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Many problems use infinite graphs in their
representations.

To study such an infinite combinatorial structure, we :

• Analyze the topology of its one-way infinite paths
(Theory of end, generalized depth-first search ideas,…

• Find a construction for the particular graphs related to
the problem, and try to encode the most interesting of
them by a finite structure.

• decompose and conquer.
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•The circuits:

a ray:

•A ray is dominated if:

•The end:  ‘the beginning of infinite graph theory’

the double-ray

the cycles

Definitions and Notations



• Definition: A cut in a graph G is a set of edges of G which
separates a sub-graph A from its complement.

• Definition 1: A minimal cut (with respect to the inclusion) is
called a bond.

cut
AcA



• Proposition: a cut is a bond if and only if both the subgraph
A and its complement are connected.

• Proposition: cuts are disjoint unions of bonds.

• Theorem (Menger): the edge-connectivity between two
vertices x and y (i.e. the maximal “number” of edge-disjoint
paths linking x and y) is equal to the minimal cardinality of a
bond that separates x and y.

For any cardinal α, the relation “to be at least α-edge connected” induces an
equivalence relation on the set of vertices of a graph.

• Definition 2: an equivalence class of this relation is called an
α-class



Definition 3: A decomposition of a graph G is a family of connected
subgraphs of G that are pairwise edge disjoint but whose union is G itself.

G

K2K1

The subgraphs of the family are called the fragments of the decomposition.

Given any cardinal α,
an α-decomposition is a decomposition whose fragments are all of size ″ α..



Well known example :  cycle decomposition.

Theorem (Euler, Hierholzer, Veblen):

Let G be a finite, connected graph. Then the following
statements are equivalent:
1. G admits an Euler tour;
2. no vertex of G has odd degree;
3. G has a cycle decomposition.

Theorem Nash-Williams (1960)

A graph has a cycle decomposition
                         iff
it has no finite cut of odd cardinality.



Idea of the proof of Nash-Williams’s theorem (The countable case)

• We first note that:
1 If a graph has no odd cut then each edge of it is contained in a cycle.

“Those graphs have enough cycles”

2 If we remove the edges of a (finite) cycle from a graph that has no odd-cut,
the resulting graph will still have no odd-cut.

“We have an invariant property”

• And we inductively construct a cycle-decomposition as follows:
Let e1, e2, e3, …  be an enumeration of  E(G).
Choose C1, a cycle of G that contains e1.
Let i2, be the smallest index such that ei2 ∈ E(G\C1).
Choose C2, a cycle of G\C1 that contains ei2.
Let i3, be the smallest index such that ei3 ∈ E(G\(C1∪ C2)). Choose C3, …

• Clearly,  (Ci)i∈ω  is a cycle-decomposition

“And we are done (for the countable case)”



Definition 4: an α-decomposition Δ is bond faithful if

1. any bond of cardinality≤α of G is totally
contained in one fragment;

2. any bond of cardinality< α of a fragment is
also a bond of G

In other words, (up to the cardinal α ) the bond-
structure of the graph can be recovered from the
bond-structure of the fragments.

Here is an easy example:

K1 K2 K3 K4

G

. . . . . .



In a bond-faithful α-decomposition Δ, the following properties
are always satisfied for any set B of edges of G:

 If |B|< α then
B is a bond of G  ⇔ B is a bond of some fragment of Δ;

 If |B|= α then
B is a bond of G  ⇒ B is a bond of some fragment of Δ;

 If |B|> α then
in any fragment H containing edges of B, B induces a cut
of cardinality α in H.



Question: do such decompositions exist for any graph ?

For this G, let’s try for α=3

G



Question: do such decompositions exist for any graph ?

K2K1

For this G, let’s try for α=3       Attempt#1: No

G



Questions do such decompositions exist for any graph ?

For this G, let’s try for α=3       Attempt#2:  No

H1 H2

G



Question: do such decompositions exist for any graph ?

For this G, let’s try for α=3       Attempt#3:  ??

L2L1

G



Theorem:
Every graph admits a bond-faithful ω-decomposition.

In other words, it is always possible to decompose a graph G
into countable fragments such that
1. every countable bond of G is a bond of some fragment;
2. The set of all the finite bonds of the fragments is exactly

the set of all finite bonds of G.

Note:  Under the Generalized Continuum Hypothesis assumption, this result can be
generalized to:

Theorem: For all infinite cardinal α,
every graph admits a decomposition into fragments of cardinality at most α
that is bond-faithful up to α.



Proposition:  Every graph G is the edge disjoint union
of two spanning graphs, say K and L, such that
the edge-connectivity between any pair of infinitely
edge-connected vertices is preserved, in G, K and L.

Proposition: Assuming GCH, every α-edge-connected
graph contains α edge-disjoint spanning trees.

Theorem : Let W be the set of all the ω-classes of G.
Then there exists a well ordering on W such that each
equivalence class w∈ W  can be separated from all the
preceding ω-classes by a finite cut of the graph.



The bond-faithful theorem :
Every graph admits a bond-faithful ω-decomposition.

Sketch of the proof :

STEP 1:
Every bridgeless graph admits an ω-decomposition whose
fragments are all 2-edge-connected.

STEP 2:
Given any ω-decomposition Δ, then there exists an ω-
decomposition Δ’ that is coarser than Δ, and such that
for any fragment H of Δ, the only bonds of H that are bonds of the
corresponding fragment of Δ’ are those that are bonds of G.



Proof (following) :

STEP 3:
Iterating step 2, we obtain an ω-decomposition that satisfies the
property (ii).  (Bonds in the fragments are bond in G).
Also, if we manage to find some ω-decomposition that satisfies
property (i).  (Bonds in G are bond in the fragments).
 Applying STEP 3 to this particular decomposition will give what
we want.  (I.e.: a bond-faithful ω-decomposition ).

STEP 4:
Theorem:  Let G be a graph, x a vertex of G and µ a regular
uncountable cardinal.
If  x has degree≥ µ, then x is a cut vertex or is µ-vertex-connected
to some other vertex y.



Proof (end)

STEP 5:
Let  G/ω1 represents the graph obtained from G by identifying
vertices that belong to the same ω1-classes.
Then, because of STEP 4,  the blocks of G/ω1 form a bond faithful ω-
decomposition of G/ω1  .

STEP 6:
Construct a bond-faithful ω-decomposition  of G from that
bond-faithful ω-decomposition of G/ω1 . (The hard step)



Now, let us come back to Euler

Theorem (Euler, Hierholzer, Veblen):

Let G be a finite, connected graph. Then the following
statements are equivalent:
1. G admits an Euler tour;
2. no vertex of G has odd degree;
3. G has a cycle decomposition.

In the infinite case those three statement are no longer equivalent !!



      Generalizations of Theorem (E,H,V)
      to infinite graphs

   (Erdos, Grünwald et Vázsonyi)
              1938

(Nash-Williams)
     1960

G has an Euler tour
c

G is Eulerian, countable
and

! finite sub-graph  H

G\E(H) has at most 2 infinite c.c.
and

!finite Eulerian subgraph K

G\E(K) has at most 1 infinite c.c.

G has no vertex of
odd degree

c

G admits a decomposition
into fragments that has an

Euler tour

G has a decomposition
into finite circuits.

c

G has no bond of odd cardinality

G has a decomposition
into circuits.

c
       ?????????????????????????



 

 

Note that:      but:      counter-examples:  

 
 

   to have  a decomposition  

    into finite circuits  
 

    !       " 

 

     to Have  a decomposition  

          into circuits  
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to have  a decomposition into  

fragments that admit an Euler tour  
 

 

… 



Decomposition into circuits --- (1)

Easy theorem :
G admits a decomposition into circuits
                       ⇓
for every odd cut, both the left side and the right side of the

cut have rays

odd cut

but ⇑



Decomposition into circuits --- (1)

Easy theorem :
G admits a decomposition into circuits
                       ⇓
for every odd cut, both the left side and the right side of the

cut have rays

but ⇑

Counterexample:



Decomposition into circuits --- (2)
Not so easy theorem :
G admits a decomposition into  non dominated circuits
                       ⇓⇑
for every odd cut, both the left side and the right side of the
cut have non dominated rays

odd cut



Decomposition into circuits --- (2)
Not so easy theorem :
G admits a decomposition into  non dominated circuits
                       ⇓⇑
for every odd cut, both the left side and the right side of the
cut have non dominated rays

Idea of the proof of ⇑   (The countable case)
• in graph with this property, each edge of it is contained in a non dominated circuit.

                                           “Those graphs have enough non dominated circuits”

•If we remove the edges of a non dominated circuits of such a graph,
 the resulting graph will still have the property.

                                                                         “We have an invariant property”



Decomposition into circuits --- (2)
Not so easy theorem :
G admits a decomposition into  non dominated circuits
                       ⇓⇑
for every odd cut, both the left side and the right side of the
cut have non dominated rays

Idea of the proof of ⇑   (The uncountable case)

• Apply the Bond Faithful theorem in the proper way   :-)



Decomposition into circuits --- (3)

The main theorem :
G admits a decomposition into circuits
                       ⇓⇑
for every odd cut, both the left side and the right side of the

cut have eligible rays

odd cut



Decomposition into circuits --- (3)

The main theorem :
G admits a decomposition into circuits
                       ⇓⇑
for every odd cut, both the left side and the right side of the

cut have eligible rays

Question:   What is an eligible ray?



Decomposition into circuits --- (3)

The main theorem :
G admits a decomposition into circuits
                       ⇓⇑
for every odd cut, both the left side and the right side of the

cut have eligible rays

Essentially, an eligible ray is a ray whose removal from the
graph will not create odd bonds between vertices that
originally were dominating the ray, and will not create new
“odd-type” vertices.



Graphs that do not have eligible rays must have an odd cut
for which one side is basically one of the four subgraphs:


