

Tools to reduce infinite graph problems to its countable case

The Story of Pixar Animation Studios To Infinity and Beyond!

By François Laviolette BIRS workshop on infinite graph Banff 2007-10-14 to 2077-10-19

Many problems use infinite graphs in their representations.

To study such an infinite combinatorial structure, we :

- Analyze the topology of its one-way infinite paths (Theory of end, generalized depth-first search ideas,...
- Find a construction for the particular graphs related to the problem, and try to encode the most interesting of them by a finite structure.
- decompose and conquer.

Definitions and Notations

•The end: 'the beginning of infinite graph theory'

• **Definition:** A *cut* in a graph *G* is a set of edges of *G* which separates a sub-graph *A* from its complement.

• **Definition 1:** A minimal cut (with respect to the inclusion) is called a *bond*.

- **Proposition:** a cut is a bond if and only if both the subgraph *A* and its complement are connected.
- **Proposition:** cuts are disjoint unions of bonds.

• **Theorem** (Menger): the edge-connectivity between two vertices *x* and *y* (i.e. the maximal "number" of edge-disjoint paths linking *x* and *y*) is equal to the minimal cardinality of a bond that separates *x* and *y*.

For any cardinal α , the relation "to be at least α -edge connected" induces an equivalence relation on the set of vertices of a graph.

• **Definition 2:** an equivalence class of this relation is called an α -class

Definition 3: A *decomposition* of a graph *G* is a family of connected subgraphs of *G* that are pairwise edge disjoint but whose union is *G* itself.

The subgraphs of the family are called the *fragments* of the decomposition.

Given any cardinal α , an α -decomposition is a decomposition whose fragments are all of size " α ... Well known example : cycle decomposition.

Theorem (Euler, Hierholzer, Veblen):

Let G be a finite, connected graph. Then the following statements are equivalent:

- 1. G admits an Euler tour;
- 2. no vertex of G has odd degree;
- 3. G has a cycle decomposition.

Theorem Nash-Williams (1960)

A graph has a cycle decomposition iff it has no finite cut of odd cardinality.

Idea of the proof of Nash-Williams's theorem (The countable case)

- We first note that:
 - 1 If a graph has no odd cut then each edge of it is contained in a cycle.

```
"Those graphs have enough cycles"
```

2 If we remove the edges of a (finite) cycle from a graph that has no odd-cut, the resulting graph will still have no odd-cut.

"We have an invariant property"

- And we inductively construct a cycle-decomposition as follows: Let e₁, e₂, e₃, ... be an enumeration of E(G). Choose C₁, a cycle of G that contains e₁. Let i₂, be the smallest index such that e_{i2} ∈ E(G\C₁). Choose C₂, a cycle of G\C₁ that contains e_{i2}. Let i₃, be the smallest index such that e_{i3} ∈ E(G\(C₁ ∪ C₂)). Choose C₃, ...
- Clearly, $(C_i)_{i\in\omega}$ is a cycle-decomposition

"And we are done (for the countable case)"

Definition 4: an α -decomposition Δ is *bond faithful* if

- 1. any bond of cardinality $\leq \alpha$ of G is totally contained in one fragment;
- 2. any bond of cardinality $< \alpha$ of a fragment is also a bond of *G*

In other words, (up to the cardinal α) the bondstructure of the graph can be recovered from the bond-structure of the fragments.

Here is an easy example:

In a bond-faithful α -decomposition Δ , the following properties are always satisfied for any set *B* of edges of *G*:

- If $|B| < \alpha$ then B is a bond of G \Leftrightarrow B is a bond of some fragment of Δ ;
- If $|B| = \alpha$ then B is a bond of G \Rightarrow B is a bond of some fragment of Δ ;
- If |B|> α then in any fragment H containing edges of B, B induces a cut of cardinality α in H.

Question: do such decompositions exist for any graph ?

For this *G*, let's try for $\alpha = 3$

Question: do such decompositions exist for any graph ?

For this *G*, let's try for $\alpha = 3$

Attempt#1: No

Questions do such decompositions exist for any graph?

For this *G*, let's try for $\alpha = 3$

Attempt#2: No

Question: do such decompositions exist for any graph ?

For this G, let's try for $\alpha=3$

Attempt#3: ??

Theorem:

Every graph admits a bond-faithful ω -decomposition.

In other words, it is always possible to decompose a graph G into countable fragments such that

- 1. every countable bond of G is a bond of some fragment;
- 2. The set of all the finite bonds of the fragments is exactly the set of all finite bonds of G.

Note: Under the Generalized Continuum Hypothesis assumption, this result can be generalized to:

Theorem: For all infinite cardinal α ,

every graph admits a decomposition into fragments of cardinality at most α that is bond-faithful up to α .

Proposition: Every graph G is the edge disjoint union of two spanning graphs, say K and L, such that the edge-connectivity between any pair of infinitely edge-connected vertices is preserved, in G, K and L.

Proposition: Assuming GCH, every α -edge-connected graph contains α edge-disjoint spanning trees.

Theorem : Let W be the set of all the ω -classes of G. Then there exists a well ordering on W such that each equivalence class $w \in W$ can be separated from all the preceding ω -classes by a finite cut of the graph.

The bond-faithful theorem :

Every graph admits a bond-faithful ω-decomposition.

Sketch of the proof :

STEP 1:

Every bridgeless graph admits an ω -decomposition whose fragments are all 2-edge-connected.

STEP 2:

Given any ω -decomposition Δ , then there exists an ω decomposition Δ ' that is coarser than Δ , and such that for any fragment H of Δ , the only bonds of H that are bonds of the corresponding fragment of Δ ' are those that are bonds of G.

Proof (following) :

STEP 3:

Iterating step 2, we obtain an ω -decomposition that satisfies the property (ii). (Bonds in the fragments are bond in G). Also, if we manage to find some ω -decomposition that satisfies property (i). (Bonds in G are bond in the fragments). Applying STEP 3 to this particular decomposition will give what we want. (I.e.: a bond-faithful ω -decomposition).

STEP 4:

Theorem: Let G be a graph, x a vertex of G and μ a regular uncountable cardinal.

If x has degree $\geq \mu$, then x is a cut vertex or is μ -vertex-connected to some other vertex y.

Proof (end)

STEP 5:

Let G/ω_1 represents the graph obtained from G by identifying vertices that belong to the same ω_1 -classes. Then, because of STEP 4, the blocks of G/ω_1 form a bond faithful ω decomposition of G/ω_1 .

STEP 6:

Construct a bond-faithful ω -decomposition of G from that bond-faithful ω -decomposition of G/ω_1 . (The hard step)

Now, let us come back to Euler

Theorem (Euler, Hierholzer, Veblen):

Let G be a finite, connected graph. Then the following statements are equivalent:

- 1. G admits an Euler tour;
- 2. no vertex of G has odd degree;
- 3. G has a cycle decomposition.

In the infinite case those three statement are no longer equivalent !!

Generalizations of Theorem (*E*,*H*,*V*) to infinite graphs

to have a decomposition into fragments that admit an Euler tour

Decomposition into circuits --- (1)

Easy theorem :

G admits a decomposition into circuits

↓ but
↑
for every odd cut, both the left side and the right side of the
cut have rays

Decomposition into circuits --- (1)

Easy theorem : G admits a decomposition into circuits ↓ but ♠ for every odd cut, both the left side and the right side of the

cut have rays

Counterexample:

Decomposition into circuits --- (2)

Not so easy theorem :

G admits a decomposition into non dominated circuits

 $\downarrow \uparrow$ for every odd cut, both the left side and the right side of the cut have non dominated rays

Decomposition into circuits --- (2)

Not so easy theorem :

G admits a decomposition into non dominated circuits

 $\downarrow \uparrow$ for every odd cut, both the left side and the right side of the cut have non dominated rays

Idea of the proof of ↑ (*The countable case*)

• in graph with this property, each edge of it is contained in a non dominated circuit.

"Those graphs have enough non dominated circuits"

•If we remove the edges of a non dominated circuits of such a graph, the resulting graph will still have the property.

"We have an invariant property"

Decomposition into circuits --- (2)

Not so easy theorem :

G admits a decomposition into non dominated circuits

 $\downarrow \uparrow$ for every odd cut, both the left side and the right side of the cut have non dominated rays

Idea of the proof of ↑ (*The uncountable case*)

• Apply the Bond Faithful theorem in the proper way :-)

Decomposition into circuits --- (3)

The main theorem :

G admits a decomposition into circuits

if for every odd cut, both the left side and the right side of the cut have eligible rays

Decomposition into circuits --- (3)

The main theorem :

G admits a decomposition into circuits

↓↑ for every odd cut, both the left side and the right side of the cut have eligible rays

Question: What is an eligible ray?

Decomposition into circuits --- (3)

The main theorem :

G admits a decomposition into circuits

↓↑ for every odd cut, both the left side and the right side of the cut have eligible rays

Essentially, an *eligible* ray is a ray whose removal from the graph will not create odd bonds between vertices that originally were dominating the ray, and will not create new "odd-type" vertices.

Graphs that do not have eligible rays must have an odd cut for which one side is basically one of the four subgraphs:

