Locally Finite Graphs with Ends - a survey

Banff 2007

Contributors: H. Bruhn
A. Georgakopoulos
R. Halin
H. Jung気
D. Kühn
B. Richter
P. Sprüssel
M. Stein
A. Vella
X. Yu

Part 1. Concepts

Graph $G \rightarrow$ topological space $|G| \quad(=G+$ ends $)$

$$
\text { paths in } G \rightarrow \quad \operatorname{arcs} \text { in }|G|
$$

cycles in $G \rightarrow$ circles in $|G|$
spanning trees in $G \quad \rightarrow \quad$ TSTs in $|G|$

+ related concepts

Part 2. Applications \& techniques - and open problems

Part 3. The topological viewpoint

- standard homologies for G and $|G|$
- a new homology to capture $\mathcal{C}(G)$
(Can topology help with cycles, Euler tours, flows, $\chi-\varphi$ duality...?)

Arcs and circles, naively

Initial idea:

A 'Hamilton circle' through 3 ends

Iterated idea:

\Rightarrow no idea

The Freudenthal compactification $|G|$ of G
The ends of G are its equivalence classes of rays (1-way ∞ paths), where $R \sim R^{\prime}$ iff no finite set of vertices separates R from R^{\prime}.

2 ends

1 end

$2^{\aleph_{0}}$ ends

Points of $|G|: G$ as a 1-complex, + ends

Basic open sets:

S finite
\Rightarrow every ray converges to 'its' end

Lemma. $|G|$ is compact. (For G locally finite and connected)

Arcs and circles, topologically
Arc: 1-1 cont's image in $|G|$ of $[0,1]$
Circle: 1-1 cont's image in $|G|$ of S^{1}
\Rightarrow all our naive 'circles' are circles.

Any other arcs or circles?

The 'wild circle' W
Such 'cycles' are necessary!

Jumping Arc Lemma. Let $\{U, W\}$ be a bipartition of $V(G)$ into connected sets. Iff the $U-W$ cut F consists of finitely many edges, every $U-W$ arc in $|G|$ contains an edge from F.

Combinatorial degree of an end ω :
vertex-degree: max \# disjoint rays in ω edge-degree: max \# edge-disjoint rays in ω

Topological degree of an end ω :
vertex-degree: max \# disjoint arcs in ω edge-degree: max \# edge-disjoint arcs in ω

Topological degrees make sense in subgraphs $H \subseteq G$:

- consider arcs in $\bar{H} \subseteq|G|$, but always the ends of G.

Example:
\bar{H} is a circle $\Leftrightarrow \bar{H}$ is topologically connected and every vx and end in \bar{H} has (top) degree 2

For $H=G$ (loc.finite), comb/top end degrees coincide.
\Rightarrow only topological degrees are needed

TSTs: topological spanning trees

Definition. A TST is an arc-connected standard subspace of $|G|$ containing all vertices and ends but no circle.

NB: Standard subspaces containing all ends are closed. For closed subspaces: connected \Rightarrow arc-connected.

Not a TST:

Two TSTs:

Theorem. For closed standard subspaces $T \subseteq|G|$ containing all the vertices, the following are equivalent:

- T is a TST;
- T is edge-maximal without a circle;
- T is edge-minimally arc-connected;
- Any two points of T are joined by a unique arc in T.

Fundamental cuts of TSTs are finite.

For spanning trees $T: \bar{T}$ is a TST $\Leftrightarrow T$ is 'end-faithful'.
In particular, normal spanning trees (NSTs) have TST closures.

NSTs always exist, and are the most useful TSTs:
T an NST $\Rightarrow|G|$ has the 'same' basic open sets as $|T|$
(their vx sets are 'up-trees' $\lfloor t\rfloor$, for $S:=\{s \mid s<t\}$)
But there are other TSTs:

The topological cycle space

$\mathcal{C}_{\text {fin }}(G):=\langle E(C)| C$ cycle in $\left.G\right\rangle_{\text {finite sums mod } 2}$

$$
\left.\mathcal{C}_{\text {top }}:=\langle E(C)| C \text { circle in }|G|\right\rangle_{\text {thin infinite sums mod } 2}
$$

circuit : edge-set of circle

Example:

Properties of $\mathcal{C}\left(:=\mathcal{C}_{\text {top }}\right)$

- The fundamental circuits of any TST generate \mathcal{C} Proof: $\mathcal{C} \ni C=\sum_{e \in C \backslash T} C_{e}$ (needs jump.arc \& fund.cuts finite)

1. Works only for TST; 2. Cor for NST: \mathcal{C} generated by finite circuits

- $\mathcal{C}=\{\text { finite cuts }\}^{\perp} \quad$ and $\quad \mathcal{C}_{\text {fin }}=\{\text { cuts }\}^{\perp}$
$\{$ finite cuts $\}=\mathcal{C}^{\perp} \quad$ and $\quad\{$ cuts $\}=\mathcal{C}_{\text {fin }}^{\perp}$
? - $\mathcal{C}=\left\{F \subseteq E(G) \mid d_{(V, F)}(x)\right.$ is even $\left.\forall x \in V \cup \Omega\right\}$
- even vx degrees not enough:
- end degrees are edge-degrees: E (.

- even/odd defined even for infinite degrees of ends
- known only for $F=E(G)$ MAJOR OPEN PROBLEM!
- Every $D \in \mathcal{C}$ is a disjoint union of circuits.

Compactification vs. metric completion

For G locally finite, $|G|$ is metrizable. Generally:
Theorem. $|G|$ metrizable $\Leftrightarrow G$ has an NST.
$' \Leftarrow$ ': NST \rightarrow for $e \in E(T)$ let $\ell(e):=2^{- \text {height }(e)}$ \rightarrow for $x, y \in V(G) \cup \Omega(G)$ let $d_{\ell}(x, y):=\sum_{e \in x T y} \ell(e)$ \rightarrow metric on $|G|$ inducing the correct topology
$|G|$ compact \Rightarrow complete as a metric space
$\Rightarrow \quad|G|$ is the (unique) completion of the metric space $\left(G, d_{\ell}\right)$

Trivially, the above d_{ℓ} also satisfies $\forall u, v \in V(G)$:

$$
\begin{equation*}
d_{\ell}(u, v)=\inf \sum_{e \in P} \ell(e) \text { over all } u-v \text { paths } P \text { in } G . \tag{*}
\end{equation*}
$$

Conversely, given any function of edge lengths $\ell: E(G) \rightarrow(0,1]$, $(*)$ defines a metric d_{ℓ} on G, and we can study its completion.

Theorem. Whenever $\ell: E(G) \rightarrow(0,1]$ satisfies $\sum_{e \in G} \ell(e)<\infty$, the completion of $\left(G, d_{\ell}\right)$ coincides with $|G|$.

How about other metrics on G ?
\rightarrow go to Angelos' workshop...

Graphs with Ends II: applications and techniques

1. Cycle space applications

A topological Euler tour through $F \subseteq E(G)$ is a closed topological path in $|G|$ that is injective inside edges, traverses every edge in F exactly once, and traverses no other edge.
Traditional: ask for Eulerian double rays. Fails if G has $\geqslant 3$ ends.

'Euler's theorem'.

$|G|$ contains a topological Euler tour through F iff $F \in \mathcal{C}(G)$. Not clear why this should be true: we can't just 'concatenate' ∞ 'ly many circuits, eg disjoint ones, blindly: the topology has to be 'right'
Call G^{*} a dual of G if $E\left(G^{*}\right)=E(G)$ and the bonds (min'l cuts) of G^{*} are precisely the circuits of G. These may be infinite. We have to allow certain non-locally finite graphs, and adjust $|G|$.
(*) No two v's are joined by m'ly many edge-disjoint paths. USE IToP!

'Whitney's theorem'.

G has a dual iff G is planar. When G is 3-connected, this dual G^{*} is unique (and 3-connected), and $G^{* *}=G$.
Uniqueness and $G^{* *}=G$ fail for duality of only finite cuts/circuits.

A family \mathcal{F} of edges sets is sparse if no edge lies in >2 elt's of \mathcal{F}. Example: facial circuits in (finite) plane graphs.
For $\mathcal{C}_{\text {fin }},{ }^{6} \Rightarrow{ }^{9}$ of ML fails below: we need ∞ face bdries, even to generate $\mathcal{C}_{\text {fin }}$ sparsely.

'MacLane's theorem'.

G is planar iff $\mathcal{C}(G)$ has a sparse generating subset.
A cycle/circle C is peripheral if C has no chord and $V(C)$ does not separate G.
For $\mathcal{C}_{\text {fin }}$, ' \Leftarrow ' of $\mathrm{K}-\mathrm{T}$ fails: too many ∞ periph'l circles can kill planarity too.
'Kelmans-Tutte theorem'.
G (3 -conn'd) is planar iff every edge lies on $\leqslant 2$ peripheral circles.

'Tutte structure theorem'.

G 3-connected \Rightarrow the peripheral circuits generate $\mathcal{C}(G)$.
The ML fig above shows both that ∞ circuits are needed to generate (as e lies in no finite peripheral circuit), and that ∞ sums are needed (to generate any finite circuit through e).

'Gallai's partition theorem'.

$E(G)$ either lies in $\mathcal{C}(G)$ or partitions into a cut and two elements of $\mathcal{C}(G)$ each induced by one side of the cut.

2. Applications in 'extremal' infinite graph theory

Forcing local structure (K_{n} minor) by global assumptions ('many edges'), or forcing global structure (Hamilton cycle) by local assumptions (min.deg)
Two reasons why there is no infinite extremal graph theory:

- need 'more paths and cycles' (as in ML etc)
- 'many edges', large $\delta \nRightarrow$ anything (eg, dense minors)

draw tree of large min.deg here

\Rightarrow need high-degree ends as 'wrapper'

Theorem.

(i) If $\delta(G) \geqslant 2 k^{2}+6 k$ and every end of G has vertex-degree at least $2 k^{2}+2 k+1$, then G has a $(k+1)$-connected subgraph.
(ii) If $\delta(G) \geqslant 2 k$ and every end of G has edge-degree $\geqslant 2 k$, then G has a $(k+1)$-edge-connected subgraph.
(U_{x} \& end degrees $\geqslant 2 k \Rightarrow \geqslant(k+1)$-edge count subJ.)
Proof of (ii):
Proof of (ii):
If it terminates, with C_{n} say, then C_{n} is ($k+1$)-edge-connected:
else:

$$
(\underbrace{\partial C_{n}}_{\|+\| I I} \ll 2 k \Rightarrow \log \|<k
$$

The boundedness of the ∂C_{n} implies that $\bigcap C_{n}=\emptyset$:

\¬

but $\mp^{\infty}=\varnothing$. Then:
\Rightarrow P meets oo 'lp many diojjt $\partial C_{m} \frac{\partial C_{n}}{}+\frac{y}{y}$

$$
10 c_{n} \mid<2 k
$$

all $2 C_{4}$ disjoint
$\Rightarrow \exists$ an end whose edge-degree is $<2 k$.

Example: Tree-Packing

Theorem 1. (Nash-Williams 1961; Tutte 1961)
The following are equivalent for a finite multigraph G and $k \in \mathbb{N}$:

- G has k edge-disjoint spanning trees.
- For every vertex partition, into ℓ sets say, G has at least $k(\ell-1)$ edges between different partition sets.

Theorem 2. (Tate 1961)
The following are equivalent for all locally finite G and $k \in \mathbb{N}$:

- G has k edge-disjoint spanning semiconnected* subgraphs.
- For every vertex partition, into ℓ sets say, G has at least $k(\ell-1)$ edges between different partition sets.
*) H (sp'g) semiconnected: $\Leftrightarrow H$ has an edge in every finite cut of G

\Leftrightarrow the closure \bar{H} of H in $|G|$ is (topologically) connected!
$\Leftrightarrow \bar{H}$ contains a TST.
Theorem 2^{\prime}.
The following are equivalent for all locally finite G and $k \in \mathbb{N}$:
- G has k edge-disjoint TSTs.
- For every vertex partition, into ℓ sets say, G has at least $k(\ell-1)$ edges between different partition sets.

CGV: G2kedgc-coun ${ }^{d} \Rightarrow \Rightarrow k$ edge-disjt isis

The Aharoni-Thomassen Construction (1989)

A locally finite k-connected graph G without non-separating cycles:

1. Start with a copy G_{0} of a k-connected graph H of girth $\geqslant k^{2}$. Let X be a set of k vertices in H at pairwise distance $\geqslant k$.
2. From each cycle in G_{0} pick k edges, subdivide them. Identify the k new vertices with X in each of $\geqslant k$ new copies of H.
3. Repeat ω times, grafting new copies of H only on to edges added at the previous step (for each cycle in current graph).

G cannot have >2 edge-disjoint spanning trees, because the edges of any fundamental cycle separate G but come from only 2 trees.
\Rightarrow Need TSTs ('more paths') to make Tho 2^{\prime} true.
\Rightarrow Need circles ('more cycles') to assume the role played by non-separating cycles in finite graphs. (Ghat) (unep'g einclus!)

Geargaboponlos (2003) : T can he done in te plane

Hamilton circles

Conjecture. G planar, 4-connected $\Rightarrow|G| \supseteq$ Hamilton circle.
Progress: Yu's talk
Conjecture. G 2-connected $\Rightarrow\left|G^{2}\right|$ has a Hamilton circle.
Proof: Georgakopoulos' talk

Problems. Let G be countable but not necessarily locally finite.

- G is connected $\Rightarrow\left|G^{3}\right|$ has a Hamilton circle.
- G is 2 -connected $\Rightarrow\left|G^{2}\right|$ has a Hamilton circle.
- If $\left|G^{d}\right|$ has a Hamilton circle then so does $\left|G^{d+1}\right|$.

Basic "exfremal" questions:
Large vertex- and end-degrees cannot force $H \leq G($ ar $H \underset{\text { top }}{\longrightarrow}|G|)$ for non-planar $t:$

- Which planar (f can zee force in $|G|$ b) obezree assumptions on e ?
- Whexis $H \underset{\text { fop }}{\longrightarrow} I G 1$ easier fo farce than $T H \leq G$?
- Find conclifions (on G, ends of $G,|G|, \ldots)$ that do force, e.g., $\left(C_{n}{\underset{\text { hop }}{ }}(G)\right.$!

3. Techniques

Constructing arcs and TSTs greedily

... usually fails.

Example 1: constructing TSTs from below
(Prove: Every acirclic standard subspace of $|G|$ extends to a TST.) Circles arise at limit step if finite T_{n} are chosen greedily = 'blindly'.
Example 2: constructing an arc by extension
(Prove: Every $D \in \mathcal{C}$ contains a circle through any given $e \in D$.) Finite: just extend e to path in $\bigcup D$ until closed. ∞ : can't find wild circle like this - how emerge from an end? BUT: the wild circle is the union of finite face bdries, hence in \mathcal{C}, so it MUST contain a circle through every edge!

The use of compactness

Challenge: additional requirements on the limit such as 'continuity at ends'. A typical assertion desired for the limit is not 'finitary', ie can fail even if all its finite restrictions are true.
\Rightarrow constructions by compactness, not proofs

Limits of edge sets

Example 3: TSTs from above
(Thm: Given standard subspaces $X \subseteq Y \subseteq|G|$ with X acirclic and Y spanning (v 's and ends) and connected, there is a $T S T, T$ say, such that $X \subseteq T \subseteq Y$.)

General technique:

Approximate G by $G_{n}(n=1,2, \ldots)$: contract components of $G-G\left[v_{1}, \ldots, v_{n}\right]$, keeping parallel edges but deleting loops:
figure of G_{n}

Example 4 (simple compactness): trying to contruct a circuit, but finding just a set $D \in \mathcal{C}$.
Given $\forall n$: a circuit $C_{n} \in \mathcal{C}\left(G_{n}\right)$
Note: for $m<n$, cut criterion $\Rightarrow C_{n} \cap E\left(G_{m}\right) \in \mathcal{C}\left(G_{m}\right)$
(The cuts of G_{m} are also cuts of G_{n}, so C_{n} meets them evenly.)
Compactness yields nested $D_{n} \in \mathcal{C}\left(G_{n}\right)$ with $D:=\bigcup_{n} D_{n} \in \mathcal{C}(G)$.
Again by cut criterion: every finite cut of G is also a cut of every G_{n} with n large enough, and as the D_{n} for those n meet it evenly so does D.

Example 5: really constructing a circle, or $u-v$ arc in $X \subseteq|G|$,
Given $\forall n$: some $u-v$ path $P_{n} \subseteq X \cap G_{n}$ ($=$ cycle through $u v$)
Note: for $m<n, P_{n}$ induces an $u-v$ walk on G_{m}
\rightarrow what can we say about a limit of such walks?
$1^{\text {st }}$ answer: its closure X is top. connected (edge-Menger),

$$
\underset{\text { lemma }}{\Rightarrow} \text { arc-connected } \Rightarrow \exists u-v \text { arc. }
$$

$2^{\text {nd }}$ answer: below

Limits of paths

Idea: in our sequence of walks W_{n}, not only $E\left(W_{n}\right) \subseteq E\left(W_{n+1}\right)$ but $W_{n} \rightarrow W_{n+1}$ by expanding a dummy vertex of G_{n}.
\rightarrow parametrize W_{n} as top.path, obtain limit path (continuous?)
\rightarrow extract $u-v$ arc (lemma).

Example 6 (simpler, but same principle): tour around T_{2}

Proof for Example 6: The task is to define a closed top'l path that traverses every edge exactly twice. To define this in a limit process, walk around a finite subtree in this manner, pausing at every leaf for a non-trivial time interval. At the next step, expand that interval to a walk around the up-tree of height 1 at that vx, again pausing at every leaf. For some $x \in[0,1]$, the image gets redefined infinitely often. But then these images map out an upward ray in T_{2}, and we let the limit map map x to the end ω of that ray. Then prove that the limit map is cont's at such x. (It clearly is elswhere.) The proof is nearly the same: given a nbhd \hat{C} of ω, take an interval around x in $[0,1]$ small enough that some σ_{n} maps it to a vx in C. Then every σ_{m} with $m>n$ maps x to some point in the up-tree of that vertex (possibly an end), and hence also to \hat{C}.

III The topological verwpaint

Today:

- Reminder of singular homolayy (baric defs oulp)
- Singlar homology of IG1:

$$
H_{1}(|G|) \stackrel{?}{\longrightarrow} e_{\log }(G)
$$

- b new singular hamakegy far lacell, finibe CW-complexes capbraing precisely e

6)

Compering $H_{1}(|G|)$ ah $C(G)$
Circles are images of 1 -simplices σ with $\partial_{1} \sigma=0$, ie. $\sigma \in$ Her ∂_{1}.

\rightarrow "Does this "correspondence" extend to one sum e of, between circuits and homology lasses [σ], L edge sets of cries
perhaps to a (canonical) group isomorphism

$$
\rho: H_{1} \rightarrow e ?
$$

Taste: homology lass \longrightarrow edge set
root Dele: For each edge $e \in G$, count how often the 1-simplicies in $\varphi=\sum_{\substack{\Gamma_{j} \\ \cos f s^{\prime} \in \mathbb{D}_{2} \\ \text { supreme }}}$ and mas $[\rho] \mapsto\{e$ (this H is odd $\}$

Realistic?
7)

Problems:
\rightarrow \& well defined?

- doers the connt depend on how we concatenate the 1-siaplices $\sigma_{i}($ Enher $)$?
- dees it depend on ρ itselg (vs. on [g])?
- in it divazs finite?
\rightarrow Is \& a hamomarphision?
\rightarrow I; $\operatorname{Im} g \subseteq e ?$
\rightarrow Ds f surjective (onbo e)?
\rightarrow Ds f ingective?

8)

Fermal def of $\&:$

For earh calge $e \in G$, defin mags g_{e} :

δ_{e} is continuons, so \forall simplex σ in $|G|$, feo is a sinplase in S S^{1}. Roreover,

$$
\left(\delta_{e}\right)_{*}:\left[\sum \sigma_{i}\right]_{\mid G 1} \mapsto\left[\sum f_{c}^{\circ} \circ \sigma_{i}\right]_{s^{1}}
$$

is a (well elfind) Homomarphism $H_{2}(|G|) \rightarrow H_{1}\left(S^{1}\right)$
Using the ("uinding\#") isomesphism $\pi:\left(t_{1}\left(s^{i}\right) \rightarrow \mathbb{Z}_{2}\right.$ set

$$
f(h):=\left\{\sum_{2} e \mid\left(\pi \circ\left(\mathcal{H}_{k}\right)_{*}\right)(h)=1\right\} \in \sum_{h}(G)
$$ eotse space

Siver $\pi_{0}\left(f_{e}\right)_{*}$ is a vell-Lefined group homomanphist So is ξ.
9)
$\operatorname{Im} \rho \leq e:$

Want to show: $f([\rho)) \in e \quad \forall \rho \in K e \partial_{1}$ f homom \Rightarrow map assize $\rho=\sum \int_{\sigma_{3}}^{\sigma_{1}}$
S well def'l \Rightarrow may reparamehiice/unsubolivide, ie assume $\rho=\operatorname{singhe} \log \alpha$

Cut arbarion for "E e^{u}
\Rightarrow suff. To show that α crosses fer every finite cut \bar{t} an even t edges of F odel-often $(\Rightarrow e \in f((\operatorname{dax}))$

But that's trivial:

(6)

I in surjective:

Given $D \in e$, we find a single log x
s.t. $f([\alpha])=7$

By def, D is a thin sum of eiracucts, C_{1}, C_{2}, \ldots.
Step O: Pick an NST T; let α_{s} be a loop that traverses every este of \bar{i} twice and traverses wo chord, and panes ab every vertex.

Step u: Ingest a tows round C_{n} at a pane of α_{n-1} at a vertex of C_{n} to define α_{n} (gain: pane at eves) ix.

Finally: Defim limit α, show il's cont. α traverses every E ans affect an $2 E(T)+C_{1}+c_{2}+$

$$
\Rightarrow f([a])=1
$$

ii)
f is not ingeictive! 7 (except when $\left.G=\begin{array}{c}\text { Finite be } \\ b_{0} \psi t\end{array}\right)$

Exe-ple:

G
α : any loop traversing $\overleftarrow{e}_{1} \overleftarrow{e}_{2} \stackrel{\rightharpoonup}{e}_{3} \ldots \cdot \vec{e}_{1} \vec{e}_{2} \vec{e}_{3} \ldots$ in order traverses eves? edge of G an even $\#$ times, ss $f([\alpha])=\beta=\infty$, ie. $[\alpha] \in \operatorname{Lber} f$

But $[\alpha] \neq 0 \in H_{1}(G \mid)$, i.e. we'll show that $\alpha \neq \partial \tau_{1}+\ldots+\partial \tau_{n} \forall 2$-simplices $\tau_{1} \ldots \tau_{n}$ in $|G|$.
12)

Easy (but veakes): a is not uull-homobopic

Pf: any hamotary $\alpha \rightarrow$ const in $\mid G($ can abro be perfarneal in

and $\pi_{1}\left(G^{-}\right)=\left\langle e_{1}, e_{2}(-\rangle=F_{1}(2)\right.$

$$
\text { In } G^{-},\langle\alpha\rangle=(\underbrace{\stackrel{e}{1}^{\epsilon_{2}} \vec{e}_{1} \vec{e}_{2}}_{\text {ircolucible warl }}) \neq 1
$$

But, of =awse, α / G^{-}in uull-homokgons in G^{-}:

- subativide a into edge-passes (two Hedjel!)
- pair tiese up as $\sum_{e}(\vec{e}+\vec{e})$
$[x] \in$ Ker $\}$
- abld constat simplices \rightarrow Bunulaires : $^{2}(\vec{e}+\overleftarrow{e}-$ cemed

13)

\ngtr analegours proof that α is uull-homologons in G, since we can subelivide α onl? finitely offen.

Proof that really $[\alpha] \neq 0$, i.e. that

$$
\alpha \neq \sum_{i=1}^{n} \partial \tau_{i} \quad \forall 2 \text {-siplices } \tau_{1}, \ldots, \tau_{n} i_{n}|G|
$$

unust wre some prepenti of there τ !

Namely:

$$
\sigma_{1} \sim \sigma_{2} \sigma_{0}
$$

\Rightarrow want: colubinatinal charactuization

$$
\text { of } \pi_{1}(|G|)
$$

(4)

Cembinatorial chen, 4 of $\pi_{1}(|G|)$

Choose a NST T; orient its chords: $\vec{e}_{1}, \vec{e}_{2}, \ldots$
G finct : $\pi_{1}(G)=\left\langle\vec{e}_{i}(-\rangle\right.$
ψ
$\langle\gamma\rangle \equiv$ resluied firite words in the \vec{e}_{i}
Insleed, $\beta \sim \gamma \Leftrightarrow \omega(\beta) \& \omega(\gamma)$ reduce to sance \downarrow 1 reakiceal losrad "taces of β, γ in the charils"

Ginfinite: trieen $w(\gamma)$ are linead sardeors of $\vec{e}_{i} ' s$ of any arxher type (eg of $Q=$ wibl insle;

Exemple: the path $\gamma: x \rightarrow \omega \rightarrow x$ is null-hoinotopic so its trace $\vec{e}_{1} \vec{e}_{2} \vec{e}_{3} \ldots \ldots \overleftarrow{E}_{3} \overleftarrow{e}_{2} \overleftarrow{e}_{1}$ should reduce to the empty ward:

15)

Solutien: we do not define" transfinite
reluctions" recursively (es, cencel pains of lettin, pains of w-sequcines of lettens, paicis of ...) but "lop compartivess":
an infinite $-9 \operatorname{sod} t^{W}\left(l_{q}\right)_{q \in \mathbb{K}}$ is redueed if each lettes l_{q} "becomes eventually permanent", ie remenins undeleted in the reductions of all finite wouels $W_{I}==w n\left\{\vec{e}_{i}, \bar{e}_{i} \mid=E I\right\}$ with $\bar{I} \subseteq$ lis ginite lont lerge enough.

Exaphe: no letfes in khencloubled wild ave" is permancut (fon (uull-Lamobopic)

Thun: Evesp path in 1 sl is homptopì to a path with a unique reeluced bace.*
*) which differ (tence, $\pi_{1}(\mid G 1) \equiv$ Lreduced Q-type worle
for $\beta x \gamma$
16)
U.th thin combinatorial deresistion of $\pi_{1}(|G|)$
we can puare:
Thm $\&$ is injective \Longleftrightarrow
T has ouly finitely many choorls

P的 \Rightarrow : $\quad N(\sigma, k):=$ \#tachl $\vec{e}_{k} \vec{e}_{k+1} \vec{e}_{k=2} \ldots$ in $\sigma^{\prime} \sim \sigma$ wik redeced trace

$$
\begin{aligned}
& \forall 2-s-\operatorname{lex}_{x} \tau: \nexists: N(\partial \tau, k)=0 \\
& \Rightarrow \forall \varphi \in \operatorname{Im} \partial_{2}: \exists k: N\left(\partial_{\rho}, k\right)=0 \\
& \text { Bud } N(\alpha, k)=1 \forall k .
\end{aligned}
$$

17)

A new hamalagy

X: amp lac. fin. CW. complex
$\hat{x}=$ its Fr-compactificabion lop ends
n-simples: continues map $\Delta^{n} \rightarrow \tilde{x}$
mapping vertices of Δ^{n} do X
 $\left(v_{i}\right)_{i \in I}$ "locally finite in X ":

- every $x \in X$ has weld meet $\operatorname{Im} \sigma_{i}$ for orally finitely, many i
- (\Leftrightarrow) eves y compact $K \subseteq X$ meets In I_{i} for only finitely, many i
Thus, ends "are different":
- may lie in coly many Gi
- may nor be O-faces of any σ_{i}

18)

bonudaries: ... of simplex as before

$$
\Leftrightarrow \partial(\text { u-simplex })=\operatorname{sininte}(u-1) \cdot \text { chain })
$$

... of chains: linearly fuern $\hat{\text { or }}\left(\partial \Sigma_{\ldots}:=\Sigma \partial \ldots\right)$
Nok: Dpresewives local finitencers of chains, so $D_{n}=C_{n} \rightarrow C_{n-1}$ as derived
u-çcher: not all of Kar ∂_{n} !
Dathes: C_{n}^{\prime} : finite u-chains

$$
\begin{aligned}
& Z_{u}^{\prime}: K_{\omega} \partial_{u} \cap C_{u}^{\prime} \\
& Z_{n}:=\left\{\varphi \in C_{n} \mid \quad \varphi=\sum_{j \in j} z_{j} \text {, ith } z_{j} \in Z_{n}^{\prime}\right\} \\
& B_{n}:=\operatorname{Im} \partial_{n+1}=\left\{\sum d_{i} \partial_{n+1} \tau_{i} \mid \tau_{i} \text { an }(n+1)-\sin l_{\text {ex }}\right\} \\
& \subseteq Z_{u} \text {, since } \partial_{u+1} \tau_{i} \in C_{u}^{\prime} \\
& H_{n}:=Z_{n} / B_{n} ; \quad H_{n}^{\prime}:=\left\{[Z] \mid z \in Z_{n}^{\prime}\right\} \leqslant H_{n}
\end{aligned}
$$

Examples
1.

At 1-chain won vanishing boundary that is not a 1-cycle..
... - or is it?
2.

Since $g=\sum_{j \in \mathbb{Z}} z_{j}$ with $z_{j}:=\tau_{\underline{-\sigma_{j}^{\prime}}}^{\stackrel{\sigma_{j}}{\longrightarrow}}$

28)

Thm: $t_{1}=1 t_{1}^{\prime} \simeq e$

If. Define f "as before" (wse that chains are loc. finite)
"Im $\operatorname{In} \rho e^{"}$ ures that, by cut ciriterion (finite cuts!i) I' suff. to show $g\left(\left[z_{j}\right)\right) \in C$ for $z_{j} \in Z_{1}^{\prime}$
"S swjective" as befare (since $\alpha \in Z_{1}^{\prime}$)

Sinjective: Given $[\xi] \in$ Kerg, zer can now add an infinibe (lnob locally fimibe!) chain $b \in B_{1}$ bo g, "subatividing" g into a chain $\sum \sigma_{i}$ with each σ_{i} tuavesis sue edge oul?. As $[b] \in \mathrm{ker} f$, abo $\sum \sigma_{i} \in$ he g, so thuse σ_{i} pain up ili $^{\prime}$ into bonndexies. Thm, $[g] \in B_{1}$.

What next?

flews \& dnality (x?)
inf.electrical nétwourks
\downarrow randarn valkes in IGI?

