Tools to reduce infinite graph problems to its countable case

The Story of Pixar Animation Studios
To Infinity and Beyond!

By François Laviolette BIRS workshop on infinite graph Banff
 2007-10-14 to 2077-10-19

Many problems use infinite graphs in their representations.

To study such an infinite combinatorial structure, we :

- Analyze the topology of its one-way infinite paths (Theory of end, generalized depth-first search ideas,...
- Find a construction for the particular graphs related to the problem, and try to encode the most interesting of them by a finite structure.
- decompose and conquer.

Definitions and Notations

-The circuits: $\left\{\begin{array}{cl}\infty, \ldots, \ldots & \text { the cycles } \\ \text { et } \\ \ldots-0-\ldots & \text { the double-ray }\end{array}\right.$
a ray:
-A ray is dominated if:

-The end: 'the beginning of infinite graph theory'

- Definition: A cut in a graph G is a set of edges of G which separates a sub-graph A from its complement.

- Definition 1: A minimal cut (with respect to the inclusion) is called a bond.
- Proposition: a cut is a bond if and only if both the subgraph A and its complement are connected.
- Proposition: cuts are disjoint unions of bonds.
- Theorem (Menger): the edge-connectivity between two vertices x and y (i.e. the maximal "number" of edge-disjoint paths linking x and y) is equal to the minimal cardinality of a bond that separates x and y.

For any cardinal α, the relation "to be at least α-edge connected" induces an equivalence relation on the set of vertices of a graph.

- Definition 2: an equivalence class of this relation is called an α-class

Definition 3: A decomposition of a graph G is a family of connected subgraphs of G that are pairwise edge disjoint but whose union is G itself.

The subgraphs of the family are called the fragments of the decomposition.

Given any cardinal α, an α-decomposition is a decomposition whose fragments are all of size " α..

Well known example : cycle decomposition.

Theorem (Euler, Hierholzer, Veblen):

Let G be a finite, connected graph. Then the following statements are equivalent:

1. G admits an Euler tour;
2. no vertex of G has odd degree;
3. G has a cycle decomposition.

Theorem Nash-Williams (1960)
A graph has a cycle decomposition
iff
it has no finite cut of odd cardinality.

Idea of the proof of Nash-Williams's theorem (The countable case)

- We first note that:

1 If a graph has no odd cut then each edge of it is contained in a cycle.
"Those graphs have enough cycles"
2 If we remove the edges of a (finite) cycle from a graph that has no odd-cut, the resulting graph will still have no odd-cut.
"We have an invariant property"

- And we inductively construct a cycle-decomposition as follows:

Let $e_{1}, e_{2}, e_{3}, \ldots$ be an enumeration of $\mathrm{E}(G)$.
Choose C_{1}, a cycle of G that contains e_{1}.
Let i_{2}, be the smallest index such that $e_{i 2} \in \mathrm{E}\left(G \backslash C_{1}\right)$.
Choose C_{2}, a cycle of $G \backslash C_{1}$ that contains $e_{i 2}$.
Let i_{3}, be the smallest index such that $e_{i 3} \in \mathrm{E}\left(G \backslash\left(C_{1} \cup C_{2}\right)\right)$. Choose C_{3}, \ldots

- Clearly, $\left(C_{\mathrm{i}}\right)_{\mathrm{i} \in \omega}$ is a cycle-decomposition

Definition 4: an α-decomposition Δ is bond faithful if

1. any bond of cardinality $\leq \alpha$ of G is totally contained in one fragment;
2. any bond of cardinality $<\alpha$ of a fragment is also a bond of G

In other words, (up to the cardinal α) the bondstructure of the graph can be recovered from the bond-structure of the fragments.

Here is an easy example:

In a bond-faithful α-decomposition Δ, the following properties are always satisfied for any set B of edges of G :

- If $|\mathrm{B}|<\alpha$ then

B is a bond of $\mathrm{G} \Leftrightarrow \mathrm{B}$ is a bond of some fragment of Δ;

- If $|\mathrm{B}|=\alpha$ then
B is a bond of $G \Rightarrow B$ is a bond of some fragment of Δ;
- If $|\mathrm{B}|>\alpha$ then
in any fragment H containing edges of B, B induces a cut of cardinality α in H .

Question: do such decompositions exist for any graph ?

For this G, let's try for $\alpha=3$

Question: do such decompositions exist for any graph ?

For this G, let's try for $\alpha=3$
Attempt\#1: No

Questions do such decompositions exist for any graph ?

For this G, let's try for $\alpha=3 \quad$ Attempt\#2: No

Question: do such decompositions exist for any graph ?

For this G, let's try for $\alpha=3 \quad$ Attempt\#3: ??

Theorem:

Every graph admits a bond-faithful ω-decomposition.

In other words, it is always possible to decompose a graph G into countable fragments such that

1. every countable bond of G is a bond of some fragment;
2. The set of all the finite bonds of the fragments is exactly the set of all finite bonds of G.

Note: Under the Generalized Continuum Hypothesis assumption, this result can be generalized to:

Theorem: For all infinite cardinal α,
every graph admits a decomposition into fragments of cardinality at most α that is bond-faithful up to α.

Proposition: Every graph G is the edge disjoint union of two spanning graphs, say K and L, such that the edge-connectivity between any pair of infinitely edge-connected vertices is preserved, in G, K and L.

Proposition: Assuming GCH, every α-edge-connected graph contains α edge-disjoint spanning trees.

Theorem : Let W be the set of all the ω-classes of G.
Then there exists a well ordering on W such that each equivalence class $w \in W$ can be separated from all the preceding ω-classes by a finite cut of the graph.

The bond-faithful theorem :

Every graph admits a bond-faithful ω-decomposition.

Sketch of the proof :

STEP 1:

Every bridgeless graph admits an ω-decomposition whose fragments are all 2-edge-connected.

STEP 2:

Given any ω-decomposition Δ, then there exists an ω decomposition Δ^{\prime} that is coarser than Δ, and such that for any fragment H of Δ, the only bonds of H that are bonds of the corresponding fragment of Δ^{\prime} are those that are bonds of G.

Proof (following) :

STEP 3:

Iterating step 2, we obtain an ω-decomposition that satisfies the property (ii). (Bonds in the fragments are bond in G).
Also, if we manage to find some ω-decomposition that satisfies property (i). (Bonds in G are bond in the fragments).
Applying STEP 3 to this particular decomposition will give what we want. (I.e.: a bond-faithful ω-decomposition).

STEP 4:

Theorem: Let G be a graph, x a vertex of G and μ a regular uncountable cardinal.
If x has degree $\geq \mu$, then x is a cut vertex or is μ-vertex-connected to some other vertex y.

Proof (end)

STEP 5:

Let G / ω_{1} represents the graph obtained from G by identifying vertices that belong to the same ω_{1}-classes.
Then, because of STEP 4, the blocks of G/ ω_{1} form a bond faithful ω decomposition of G / ω_{1}.

STEP 6:
Construct a bond-faithful ω-decomposition of G from that bond-faithful ω-decomposition of G / ω_{1}. (The hard step)

Now, let us come back to Euler

Theorem (Euler, Hierholzer, Veblen):

Let G be a finite, connected graph. Then the following statements are equivalent:

1. G admits an Euler tour;
2. no vertex of G has odd degree;
3. G has a cycle decomposition.

In the infinite case those three statement are no longer equivalent !!

Generalizations of Theorem (E,H,V) to infinite graphs

Note that:
to have a decomposition into finite circuits

\Downarrow

to Have a decomposition into circuits

but: counter-examples:

to have a decomposition into fragments that admit an Euler tour

Decomposition into circuits --- (1)

Easy theorem :

G admits a decomposition into circuits
\Downarrow but \mathbb{X}
for every odd cut, both the left side and the right side of the cut have rays

Decomposition into circuits --- (1)

Easy theorem :

G admits a decomposition into circuits
\Downarrow but \mathbb{X}
for every odd cut, both the left side and the right side of the cut have rays

Counterexample:

Decomposition into circuits --- (2)

Not so easy theorem :

G admits a decomposition into non dominated circuits
$\Downarrow \uparrow$
for every odd cut, both the left side and the right side of the cut have non dominated rays

Decomposition into circuits --- (2)

Not so easy theorem :

G admits a decomposition into non dominated circuits
$\Downarrow \uparrow$
for every odd cut, both the left side and the right side of the cut have non dominated rays

Idea of the proof of \Uparrow (The countable case)

- in graph with this property, each edge of it is contained in a non dominated circuit.
"Those graphs have enough non dominated circuits"
-If we remove the edges of a non dominated circuits of such a graph, the resulting graph will still have the property.
"We have an invariant property"

Decomposition into circuits --- (2)

Not so easy theorem :

G admits a decomposition into non dominated circuits
$\Downarrow \uparrow$
for every odd cut, both the left side and the right side of the cut have non dominated rays

Idea of the proof of \Uparrow (The uncountable case)

- Apply the Bond Faithful theorem in the proper way :-)

Decomposition into circuits --- (3)

The main theorem :

G admits a decomposition into circuits
$\downarrow \Uparrow$
for every odd cut, both the left side and the right side of the cut have eligible rays

Decomposition into circuits --- (3)

The main theorem :

G admits a decomposition into circuits
$\downarrow \Uparrow$
for every odd cut, both the left side and the right side of the cut have eligible rays

Question: What is an eligible ray?

Decomposition into circuits --- (3)

The main theorem :

G admits a decomposition into circuits
$\downarrow \Uparrow$
for every odd cut, both the left side and the right side of the cut have eligible rays

Essentially, an eligible ray is a ray whose removal from the graph will not create odd bonds between vertices that originally were dominating the ray, and will not create new "odd-type" vertices.

Graphs that do not have eligible rays must have an odd cut for which one side is basically one of the four subgraphs:

