Locally Finite Graphs with Ends – a survey

Banff 2007

<u>Contributors</u>: H. Bruhn A. Georgakopoulos R. Halin H. Jung D. Kühn B. Richter P. Sprüssel M. Stein A. Vella X. Yu

Part 1. Concepts

Graph $G \to \text{topological space } |G| \quad (= G + \text{ends})$ paths in $G \to \text{arcs in } |G|$ cycles in $G \to \text{circles in } |G|$ spanning trees in $G \to \text{TSTs in } |G|$

+ related concepts

Part 2. Applications & techniques – and open problems

Part 3. The topological viewpoint

- standard homologies for G and |G|
- a new homology to capture $\mathcal{C}(G)$

(Can topology help with cycles, Euler tours, flows, χ - φ duality...?)

Arcs and circles, naively

Initial idea:

A 'Hamilton circle' through 3 ends

Iterated idea:

 \Rightarrow no idea

The Freudenthal compactification |G| of G

The <u>ends</u> of G are its equivalence classes of rays (1-way ∞ paths), where $R \sim R'$ iff no finite set of vertices separates R from R'.

Lemma. |G| is compact. (For G locally finite and connected)

Arcs and circles, topologically

- Arc: 1–1 cont's image in |G| of [0, 1]
- Circle: 1–1 cont's image in |G| of S^1

 \Rightarrow all our naive 'circles' *are* circles.

Any other arcs or circles?

The 'wild circle' W

Such 'cycles' are necessary!

Jumping Arc Lemma. Let $\{U, W\}$ be a bipartition of V(G) into connected sets. Iff the U-W cut F consists of finitely many edges, every U-W arc in |G| contains an edge from F.

<u>Combinatorial degree</u> of an end ω :

vertex-degree: max # disjoint rays in ω edge-degree: max # edge-disjoint rays in ω

<u>Topological degree</u> of an end ω : *vertex-degree*: max # disjoint arcs in ω *edge-degree*: max # edge-disjoint arcs in ω

Topological degrees make sense in subgraphs $H \subseteq G$:

- consider arcs in $\overline{H} \subseteq |G|$, but always the ends of G.

Example:

 \overline{H} is a circle \Leftrightarrow \overline{H} is topologically connected and every vx and end in \overline{H} has (top) degree 2

For H = G (loc.finite), comb/top end degrees coincide.

 \Rightarrow only topological degrees are needed

TSTs: topological spanning trees

Definition. A TST is an arc-connected standard subspace of |G| containing all vertices and ends but no circle.

NB: Standard subspaces containing all ends are closed. For closed subspaces: connected \Rightarrow arc-connected.

Theorem. For closed standard subspaces $T \subseteq |G|$ containing all the vertices, the following are equivalent:

- T is a TST;
- T is edge-maximal without a circle;
- T is edge-minimally arc-connected;
- Any two points of T are joined by a unique arc in T.

Fundamental cuts of TSTs are finite.

<u>For spanning trees T:</u> \overline{T} is a $TST \Leftrightarrow T$ is 'end-faithful'.

In particular, normal spanning trees (NSTs) have TST closures.

NSTs always exist, and are the most useful TSTs:

T an NST \Rightarrow |G| has the 'same' basic open sets as |T|

(their vx sets are 'up-trees' $\lfloor t \rfloor$, for $S := \{s \mid s < t\}$)

But there are other TSTs:

A 'disconnected' TST

The topological cycle space

 $\mathcal{C}_{\text{fin}}(G) := \left\langle E(C) \mid C \text{ cycle in } G \right\rangle_{\text{finite sums mod } 2}$

 $\mathcal{C}_{\text{top}} := \left\langle E(C) \mid C \text{ circle in } |G| \right\rangle_{\text{thin infinite sums mod } 2}$

circuit : edge-set of circle

Properties of C (:= C_{top})

- The fundamental circuits of any TST generate CProof: $C \ni C = \sum_{e \in C \smallsetminus T} C_e$ (needs jump.arc & fund.cuts finite) 1. Works *only* for TST; 2. Cor for NST: C generated by finite circuits
 - $\mathcal{C} = \{ \text{ finite cuts } \}^{\perp}$ and $\mathcal{C}_{\text{fin}} = \{ \text{ cuts } \}^{\perp}$

 $\{\text{ finite cuts}\} = \mathcal{C}^{\perp} \quad \text{and} \quad \{\text{ cuts}\} = \mathcal{C}_{\text{fin}}^{\perp}$

? •
$$\mathcal{C} = \{ F \subseteq E(G) \mid d_{(V,F)}(x) \text{ is even } \forall x \in V \cup \Omega \}$$

- even/odd defined even for infinite degrees of ends
- known only for F = E(G) MAJOR OPEN PROBLEM!
- Every $D \in \mathcal{C}$ is a *disjoint* union of circuits.

Compactification vs. metric completion

For G locally finite, |G| is metrizable. Generally: **Theorem.** |G| metrizable \Leftrightarrow G has an NST.

'⇐': NST → for
$$e \in E(T)$$
 let $\ell(e) := 2^{-\text{height}(e)}$
→ for $x, y \in V(G) \cup \Omega(G)$ let $d_{\ell}(x, y) := \sum_{e \in xTy} \ell(e)$
→ metric on $|G|$ inducing the correct topology

|G| compact \Rightarrow complete as a metric space

 \Rightarrow |G| is the (unique) completion of the metric space (G, d_{ℓ})

Trivially, the above d_{ℓ} also satisfies $\forall u, v \in V(G)$:

$$d_{\ell}(u,v) = \inf \sum_{e \in P} \ell(e) \text{ over all } u - v \text{ paths } P \text{ in } G. \qquad (*)$$

Conversely, given any function of edge lengths $\ell: E(G) \to (0, 1]$, (*) defines a metric d_{ℓ} on G, and we can study its completion.

Theorem. Whenever $\ell: E(G) \to (0,1]$ satisfies $\sum_{e \in G} \ell(e) < \infty$, the completion of (G, d_{ℓ}) coincides with |G|.

How about other metrics on G?

 \rightarrow go to Angelos' workshop...

Graphs with Ends II: applications and techniques

1. Cycle space applications

A topological Euler tour through $F \subseteq E(G)$ is a closed topological path in |G| that is injective inside edges, traverses every edge in F exactly once, and traverses no other edge.

Traditional: ask for Eulerian double rays. Fails if G has ≥ 3 ends.

'Euler's theorem'.

|G| contains a topological Euler tour through F iff $F \in C(G)$. Not clear why this should be true: we can't just 'concatenate' ∞ 'ly many circuits, eg disjoint ones, blindly: the topology has to be 'right'.

Call G^* a *dual* of G if $E(G^*) = E(G)$ and the bonds (min'l cuts) of G^* are precisely the circuits of G. These may be infinite. We have to allow certain non-locally finite graphs, and adjust |G|.

(*) No two v's are joined by ∞ 'ly many edge-disjoint paths. USE IToP!

'Whitney's theorem'.

G has a dual iff G is planar. When G is 3-connected, this dual G^* is unique (and 3-connected), and $G^{**} = G$. Uniqueness and $G^{**} = G$ fail for duality of only finite cuts/circuits. A family \mathcal{F} of edges sets is *sparse* if no edge lies in > 2 elt's of \mathcal{F} . Example: facial circuits in (finite) plane graphs. For \mathcal{C}_{fin} , ' \Rightarrow ' of ML fails below: we need ∞ face bdries, even to generate \mathcal{C}_{fin} sparselv.

'MacLane's theorem'.

G is planar iff $\mathcal{C}(G)$ has a sparse generating subset.

A cycle/circle C is *peripheral* if C has no chord and V(C) does not separate G.

For \mathcal{C}_{fin} , ' \Leftarrow ' of K-T fails: too many ∞ periph'l circles can kill planarity too.

'Kelmans-Tutte theorem'.

G (3-conn'd) is planar iff every edge lies on ≤ 2 peripheral circles.

'Tutte structure theorem'.

G 3-connected \Rightarrow the peripheral circuits generate $\mathcal{C}(G)$.

The ML fig above shows both that ∞ circuits are needed to generate (as e lies in no finite peripheral circuit), and that ∞ sums are needed (to generate any finite circuit through e).

'Gallai's partition theorem'.

E(G) either lies in $\mathcal{C}(G)$ or partitions into a cut and two elements of $\mathcal{C}(G)$ each induced by one side of the cut.

2. Applications in 'extremal' infinite graph theory

Forcing local structure $(K_n \text{ minor})$ by global assumptions ('many edges'), or forcing global structure (Hamilton cycle) by local assumptions (min.deg) Two reasons why there is no infinite extremal graph theory:

- need 'more paths and cycles' (as in ML etc)
- 'many edges', large $\delta \Rightarrow$ anything (eg, dense minors)

draw tree of large min.deg here

 \Rightarrow need high-degree ends as 'wrapper'

Theorem.

- (i) If $\delta(G) \ge 2k^2 + 6k$ and every end of G has vertex-degree at least $2k^2 + 2k + 1$, then G has a (k+1)-connected subgraph.
- (ii) If $\delta(G) \ge 2k$ and every end of G has edge-degree $\ge 2k$, then G has a (k+1)-edge-connected subgraph.

Example: Tree-Packing

Theorem 1. (Nash-Williams 1961; Tutte 1961) The following are equivalent for a finite multigraph G and $k \in \mathbb{N}$:

- G has k edge-disjoint spanning trees.
- For every vertex partition, into ℓ sets say, G has at least $k(\ell-1)$ edges between different partition sets.

Theorem 2. (Tutte 1961)

The following are equivalent for all locally finite G and $k \in \mathbb{N}$:

- G has k edge-disjoint spanning <u>semiconnected</u> * subgraphs.
- For every vertex partition, into ℓ sets say, G has at least $k(\ell-1)$ edges between different partition sets.

*) H (sp'g) semiconnected : \Leftrightarrow H has an edge in every finite cut of G

 \Leftrightarrow the closure \overline{H} of H in |G| is (topologically) connected!

 $\Leftrightarrow \overline{H}$ contains a TST.

Theorem 2'.

The following are equivalent for all locally finite G and $k \in \mathbb{N}$:

- G has k edge-disjoint TSTs.
- For every vertex partition, into ℓ sets say, G has at least $k(\ell-1)$ edges between different partition sets.

(G1: G Zbedge-com =>] kedge-disjt TSIs

The Aharoni-Thomassen Construction (1989)

A locally finite k-connected graph G without non-separating cycles:

- 1. Start with a copy G_0 of a k-connected graph H of girth $\geq k^2$. Let X be a set of k vertices in H at pairwise distance $\geq k$.
- 2. From each cycle in G_0 pick k edges, subdivide them. Identify the k new vertices with X in each of $\geq k$ new copies of H.
- 3. Repeat ω times, grafting new copies of H only on to edges added at the previous step (for each cycle in current graph).

G cannot have > 2 edge-disjoint spanning trees, because the edges of any fundamental cycle separate G but come from only 2 trees.

 \Rightarrow Need TSTs ('more paths') to make Thm 2' true.

Georgalespoulos (2003) : I can be done in the plane

⇒ Need circles ('more cycles') to assume the role played by non-separating cycles in finite graphs. (G Lassing g circles!)

Hamilton circles

Conjecture. G planar, 4-connected \Rightarrow $|G| \supseteq$ Hamilton circle.

Progress: Yu's talk

Conjecture. G 2-connected \Rightarrow $|G^2|$ has a Hamilton circle.

Proof: Georgakopoulos' talk

Problems. Let G be countable but not necessarily locally finite.

- G is connected \Rightarrow $|G^3|$ has a Hamilton circle.
- G is 2-connected \Rightarrow $|G^2|$ has a Hamilton circle.
- If $|G^d|$ has a Hamilton circle then so does $|G^{d+1}|$.

Basic "extremal questions:

Large vertex- and end-degrees cannot force It = G (as If and IGI) for non-planar It:

- Uhich <u>planas</u> (f can ve force in 16(by degree assumptions on G?
- When in H and IGI easier to garce than THEG?
- Find conditions (on G, each of G, 161,...) that do force, e.g., Kn () (G1 !

3. Techniques

Constructing arcs and TSTs greedily

... usually fails.

Example 1: constructing TSTs from below

(Prove: Every acirclic standard subspace of |G| extends to a TST.) Circles arise at limit step if finite T_n are chosen greedily = 'blindly'.

<u>Example 2</u>: constructing an arc by extension

(Prove: Every $D \in \mathcal{C}$ contains a circle through any given $e \in D$.) Finite: just extend e to path in $\bigcup D$ until closed. ∞ : can't find wild circle like this – how emerge from an end? BUT: the wild circle is the union of finite face bdries, hence in \mathcal{C} , so it MUST contain a circle through every edge!

The use of compactness

Challenge: additional requirements on the limit

such as 'continuity at ends'. A typical assertion desired for the limit is not 'finitary', ie can fail even if all its finite restrictions are true.

 \Rightarrow constructions by compactness, not proofs

Limits of edge sets

Example 3: TSTs from above

(Thm: Given standard subspaces $X \subseteq Y \subseteq |G|$ with X acirclic and Y spanning (v's and ends) and connected, there is a TST, T say, such that $X \subseteq T \subseteq Y$.) <u>General technique</u>:

Approximate G by G_n (n = 1, 2, ...): contract components of $G - G[v_1, ..., v_n]$, keeping parallel edges but deleting loops:

figure of G_n

<u>Example 4</u> (simple compactness): trying to contruct a circuit, but finding just a set $D \in \mathcal{C}$.

Given $\forall n$: a circuit $C_n \in \mathcal{C}(G_n)$

Note: for m < n, cut criterion $\Rightarrow C_n \cap E(G_m) \in \mathcal{C}(G_m)$ (The cuts of G_m are also cuts of G_n , so C_n meets them evenly.)

Compactness yields nested $D_n \in \mathcal{C}(G_n)$ with $D := \bigcup_n D_n \in \mathcal{C}(G)$.

Again by cut criterion: every finite cut of G is also a cut of every G_n with n large enough, and as the D_n for those n meet it evenly so does D.

Example 5: really constructing a circle, or u-v arc in $X \subseteq |G|$,

Given $\forall n$: some u - v path $P_n \subseteq X \cap G_n$ (= cycle through uv)

Note: for m < n, P_n induces an u-v walk on G_m

 \rightarrow what can we say about a limit of such walks?

 1^{st} answer: its closure X is top. connected (edge-Menger),

```
\Rightarrow arc-connected \Rightarrow \exists u - v \text{ arc.}
```

 2^{nd} answer: below

Limits of paths

- Idea: in our sequence of walks W_n , not only $E(W_n) \subseteq E(W_{n+1})$ but $W_n \to W_{n+1}$ by expanding a dummy vertex of G_n .
 - \rightarrow parametrize W_n as top.path, obtain limit path (continuous?)
 - \rightarrow extract *u*-*v* arc (lemma).

<u>Example 6</u> (simpler, but same principle): tour around T_2

Proof for Example 6: The task is to define a closed top'l path that traverses every edge exactly twice. To define this in a limit process, walk around a finite subtree in this manner, pausing at every leaf for a non-trivial time interval. At the next step, expand that interval to a walk around the up-tree of height 1 at that vx, again pausing at every leaf. For some $x \in [0, 1]$, the image gets redefined infinitely often. But then these images map out an upward ray in T_2 , and we let the limit map map x to the end ω of that ray. Then prove that the limit map is cont's at such x. (It clearly is elswhere.) The proof is nearly the same: given a nbhd \hat{C} of ω , take an interval around x in [0, 1] small enough that some σ_n maps it to a vx in C. Then every σ_m with m > n maps x to some point in the up-tree of that vertex (possibly an end), and hence also to \hat{C} .

III The topological viewpoint

Today : - Reminder of singular homology (barie defs only)

- Singular homology of IG1: $H_1(IGI) \xrightarrow{?} C_1(G)$

b new singular homology for locelly finite CW- complexes capturing precisely C

5" Ctop (G) $H_{i}(ici)$ 51 Similarities : getid by circles gen'd by elementary 1- eyeles: 20: with 5. () or of or of of Diffurnces: · 00 (thin) suns . finte suns · Juotice je etive · civeles injective · remember only the edge sets · distinguish only up to 2- Condices

Compering Ha (IGI) wh C(G)

(ircles are images of 1-simplices σ with $\partial_{1}\sigma = 0$, i.e. $\sigma \in Ver \partial_{1}$.

-> Does this "correspondence" extend to one sums of between (circuits and homology classes [5], Is edge site of circles perhaps to a (canonical) group isomaphism

Task: homology class 1-> edge set

5+51 Jelen : For each edgi EEG, count how often the 1-simplices in $g = \sum_{p} \overline{J}_{i}$ traverse e coeffs e Zz symmed and map [g) +> { e (this # is odd }

Realistie?

6)

Problems:

-> I well defined ? - does the count depend on how we concatenate the 1-simplices J: (Enlar)? - does it depend on genteelf (vs. on [g])? - is it dways finite? The sec Is f a homomorphism? -));)mf $\leq C$? ->)s & surjective (onlo C)? -> Is g injective?

Formal def of f:

For each edge e e G, define maps fe:

le is continuous, so Usimplex 5 in [G], fe^{o 5} is a singlex in S¹. Roreover,

$$(le)_{*}: (\Sigma \sigma_{i})_{i \in I} \rightarrow (\Sigma f_{e} \circ \sigma_{i})_{s}$$

is a (well defind) homomorphism $H_{n}(IGI) \rightarrow H_{n}(S^{*})$ Using the ("winding #") isomorphism $TE: H_{n}(S^{*}) \rightarrow \mathbb{Z}_{2}$ set

$$\int (h) := \begin{cases} e \mid (\pi \circ (ke)_{\star})(h) = 1 \end{cases} \in \mathcal{E}(G)$$

edge space Since To (fe) is a vell-defined group homomorphise so is f.

Imfec: Vant to show: J([g]) E C Uge Ke 2, I homom =) may assure $g = \Sigma \int_{\sigma_2}^{\sigma_1} \int_{\sigma_2}^{\sigma_2} \int_{\sigma_3}^{\sigma_2} \int_{\sigma_3}^{\sigma_3} \int_{\sigma_3}^{\sigma_4} \int_{\sigma_3}^{\sigma_4} \int_{\sigma_4}^{\sigma_4} \int_{\sigma_5}^{\sigma_4} \int_{\sigma_5}^{\sigma_5} \int_{\sigma_5}^{\sigma_6} \int_{\sigma_5}^{\sigma_6}$ J vell defid => may reparametine / unsubdivide, ie ensure g = single loop x Cut critarion for " E C" => suff. to show that & crosses for every finite cut F an even # edger of F odd-often (=) e e f((P)) G C F But that's frivial:

٩)

fin surjective:

(0)

Given DEC, ve find a single loop or s.t. $f(i\alpha) = \int dign in dimensional functions in the second dimension of the$

By def, D in a thin sum of circuits, C. Czi. Step 0: Pick an NST T; let as be a loop that traverses every edge of T trice and traverses no chard, and panses at every vertex.

Insert a four sound Cn at a Step 4: paure of x u-1 at a vertex of Cu to define « La lagain : pause at every »

Finally: Define limit α , show d's cont? α traverses every e as often as $2E(T)+C_1+C_2$.

 $= \left(\left(\Sigma \right) \right) =$

In not injective? (except rolen G = Govi)

Ŵ

Easy (but veaker): « in not will - homobopic Pf: any homotopy a -> const in (G(can also be performed in and $T_1(G') = \langle e_1, e_2 \rangle = \overline{T}(2)$ $\int_{n} G^{-}, \langle \alpha \rangle = \left(\bar{e}_{1} \bar{e}_{2} \bar{e}_{1} \bar{e}_{2} \right) \neq 1$ irreducible and 17 But, of couse, a / in well-homologous in G-: - subdivide α into edge-passes (two Hedge!) - pair these up as $\sum_{e}(\vec{e}+\vec{e})$ [α]ekerf - ald constat simplices > Boundaries : E (e+e-cent) - coust + e' - uthe

Danaleyous proof that a is well-homologous in G, since we can subdivide & only finitely often. Proof that really (a) = 0, i.e. that must use some property of these I! Namely : 52 52 T Entrand Contract Contractor $\nabla_{\mathbf{r}} \sim \nabla_{\mathbf{r}} \nabla_{\mathbf{r}}$ Landon and the first

(

combinational characterization =) Want: of $\pi_n(|G|)$

Combinatorial cher of The (161) Choose a NST T; orient its charols: $\vec{e}_1, \vec{e}_2, \dots$ G finite: $\pi_{A}(G) = \langle \vec{e}_{:} | - \rangle$ < >> = reduced finite words in the ?; Indeed, B~X (=> W(B) & W(X) reduce to same L L reduced ward "traces of B, & in the chards" G infinite: traces 10(8) are linear orders of Zi's of any order type (eg of & = wild usle Example: the path &: X -> W -> X is will homotopic reduce to the engly roard: и. С. 11 г. ×° en But Dancelling pais.

14)

Solution: we do ust define transfinite reductions recursively (eg, could pairs of letter, pairs of w-sequences of letter, pairs of ---) but "by compactness": an infinite word " (ly)get is reduced if each letter ly "becomes eventually permanent", ie remains uncledeted in the reductions of all finite words w_ := wn {ē; ɛ; [ie]} with I = 11 finite But lege enough. NEW Example: no letter in the cloubled wild and" is permanent Thu: Every path in 1G1 is homotopic to a path with a unique reduced frace * #) which differ Hence, ST_ (IGI) = (reduced Q-type works for B+X

Uith this combinational description of TT, (IGI) re can pione: Thin f is injective (=) T has only finitely many chards Walt of chaine of T N(G, k) := # tacks Eker Ker in J'nG Pg'=>': with reduced frace

 $\forall 2 \cdot s = plex T : \exists k : N(\partial T, k) = B$ $\Rightarrow \forall g \in Im \partial_2 : \exists k : N(\partial g, k) = B$ $\exists c \in N(\alpha, k) = T \quad \forall k .$

I new honology

77)

1<u>8</u>)

- $\begin{aligned} \mathcal{D}_{\alpha}\mathcal{H}_{\alpha}: & \mathcal{C}'_{\alpha}: & \text{finite } \alpha chains \\ \mathcal{D}'_{\alpha}: & \mathcal{K}_{\alpha}\mathcal{D}_{\alpha} \cap \mathcal{C}'_{\alpha} \end{aligned}$
- $\begin{aligned} Z_{n} &:= \left\{ g \in C_{n} \mid g = \sum_{j \in J} z_{j} \text{ with } z_{j} \in Z_{n} \right\} \\ B_{n} &:= I_{m} \partial_{n+n} = \left\{ \sum_{i \in J} \partial_{n+n} \tau_{i} \mid \tau_{i} \text{ an } (n+n) \text{ simbar} \right\} \\ &\subseteq Z_{n}, \text{ since } \partial_{n+n} \tau_{i} \in C_{n} \\ (H_{n} &:= Z_{n} / B_{n}; H_{n}' \coloneqq \left\{ [2] \mid z \in Z_{n}' \right\} \leq H_{n} \end{aligned}$

to 1- chain with vanishing boundary that or is it? Services

Thum: $I_{n} = I_{n}^{\prime} \simeq C$ Ly canonically

Pf. Define f[°] as before [°] (use that chains binder blande, i by the second are loc. finite) all the second file and the second second of the second secon Im g = C uses that, by cut conterior (finite cubs!) r^{2} suff. to show $f(2;) \in C$ for $2; \in Z'_{1}$ "f surjective" as before (since $\alpha \in \mathbb{F}_{n}^{\prime}$) finjective: Given [g] E Kerf, zre can now add an infinite (but locally finite!) chain be B, to g,"subdividing" q into a chain ZT: vith each to: travesing one edge only. Ar Bekerf, also E 5; E kef, so kune 5; pair up (?) into boundaries. Thus, (g) = By. \bigcirc $\rightarrow \mathcal{I}CCcan = \{1, \dots, n\}$

20)

What west? • Hamolog7 -> Cohandosy Ć flows & duality (X?) inf. electrical networks vandom valles in (G(?

. .