of $V(\Gamma)$ which respects all but finitely many edges, e.g. $|\{(v_1,v_2)\in E(\Gamma)|(\phi(v_1),\phi(v_2))\notin E(\Gamma)\}|<\infty$ and $|\{(v_1,v_2)\notin E(\Gamma)|(\phi(v_1),\phi(v_2))\in E(\Gamma)\}|<\infty$. The set of all quasi-automorphisms of Γ forms a group called

The set of all quasi-automorphisms of Γ forms a group called $QA(\Gamma)$.

The example

We now study $G = QA(\Gamma(\mathbb{Z}, \{1\}))$.

 $\cdots \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots$

Definition (Quasi-Automorphism)

Let Γ be a graph. A quasi-automorphism ϕ of Γ is a bijection of $V(\Gamma)$ which respects all but finitely many edges, e.g.

$$|\{(v_1, v_2) \in E(\Gamma) | (\phi(v_1), \phi(v_2)) \notin E(\Gamma)\}| < \infty \text{ and } |\{(v_1, v_2) \notin E(\Gamma) | (\phi(v_1), \phi(v_2)) \in E(\Gamma)\}| < \infty.$$

The set of all quasi-automorphisms of Γ forms a group called $QA(\Gamma)$.

The example

We now study $G = QA(\Gamma(\mathbb{Z}, \{1\}))$.

 $\cdots \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots$

▶ *G* is generated by $s, t : \mathbb{Z} \to \mathbb{Z}$

$$s(k) := k+1$$

$$t(k) := \begin{cases} k & k \neq 0, 1 \\ 0 & k = 1 \\ 1 & k = 0 \end{cases}$$

- ► There exists a nice description of $\Gamma(G, \{s, t\})$
 - Vertices: A vertex is a bi-infinite list of all nonzero integers, almost all in increasing order, marked with an arrow, e.g.

$$(\ldots, -5, -4, 3, 6, -3, -2, -1^{\downarrow}4, 2, 1, 5, 6, \ldots)$$

► Edges: Traveling along an *s*-edge moves the arrow one step to the left.

Traveling along a *t*-edge swaps the numbers next to the arrow

Depth of Dead Ends in Cayley Graphs

Jörg Lehnert

Introduction

Dead Ends in one-ended graphs

Strong depth of dead ends

Some facts

▶ *G* is generated by $s, t : \mathbb{Z} \to \mathbb{Z}$

$$s(k) := k+1$$

$$t(k) := \begin{cases} k & k \neq 0, 1 \\ 0 & k = 1 \\ 1 & k = 0 \end{cases}$$

- ▶ There exists a nice description of $\Gamma(G, \{s, t\})$
 - Vertices: A vertex is a bi-infinite list of all nonzero integers, almost all in increasing order, marked with an arrow, e.g.

$$(\ldots, -5, -4, 3, 6, -3, -2, -1^{\downarrow}4, 2, 1, 5, 6, \ldots)$$

- Edges: Traveling along an s-edge moves the arrow one step to the left.
 - Traveling along a *t*-edge swaps the numbers next to the arrow

In this description the identity is represented by $v_0 = (\ldots -3, -2, -1^{\downarrow}1, 2, 3 \ldots)$.

Theorem

The vertex

 $v_k = (\ldots, -(k+1), k, k-1, \ldots 1^{\downarrow} - 1, -2, \ldots - k, k+1, \ldots)$ is a dead end of depth at least 2k with respect to v_0 .

Furthermore, any path from v_k to a point of $\Gamma \setminus B_{d(v_0,v_k)}(v_0)$ has to enter the ball $B_{d(v_0,v_k)-k}(v_0)$.

In this description the identity is represented by $v_0 = (\ldots -3, -2, -1^{\downarrow}1, 2, 3 \ldots)$.

Theorem

The vertex

 $v_k = (\dots, -(k+1), k, k-1, \dots 1^{\downarrow} - 1, -2, \dots - k, k+1, \dots)$ is a dead end of depth at least 2k with respect to v_0 . Furthermore, any path from v_k to a point of $\Gamma \setminus B_{d(v_0, v_k)}(v_0)$ has to enter the ball $B_{d(v_0, v_k) - k}(v_0)$.

Definition

Let $v_0, v_1 \in V(\Gamma)$, and $n = d(v_0, v_1)$. The strong depth of v_1 with respect to v_0 is defined as the minimal number k such that v_1 can be connected to a point of $\Gamma \setminus B_1(n)$ inside $\Gamma \setminus B_1(n-k)$.

Open question

Is the property of having dead ends of arbitrary high strong depth invariant under quasi-isometries?

Definition

Let $v_0, v_1 \in V(\Gamma)$, and $n = d(v_0, v_1)$. The strong depth of v_1 with respect to v_0 is defined as the minimal number k such that v_1 can be connected to a point of $\Gamma \setminus B_1(n)$ inside $\Gamma \setminus B_1(n-k)$.

Open question

Is the property of having dead ends of arbitrary high strong depth invariant under quasi-isometries?

The End

Depth of Dead Ends in Cayley Graphs

Jörg Lehnert

Introduction

Dead Ends in one-ended graphs

Strong depth of dead ends

Thank you for you attention.