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Notations
» [ is always a graph. e
» V(') is its set of vertices, E(I') is its set of edges.
» d(-,-) = dr(-,-) denotes the induced metric on V().
» B,(v) :={w e V(IN|d(v,w) < n}.

Let G be a group and X be a finite set of generators. The
Cayley graph (G, X) is defined by V(I'(G, X)) := G and
E(N(G, X) :={(g.8x)lg € G,x € X}.



Notations and Conventions

Notations

[ is always a graph.

V(I) is its set of vertices, E(I') is its set of edges.
d(-,-) = dr(-,-) denotes the induced metric on V/(I').
Bn(v) :={w e V(I)|d(v,w) < n}.
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Let G be a group and X be a finite set of generators. The
Cayley graph (G, X) is defined by V(I'(G, X)) := G and
E(N(G, X) :={(g.8x)lg € G,x € X}.

Conventions

» All graphs are locally finite.

> All graphs are vertex transitive, i.e. Aut(l') always acts
transitively on V/(I').
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Dead ends

Definition (Dead end)

Let I be a graph and vp € V(I'). A vertex v; € V(I') is a
dead end with respect to vg if Bi(v1) C By(y,,vy)(v0)-

Depth of Dead
Ends in Cayley
Graphs

Jorg Lehnert

Introduction



Dead ends

Definition (Dead end)

Let I be a graph and vp € V(I'). A vertex v; € V(I') is a
dead end with respect to vg if Bi(v1) C By(y,,vy)(v0)-
If [ is a Cayley graph I'(G, X), we always choose vy = 1¢
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Dead ends

Definition (Dead end)

Let I be a graph and vp € V(I'). A vertex v; € V(I') is a
dead end with respect to vg if Bi(v1) C By(y,,vy)(v0)-
If [ is a Cayley graph I'(G, X), we always choose vy = 1¢

Examples

d(0,1) =2 and d(0,1+2)=4d(0,1 —3) =1,
d(0,1 —2)=d(0,1+3)=2. Hence 1 is a dead end.
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Dead ends

Definition (Dead end)

Let I be a graph and vp € V(I'). A vertex v; € V(I') is a
dead end with respect to vg if Bi(v1) C By(y,,vy)(v0)-
If [ is a Cayley graph I'(G, X), we always choose vy = 1¢

Examples

d(0,1) =2 and d(0,1+2) = d(0,1—3) =1,

d(0,1 —2)=d(0,1+3)=2. Hence 1 is a dead end.
d(0,4) = 4. Adding +3 or £5 reduces the distance,
because 4 =2-5—-2-3=3-3—-1.5.
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Dead ends

Definition (Dead end)

Let I be a graph and vp € V(I'). A vertex v; € V(I') is a
dead end with respect to vg if Bi(v1) C By(y,,vy)(v0)-
If [ is a Cayley graph I'(G, X), we always choose vy = 1¢

Examples

d(0,1) =2 and d(0,1+2) = d(0,1—3) =1,

d(0,1 —2)=d(0,1+3)=2. Hence 1 is a dead end.
d(0,4) = 4. Adding +3 or £5 reduces the distance,
because 4 =2-5—-2-3=3-3—-1.5.

The second example is worse. Starting in 4 one needs even 3
steps to leave B4(0).
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Definition (Depth of a dead end)

Let v; be a dead end with respect to vg. The depth of v; is
the maximal nonnegative integer k such that

Bk(vl) C Bd(vo,vl)(VO)'
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Definition (Depth of a dead end)

Let v; be a dead end with respect to vg. The depth of v; is
the maximal nonnegative integer k such that

Bk(vl) C Bd(vo,vl)(VO)'
Remarks

» In the upper examples the depth of 1 in I(Z,{2,3}) is
1, and the depth of 4 in I(Z, {3,5}) is 2.

» There exist graphs with arbitrary deep dead ends.



First statement

Theorem
Let I be a graph with more than one end. Then the depth of

dead ends in T is bounded.
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Proof of Theorem

Sketch of proof

Choose k > 0 such that for one (hence for each) v; € V(I')
the graph ' \ Bk(v1) has more than one unbounded
component. We calculate the depth of v; with respect to v.

Zd(V(),Vl)—k

Figure: The depth of the dead end v; is bounded above by 2k:
The ray starting in vg and ending in a different component of
[\ Bk(v1) has to hit the ball Bx(v1). The distance

d(Vo, V2) > d(Vo, Wl) -+ d(WQ, V2) > d(Vo, V1) + 1 and

d(Vl, V2) S 2k —+ 1.
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Bad news

Known results

» Existence of dead ends is not a property preserved by
quasi-isometries.
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Bad news

Known results

» Existence of dead ends is not a property preserved by
quasi-isometries.

» Results concerning dead ends in Cayley graphs were
obtained (a.o0.) by Bogopolski (97), Cleary Taback (04),
Cleary Riley (044.05), L. (07), Sunic (07), Warshall (07).
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Known results
Dead Ends in

one-ended graphs

» Existence of dead ends is not a property preserved by
quasi-isometries.

» Results concerning dead ends in Cayley graphs were
obtained (a.o0.) by Bogopolski (97), Cleary Taback (04),
Cleary Riley (044.05), L. (07), Sunic (07), Warshall (07).

» Even the property of having dead ends of unbounded

depth (in a Cayley graph) is not a group invariant.
[Riley Warshall(06)]

» Hence this property is also not preserved by
Quasi-isometries.



A further example

Definition (Quasi-Automorphism)

Let [ be a graph. A quasi-automorphism ¢ of ' is a bijection
of V(I') which respects all but finitely many edges, e.g.

{(vi,v2) € E(D)|(d(v1), p(v2)) ¢ E(N)}| < oo and
{(vi,v2) & E(N|(¢(v1), d(v2)) € E(MN)}] < o0.

The set of all quasi-automorphisms of I' forms a group called

QA(T).
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A further example

Definition (Quasi-Automorphism)

Let [ be a graph. A quasi-automorphism ¢ of ' is a bijection
of V(I') which respects all but finitely many edges, e.g.

{(vi,v2) € E(D)|(d(v1), p(v2)) ¢ E(N)}| < oo and
{(v1,v2) & E(N)[(¢(v1), &(v2)) € E(I)}| < 0.

The set of all quasi-automorphisms of I' forms a group called

QA(T).

The example
We now study G = QA(I'(Z, {1})).
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» G is generated by s, t:Z — Z

Strong depth of
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A further example Enis in Cavley
Graphs
Some faCtS Jorg Lehnert

» G is generated by s, t:Z — Z

s(k) = k+1
Strong depth of
( k k # O, 1 dead ends
t(k) = < 0 k=1
1 k=0

» There exists a nice description of [(G, {s, t})

» Vertices: A vertex is a bi-infinite list of all nonzero
integers, almost all in increasing order, marked with an
arrow, e.g.
(...,—5,-4,3,6,—-3,-2,-114,2,1,5,6,..))

» Edges: Traveling along an s-edge moves the arrow one

step to the left.
Traveling along a t-edge swaps the numbers next to the

arrow



A further example

In this description the identity is represented by
vw=(..—3-2-11,2,3..))

Theorem

The vertex

vk =(...,—(k+1),k,k—1,...1  =1,-2, ... —k, k+1,...)
Is a dead end of depth at least 2k with respect to vy.

Depth of Dead
Ends in Cayley
Graphs

Jorg Lehnert

Strong depth of
dead ends



A further example

In this description the identity is represented by
vw=(..—3-2-11,2,3..))

Theorem

The vertex

vk =(...,—(k+1),k,k—1,...1  =1,-2, ... —k, k+1,...)
Is a dead end of depth at least 2k with respect to vy.
Furthermore, any path from vy to a point of I\ Bg(y, v,)(v0)
has to enter the ball By, v,)—k(v0)-
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Strong depth

Definition
Let vo, vy € V(I), and n = d(wvy, v1). The strong depth of v
with respect to vy is defined as the minimal number k such

that v; can be connected to a point of '\ Bi(n) inside
[\ Bi(n— k).
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Strong depth

Definition

Let vp,v1 € V(I), and n = d(vp, v;). The strong depth of v
with respect to vy is defined as the minimal number k such
that v; can be connected to a point of '\ Bi(n) inside

[\ Bi(n— k).

Open question
Is the property of having dead ends of arbitrary high strong
depth invariant under quasi-isometries?
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The End

Thank you for you attention.
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