Software to set upper limits using a Bayesian technique.

(Poisson process, nuisance parameters on epsilon/background)

•Aim was to make a tool to quickly explore properties of priors.

•2 month undergraduate project in 2005 supervised by Louis Lyons, recently re-written in Root (C++).

•Validated by repeating results of CDF "Interval estimation in the presence of nuisance parameters" (Heinrich et al.) and other sources.

July 2006

Index of slides

- Mathematical statement of problem
- Software features and settings
- Supported priors
- Method for solving problem
- Performance/precision
- Example plots (3)
- Conclusion

Mathematically, need to solve:

$$\int_0^{s_u} \left[\int_0^\infty \int_0^\infty \left\{ \frac{e^{-(\varepsilon s+b)}(\varepsilon s+b)^n}{n!} \right\} \pi_2 \pi_3 d\varepsilon db \right] \pi_1 ds = c$$

where	$\boldsymbol{\pi}_1 = \boldsymbol{\pi}_1(\mathbf{s})$	prior for signal, s
	$\pi_2 = \pi_2(\varepsilon)$	prior for epsilon, ɛ
	$\pi_3 = \pi_3(b)$	prior for background, b
	S _u	upper limit on signal, s

Solve for s₁₁ with choice of priors and credibility level, c.

July 2006

Features of software:

- Generate upper limits for a given c (credibility), for a range of n.
- Plot posterior PDF's (as a graph in Root)
- Produce coverage plots, including case of nuisance on epsilon (using technique in CDF note.)

Input settings:

- 1) Turn on the features from above list.
- 2) Set n-range for each feature.
- 3) Set credibility level (c).
- 4) Choose priors on s, ε and b.

(there are many other options related to internal working that end user probably won't want to touch)

July 2006

Current priors supported

For background and epsilon:

(i.e. no prior)

(choice of how to truncate)

For signal: "box" prior (implementation of $s^{\alpha-1}$ so far problematic) Any prior separable in s, ε and b is straightforward to add. (Coverage plots only for delta, normal and gamma, so far.)

July 2006

Re-write problem, but don't worry about constants:

$$\int_0^{s_u} p(s \mid n) \cdot ds = c \cdot \int_0^\infty p(s \mid n) \cdot ds$$

And apply Newton-Raphson method:

$$s_{u}^{\text{improved}} = s_{u} - \frac{\int_{0}^{s_{u}} p(s \mid n) \cdot ds - c \cdot \int_{0}^{\infty} p(s \mid n) \cdot ds}{p(s \mid n)}$$

•Constants drop out of integrals (and therefore out of priors).

- •p(s|n) is still an integral over ε and b.
- •All integrals then carried out using Gaussian integration. (i.e. completely numerical)
- •Convergence in ~4 iterations.

July 2006

- Precision beyond 4d.p. when compared to analytic.
- No speed optimisation ... yet (anticipate factor 4 reduction by compiling and tuning settings for precision, numerical integration etc.)

All times are running on a single ~3GHz CPU on the TWIST experiment's cluster (at Triumf).

July 2006

 $\varepsilon = 0.9, b = 3.0$ $\varepsilon = 1.1, b = 3.0$

For both plots c = 0.90, uniform signal prior.

July 2006

 $\epsilon = 0.9, b = 2.7$ $\epsilon = 1.1, b = 3.3$

For both plots c = 0.90, uniform signal prior.

July 2006

 $\epsilon = 1.0 \pm 0.1$ (Gamma), b = 3.0 $\epsilon_{true} = 1.0, c = 0.90$

July 2006

• Easy for user to change settings.

• Flexibility in priors while maintaining speed/precision.

• Inclusion of nuisance parameters on both ε and b.

• Can quickly explore properties like varying mean/s.d. of background etc.