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1. Global analysis of data from HEP experiments

Systematic errors are at the origin of the unsatisfactory situation, when data from many experiments
are used by theoreticians in a global analysis and parameter estimation, and when attempts are made
to determine e.g. uncertainties of predictions from parton distribution functions.

• It is difficult to estimate systematic errors correctly, and the estimated errors are only as good
as the model used for systematic errors.

• It is difficult to construct a correct chisquare expression for the estimation of parameters, taking
into account the systematic contributions.

• The construction of the chisquare expression is often done incorrectly and, if published in a
respected journal, it is often the model for the next generation of scientists.

• There is a tendency to allow extremely large ∆χ2 in an error analysis.

The situation is e.g. described in the paper: D. Stump et al., Phys. Rev. D65, 014012
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Examples with large ∆χ2

The large, artificial and arbitrary magnification of errors is hardly acceptable – the procedure points
to a deep problem in the whole data analysis. Two examples from parton distribution fits:

W production at the Tevatron αS(M2
Z)

Both curves are parabolas to a very good approximation over a range of ∆χ2 > 100 . . .

. . . while usually one would consider only a range of∆χ2 ≈ 4, corresponding to two standard deviations.

“ . . . determine the increase in χ2
global that corresponds to our estimated uncertainty ∆σW in the σW

prediction. . . . corresponds to ∆χ2
global ≈ 180.”
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Data uncertainties in HEP experiments

Statistical errors: The statistical error are given by the Poisson statistics of event numbers (n±
√
n),

without correlations between bins . . .
. . . but numbers corrected for finite resolution are correlated =⇒ Correlated statistical errors.

Normalization error: There is an uncertainty in the factor used to convert event numbers to
cross sections. This so-called normalization error applies to cross sections and to statistical
errors of cross sections as well. Because of its origin – product of many factors, each with some
uncertainty – the factor perhaps follows a log-normal distribution due the multiplicative central
limit theorem.

Systematic errors: There are uncertainties in the detector behaviour, e.g. energy measurements
by a calorimeter may have a general relative error of a few %. Often the experiments analysis is
repeated with ± few % relative change of e.g. calorimeter data; from the change in the result,
error contributions for all data are related to the single systematic uncertainty. A single error
contribution is a rank-1 contribution to the covariance matrix of the data.

Correlated statistical errors, unfolding error: The smearing effect of the detector is usually
corrected for in a way, which, due to the smoothing aspect, introduces at least positive correlations
between neightboring points.

Several different error contributions are reported by the experiments, but some may be missing; the
unfolding error (with positive correlations) usually remains unpublished.
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2. Normalization errors (multiplicative)

Normalization error: There is an uncertainty in the factor used to convert event numbers to
cross sections. This so-called normalization error applies to cross sections and to statistical
errors of cross sections as well. Because of its origin – product of many factors, each with some
uncertainty – the factor perhaps follows a log-normal distribution due the multiplicative central
limit theorem.

From a paper: “. . . Then, in addition, the fully correlated normalization error of the experiment is
usually specified separately. For this reason, it is naturally to adopt the following definition for the
effective χ2 (as done in previous . . . analyses)

χ2
global =

∑
n

wnχ
2
n(a) (n labels the different experiments),

χ2
n(a) =

(
1−Nn

σN
n

)2

+
∑

`

 NnDn` − Tn`(a)

σD
n`

2

For the nth experiment, Dn`, σ
D
n`, and Tn`(a) denote the data value, measurement uncertainty

(statistical and systematic combined) and theoretical value (dependent on {a}) for the `th data point,

σN
n is the experimental normalization uncertainty, and Nn is an overall normalization factor (with

default value 1) for the data of experiment n. . . . ”

The nuisance parameter Nn should be applied as a factor to Tn`(a), instead of Dn`, or
alternatively to both Dn` and σD

n`; otherwise a normalization bias is introduced.
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Common normalisation errors example from a publication

“Data are y1 = 8.0± 2% and y2 = 8.5± 2%, with a common (relative) normalisation error of ε = 10%.
The mean value (constraint ŷ1 = ŷ2) resulting from a χ2 minimisation of χ2 = ∆T V −1∆ is:

y = 7.87± 0.81 i.e. < y1 and < y2 ∆ =

(
y1 − y
y2 − y

)
– this is apparently wrong.

The method used was to define a full covariance matrix for the correlated data by

V a =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
y2

1 y1y2

y1y2 y2
2

)
=

(
σ2

1 + ε2y2
1 ε2y1y2

ε2y1y2 σ2
2 + ε2y2

2

)

Conclusion in the paper:

“. . . that including normalisation errors in the correlation matrix will produce a fit which
is biased towards smaller values . . . the effect is a direct consequence of the hypothesis to
estimate the empirical covariance matrix, namely the linearisation on which the usual error
propagation relies.”

But the matrix V a is wrong! Correct model: the normalisation errors ε · value are identical

V b =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
y2 y2

y2 y2

)
=

(
σ2

1 + ε2y2 ε2y2

ε2y σ2
2 + ε2y2

)
will give the correct result with y1 < y < y2.
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Covariance matrix comparison

Plot of one measured value vs. the other measured value, with the assumed covariance ellipse; the
mean value is on the diagonal.

Covariance ellipse for V a
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6

8

10

Axis of ellipse is tilted w.r.t. the diagonal and el-
lipse touches the diagonal at a biased point.

Covariance ellipse for V b

6 8 10
6

8

10

Axis of the ellipse is ≈ 45◦ and ellipse touches the
diagonal at the correct point.

The result of χ2 minimisation may depend critically on details of the model implementation!
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The method with a nuisance parameter . . .

Another method often used is to define

χ2
a =

∑
k

(f · yk − y)2

σ2
k

+
(f − 1)2

ε2
,

which will again produce a biased result.

The χ2 definition for this problem

χ2
b =

∑
k

(yk − f · y)2

σ2
k

+
(f − 1)2

ε2

will give the correct result (data unchanged and
fitted value according to the model), as seen by
blue curve.
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The log-normal distribution . . . and the normalisation error

The normalisation factor determined in an experiment is more the product (luminosity, detector accep-
tance, efficiency) than the sum of random variables. According to the multiplicative central limit theorem
the product of positive random variables follows the log-normal distribution, i.e. the logarithm of the
normalisation factor follows the normal distribution.

For a log-normal distribution of a
random variable α with E[α] = 1
and standard deviation of ε the con-
tribution to the χ2-function S(a, α)
is

∆Snorm = lnα

(
3 +

lnα

ln (1 + ε2)

)
→ (α− 1)2

ε2
for small ε 0 1 2 3

0.2

0.4

0.6

0.8

1

1.2
Log-normal distribution with sigma = 0.5

The normal and the log-normal distribution, both with mean 1
and standard deviation ε = 0.5.

log-normal density(α) = exp
[
−1

2
lnα

(
3 + ln α

ln(1+ε2)

)
+ ε2

8
− ln ε− ln

√
2π
]
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Aymmetric normalisation errors

Proposed method, to take the normalisation error ε into account, if data from > 1 experiment are
combined:

Introduce one additional factor α for each experiment as nuisance parameter, which has been measured
to be α = 1± ε, modify the expectation according to

fi = α · f(xi,a)

and make fit with

S(a) =
∑

i

(yi − α · f(xi,a))2

σ2
i

+ ∆Snorm with ∆Snorm =
(α− 1)2

ε2

or ∆Snorm = lnα

(
3 +

lnα

ln (1 + ε2)

)
lognormal distribution
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3. Additive systematic errors

Systematic errors: There are uncertainties in the detector behaviour, e.g. energy measurements
by a calorimeter may have a general relative error of a few %. Often the experiments analysis is
repeated with ± few % relative change of e.g. calorimeter data; from the change in the result,
error contributions for all data are related to the single systematic uncertainty. A single error
contribution is a rank-1 contribution to the covariance matrix of the data.

Experimental method: e.g. run MC for each systematic (Unisim) with constant varied by 1 σ and
redetermine result – determine signed shifts si of data values yi.

1. Method: Modify covariance matrix to include contribution(s) due to systematic errors

V a = V stat + V syst with V syst = ssT (rank-1 matrix) or
∑

k

sks
T
k

and use inverse matrix V −1 as weight matrix in the χ2 function. (→ simplified calculation of inverse)

2. Method (recommended): Introduce one nuisance parameter β, assumed to be measured as
0± 1, for each systematic error source, and make fit with

S(a) =
∑

i

(yi + βsi − α · f(xi,a))2

σ2
i

+ β2

Other method: Multisim: vary all systematic parameters randomly using their assumed probability distribution and
redetermine result.
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Simplified calculation of inverse

Assume that the inverse A−1 of the n-by-n matrix A is known. If a small change in A is done in one
of the two forms below, the corresponding change in A−1 is calculated faster by the formulas below.

Sherman-Morrison Formula: u and v are n-vectors and the change uvT of A is of rank 1.(
A + uvT

)−1
= A−1 − 1

1 + λ

(
A−1u

) (
vTA−1

)
with λ = vTA−1u

Woodbury Formula: U and V are n-by-k matrices with k < n and usually k � n.(
A + UV T

)−1
= A−1 −

[
A−1U

(
1 + V TA−1U

)−1
V TA−1

]
Only a k-by-k matrix has to be inverted.

Inversion of a 100-by-100 matrix takes a few 10−3 seconds.

W.H.Press et al., Numerical Recipes, The Art of Scientific Computing, Cambridge University Press
“For larger k the direct methods may be faster and more accurate because of the stabilizing advantages
of pivoting.”
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Example from an experimental paper

Systematic uncertainties:

• “Correlated systematic uncertainties:” e.g. −0.2% −0.7% +1.0% +0.9% −0.6% . . .
∑

= 1.6%

– electron energy

– electron angle

– hadronic calibration

– calorimeter noise contribution

– photoproduction background

• “Uncorrelated systematic uncertainties:” e.g. 0.4% 0.8% . . .
∑

= 2.1%

– Monte carlo statistic

– trigger efficiency

– detector efficiency

– radiative corrections

• “Total cross section uncertainty” e.g. 2− 3%

Shown are typical (small) values for error contributions.
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Example from analysis papers

“All the experiment included in our analysis provide full correlated systematics, as well as normalization
errors. The covariance matrix can be computed from these as

covij =

(
Nsys∑
k=1

σi,kσj,k + FiFjσ
2
N

)
+ δijσ

2
i,t ;

where Fi, Fj are central experimental values, σi,k are the Nsys correlated systematics, σN is the total
normalization uncertainty, and the uncorrelated uncertainty σi,t is the sum of the statistical uncertainty
σi,s and the Nu uncorrelated systematic uncertainties (when present) . . . ”

The inverse of the covariance matrix cov above is used as a weight matrix for a χ2 calculation.

“ . . . However . . . correlations between measurement errors, and correlated theoretical errors, are not
included in its definition.”

“ . . . Instead, the evaluation of likelihoods and estimation of global uncertainty will be carried out
. . . after sets of optimal sample PDF’s for the physical variable of interest have been obtained.”

Comments: The quadratic combination of statistical and systematic measurement uncertainty neglects
the known correlation, inherent in the systematic effect. Neither unbiased optimal parameters values
nor a usable χ2 or parameter errors can be expected from the χ2 function.
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4. Correlated statistical errors

Statistical deviations per bin of measured quantities from event numbers (n ±
√
n) are independent.

The covariance matrix is diagonal.
but

“. . . the selected event samples are corrected for detector acceptance and migration using
the simulation and are converted to bin-centred cross sections. . . . The bins used in the
measurement are required to have stability and purity larger than 30 %. . . . The stability
(purity) is defined as the number of simulated events which originate from a bin and which
are reconstructed in it, divided by the number of generated (reconstructed) events in that
bin . . . ”

• A stability/purity of 30 % corresponds to a bin size narrower than 1 standard deviation of the
measurement accuracy (for a flat distribution)!

• Up to 70 % of the events in a bin come from the 2 + 2 neighbour bins.

• There must be a strong correlation of the corrected data in neighbour bins.

• The covariance matrix for corrected data is non-diagonal and the variances are magnified. This
is visible in the eigenvalue spectrum of the migration matrix.

. . . the published covariance matrices of statistical errors are diagonal.
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Why the cov matrix is non-diagonal . . .

0 1 2
0

0.5

1

sigma/binwidth

st
ab

ili
ty

/p
ur

ity

binwidth = 2.4 sigma

binwidth = sigma

0 2 4 6
0

20

40

60

80
E 03

0 50 100

1

10

100

Spectrum of inverse eigenvalues

Index of eigenvalue

Assuming a uniform distribution,
the stability/purity is plotted as a
function of the ratio of σ to bin-
width.

Consider bin [2, 3] with σ = bin-
width: the red contribution origi-
nated from this bin. 2 + 2 neigh-
bour bins contribute significantly
to the bin [2, 3].

Assuming σ = binwidth the
eigenvalue spectrum is shown for
a 100-bin histogram. The eigen-
value is a magnification factor for
the variance of linear combina-
tions.
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5. Parameter uncertainties: profile likelihoods and χ2

Covariance matrix: parameter uncertainties and correlations are given by the covariance matrix V
of the fit, obtained by inversion of the matrix of second derivatives (Hessian) of the log-likelihood
function (Fishers Information I = V −1).
The covariance matrix is usually assumed to be sufficient to describe the parameter uncertainties.

χ2 contour: the surface of the error ellipsoid corresponds to the area of χ2
mininum + 1.

Single-parameter uncertainty: the information is supplemented by the profile likelihood, obtained
by minimizing, for many fixed values in the range ± several σ of one of the parameters, with
respect to all other parameters. This is used e.g. in Minuit in the Minos option to check the
uncertainties and evtl. define asymmetric errors.

Function of parameters: the uncertainty of functions g(a) of the parameters is determined by the
error propagation formula (derivatives of g(a) w.r.t. the parameters and covariance matrix V .

The information is supplemented by the profile likelihood for functions g(a).
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Profile likelihood for a function

The profile likelihood for a function g(a) of parameters, e.g. the W production cross section σW at
the Tevatron, or αS(M2

Z) can be calculated by the use of the Lagrange multiplier method (Lagrange
1736-1813):

For many fixed values gfix of the function g(a) the likelihood function is minimized. The standard
method is to define a Lagrange function

L(a) = S(a) + λ · (g(a)− gfix)

and to find the stationary point w.r.t the parameters a and the Lagrange multiplier λ, given gfix. The
constraint defines a set of parameter values for each value of gfix, e.g. σW .

An alternative method, used in a recent paper, is

“ . . . to assume, by trial-and-error, fixed values of the Lagrange multiplier λ and to minimize

S(a) + λ · g(a)

and after minimization, to calculate the corresponding fixed g(a) (allows to use MINUIT).”
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Comments to a recent paper

Global fit: The overall (“global”) fit is done, taking into account the normalization errors, but
neglecting certain systematic error contributions (non-diagonal) in the experimental data.
Why are the non-diagonal error contributions neglected, but later used?

Profile χ2-function: In the determination of the profile χ2-function however the normalization is
fixed at the previously fitted value.
Fixing certain parameters will not result in a correct profile.

Single experiment analysis: Afterwards a χ2-analysis is done, separately for each experiment,
now taking into account the systematic error contributions (non-diagonal) in the experimental
data.
For each experiment the “profile” χ2-function is evaluated, however with the parameters from
the global fit.
Each experiment has a different parameter covariance matrix, depending on the
kinematical region and the accuracy. Evaluating the χ2-function using parameter
sets from the global fit will not result in a correct profile.
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From papers . . .

“Notice that the covariance matrix

V p
ij = 〈∆i∆j〉 = ∆χ2 ·H−1

ij

depends on the choice of ∆χ2 which usually, but not always, is taken to be ∆χ2 = 1. This
choice . . . corresponds to the definition of the width of a Gaussian distribution.”

“In full global fit art in choosing correct”∆χ2 given complication of errors. Ideally∆χ2 = 1,
but unrealistic.”

“ . . . and ∆χ2 is the allowed variation in χ2. . . . and a suitable choice of ∆χ2 . . . and ∆χ2

is the allowed deterioration in fit quality for the error determination.”

“. . . Our standard PDF set S0 is a parametrized fit to 1295 data points with 16 fitting
parameters. The minimum of χ2

global is approximately 1200. Naively, it seems that an
increase of χ2

global by merely 1, say from 1200 to 1201, could not possibly represent a
standard deviation of the fit. Naively one might suppose that a standard deviation would
have ∆χ2 ∼

√
1295 rather than 1. However this is an misconception. If the errors are

uncorrelated (or if the correlations are incorporated into χ2) then indeed ∆χ2 = 1 would
represent a standard deviation. But this theorem is irrelevant to our problem, because the
large correlations of systematic errors are not taken into account in χ2

global. . . . ”
(Phys. Rev.)
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Use of redundant parameters

An example from parton density fits: the gluon parametrization is

xg(x,Q2
0) = . . . − A− (1− x)η− x−δ−

where A− ∼ 0.2, δ− ∼ 0.3 and η− fixed at ∼ 10. A change of δ− changes both shape and normalisation.

“. . . we notice that a certain amount of redundancy in parameters leads to potentially
disatrous departures . . . For example, in the negative term in the gluon parameterization
very small changes in the value of δ− can be compensated almost exactly by a change in
A− and in the other gluon parameters . . . ”

“We found our input parameterization was sufficiently flexible to accomodate data, and
indeed there is a certain redundancy evident.”

In the case of highly correlated, redundant parameters the Hessian will be (almost) sin-
gular, inversion may be impossible and the convergence of the fit is doubtful. Redundant
parameters have to be avoided!
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6. Outliers and their influence on the fit

“Everyone believes in the normal law of errors, the experimenters because they think it
is a mathematical theorem, the mathematicians because they think it is an experimental
fact.” [Poincaré]

Outliers – single unusual large or small values among a sample – are dangerous and will usually,
because of their large influence, introduce a bias in the result:

• in the final χ2 value,

• in the values of the fitted parameters, and

• in the parameter uncertainties.

A method for outlier treatment: M-estimation, closely related to the maximum-likelihood method.
For data with a probability density pdf(z) the method of maximum-likelihood requires to minimize

S(a) = −
n∑

i=1

ln pdf(zi) =
n∑

i=1

ρ(zi)

with ρ(z) = ln pdf(z). For a Gaussian distribution ρ(z) = 1
2
z2. The function ρ(z) is modified in

M-estimation by down-weighting.
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M-estimates

Generalization of least-squares, following from Maximum Likelihood arguments.

Abbreviation zi =
yi − f(xi; a)

σi

(∼ N(0, 1) for Gaussian measurement)

Least-squares: minimize
∑

i

1

2
z2

i solve
∑

i

yi − f(xi; a)

σ2
i

∂f

∂aj

= 0 j = 1, 2 . . . p

M-estimates: minimize
∑

i

ρ (zi) solve
∑

i

yi − f(xi; a)

σ2
i

w(zi)
∂f

∂aj

= 0 j = 1, 2 . . . p

with influence function ψ(z) =
dρ

dz
and with additional weight w(z) = ψ(z)/z

ρ(z) =
1

2
z2 ψ(z) = z w(z) = 1 Case of least-squares

Requires iteration (non-linearity(!)) e.g with weight w(z), calculated from previous values.
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Influence functions and weights . . . as a function of z

z ≡
(
y − f(x)

σ

)2
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0
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15 log of probability density

least squares

Cauchy

Tukey
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0

2 Influence function

least squares
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-10 0 10
0
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1

Weight

least squares

Cauchy

Tukey

ρ (z) ψ(z) = dρ(z)/dz w(z) = ψ(z)/z
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Commonly used M-estimators

influence function weight

ρ(z) = ln pdf(z) ψ(z) = dρ(z)/dz w(z) = ψ(z)/z

Least squares =
1

2
z2 = z = 1

Cauchy =
c2

2
ln
(
a+ (z/c)2) =

z

1 + (z/c)2 =
1

1 + (z/c)2

Tukey

{
if |z| ≤ c

if |z| > c
=

{
c2/6

(
1− [1− (z/c)2]

3
)

c2/6
=

{
z [1− (z/c)2]

2

0
=

{
[1− (z/c)2]

2

0

Huber

{
if |z| ≤ c

if |z| > c
=

{
z2/2

c (|z| − c/2)
=

{
z

c · sign (z)
=

{
1

c/|z|

Asymptotic efficiency of 95 % on the normal distribution obtained with c = 2.3849 (Cauchy), c =
4.6851 (Tukey) and c = 1.345 (Huber).

M-estimation: reduces the influence of outliers and improves fitted parameter values and uncertain-
ties . . . but the final χ2-function values does not follow the standard χ2 distribution.
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Conclusion

Systematic errors of experimental data: Recent experiments provide a lot of information on
systematic error contributions – this information should be used in a global analysis.

Statistical errors of experimental data: The published statistical errors are often too optimistic,
because correlations (especially between neighbour bins) are neglected.

Construction of χ2-function: Each error contribution should be taken into account with the
correct underlying model of the error contribution.

Parametrization: Redundant parameters have to be avoided in a global fit.
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