Connected-homogeneous graphs

Robert Gray

UNIVERSITY OF LEEDS
BIRS Workshop on Infinite Graphs
October 2007

Homogeneous graphs

Definition

A graph Γ is called homogeneous if any isomorphism between finite induced subgraphs extends to an automorphism of the graph.

Homogeneity is the strongest possible symmetry condition we can impose on a graph.

Example

The line graph $L\left(K_{3,3}\right)$ of the complete bipartite graph $K_{3,3}$ is a finite homogeneous graph.

$K_{3,3}$

a	b	c

d

$L\left(K_{3,3}\right)$

Classification of finite homogeneous graphs

Gardiner classified the finite homogeneous graphs.

Theorem (Gardiner (1976))
A finite graph is homogeneous if and only if it is isomorphic to one of the following:

1. finitely many disjoint copies of a complete graph K_{r} (or its complement, complete multipartite graph)
2. the pentagon C_{5}
3. line graph $L\left(K_{3,3}\right)$ of the complete bipartite graph $K_{3,3}$.

An infinite homogeneous graph

Definition (The random graph R)

Constructed by Rado in 1964. The vertex set is the natural numbers (including zero).

For $i, j \in \mathbb{N}, i<j$, then i and j are joined if and only if the i th digit in j (in base 2 , reading right-to-left) is 1 .

Example
Since $88=8+16+64=2^{3}+2^{4}+2^{6}$ the numbers less that 88 that are adjacent to 88 are just $\{3,4,6\}$.

Of course, many numbers greater than 88 will also be adjacent to 88 (for example 2^{88}).

The random graph

Consider the following property of graphs:
(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

The random graph

Consider the following property of graphs:
(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (${ }^{*}$).

The random graph

Consider the following property of graphs:
(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (${ }^{*}$).
Uniqueness and homogeneity. Both follow from a back-and-forth argument. Property $\left({ }^{*}\right)$ is used to extend the domain (or range) of any isomorphism between finite substructures one vertex at a time.

Building homogeneous graphs: Fraïssé's theorem

- The age of a graph Γ is the class of isomorphism types of its finite induced subgraphs.
- e.g. the age of the random graph R is the class of all finite graphs.

Building homogeneous graphs: Fraïssé's theorem

- The age of a graph Γ is the class of isomorphism types of its finite induced subgraphs.
- e.g. the age of the random graph R is the class of all finite graphs.

Fraïssé (1953) - gives necessary and sufficient conditions for a class \mathcal{C} of finite graphs to be the age of a countably infinite homogeneous graph M. The key condition is the amalgamation property.

If Fraïssé's conditions hold, then M is unique, \mathcal{C} is called a Fraïssé class, and M is called the Fraïssé limit of the class \mathcal{C}.

Countable homogeneous graphs

Examples

- The class of all finite graphs is a Fraïssé class. Its Fraïssé limit is the random graph R.
- The class of all finite graphs not embedding K_{n} (for some fixed n) is a Fraïssé class. We call the Fraïssé limit the countable generic K_{n}-free graph.

Theorem (Lachlan and Woodrow (1980))

Let Γ be a countably infinite homogeneous graph. Then Γ is isomorphic to one of: the random graph, a disjoint union of complete graphs (or its complement), the generic K_{n}-free graph (or its complement).

Connected-homogeneous graphs

Definition

A graph Γ is connected-homogeneous if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example

The hexagon C_{6} is connected-homogeneous

Use rotations and reflections

Connected-homogeneous graphs

Definition

A graph Γ is connected-homogeneous if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example

The hexagon C_{6} is connected-homogeneous

Use rotations and reflections

Connected-homogeneous graphs

Definition

A graph Γ is connected-homogeneous if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example

The hexagon C_{6} is connected-homogeneous

Use rotations and reflections

Connected-homogeneous graphs

Definition

A graph Γ is connected-homogeneous if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example

On the other hand the hexagon is not homogeneous.

There is no automorphism α such that $(u, v)^{\alpha}=(u, w)$.

Connected-homogeneous graphs

Connected-homogeneity...

1. is a natural weakening of homogeneity;
2. gives a class of graphs that lie between the (already classified) homogeneous graphs and the (not yet classified) distance-transitive graphs.
homogeneous \Rightarrow connected-homogeneous \Rightarrow distance-transitive
(A graph is distance-transitive if for any two pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ with $d(u, v)=d\left(u^{\prime}, v^{\prime}\right)$, where d denotes distance in the graph, there is an automorphism taking u to u^{\prime} and v to v^{\prime}.)

Finite connected-homogeneous graphs

Gardiner classified the finite connected-homogeneous graphs.
Theorem (Gardiner (1978))
A finite graph is connected-homogeneous if and only if it is isomorphic to a disjoint union of copies of one of the following:

1. a finite homogeneous graph
2. bipartite "complement of a perfect matching"
(obtained by removing a perfect matching from a complete bipartite graph $K_{s, s}$)
3. cycle C_{n}
4. the line graph $L\left(K_{s, s}\right)$ of a complete bipartite graph $K_{s, s}$
5. Petersen's graph
6. the graph obtained by identifying antipodal vertices of the 5-dimensional cube Q_{5}

Tree-like examples

Definition (Tree)

A tree is a connected graph without cycles. A tree is regular if all vertices have the same degree. We use T_{r} to denote a regular tree of valency r.

Fact. A regular tree $T_{r}(r \in \mathbb{N})$ is an example of an infinite locally-finite connected-homogeneous graph.

Definition (Semiregular tree)

$T_{a, b}$: A tree $T=X \cup Y$ where $X \cup Y$ is a bipartition, all vertices in X have degree a, and all in Y have degree b.

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N}(l \geq 2)$
Take the bipartite semiregular tree $T_{r+1, l}$.

The graph $X_{r, l}$ is given by:
Vertices $=$ bipartite block of $T_{r+1, l}$ of vertices of degree l.

Edges $=$ adjacent in $X_{r, l}$ if their distance in the tree is 2 .
(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N}(l \geq 2)$
Take the bipartite semiregular tree $T_{r+1, l}$.

The graph $X_{r, l}$ is given by:
Vertices $=$ bipartite block of $T_{r+1, l}$ of vertices of degree l.

Edges $=$ adjacent in $X_{r, l}$ if their distance in the tree is 2 .
(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N}(l \geq 2)$
Take the bipartite semiregular tree $T_{r+1, l}$.

The graph $X_{r, l}$ is given by:
Vertices $=$ bipartite block of $T_{r+1, l}$ of vertices of degree l.

Edges $=$ adjacent in $X_{r, l}$ if their distance in the tree is 2 .
(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Infinite connected-homogeneous graphs

Theorem (RG, Macpherson (2007))

A countable graph is connected-homogeneous if and only if it is isomorphic to the disjoint union of a finite or countable number of copies of one of the following:

1. a finite connected-homogeneous graph;
2. a homogeneous graph;
3. the random bipartite graph;
4. bipartite infinite complement of a perfect matching;
5. the line graph of the infinite complete bipartite graph $K_{\aleph_{0}, \aleph_{0}}$;
6. a treelike graph $X_{\kappa_{1}, \kappa_{2}}$ with $\kappa_{1}, \kappa_{2} \in(\mathbb{N} \backslash\{0\}) \cup\left\{\aleph_{0}\right\}$.

Future work

Digraphs

- Cherlin (1998) classified the countable homogeneous digraphs.
- There are $2^{\aleph_{0}}$ such graphs.

Problem 1. Classify the countably infinite connected-homogeneous digraphs.

Problem 2. Classify the locally-finite countably infinite connected-homogeneous digraphs.

Recent progress (with R. Möller).
In the case that the graph has more than one end we have:

1. a classification when the underlying graph embeds a triangle
2. underlying graph triangle-free \Rightarrow digraph is highly-arc-transitive

- can describe the descendants and the reachability graphs

