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We focus on

. spatially explicit stepping stone model on the torus
in Z*

. coalescing random walks on the torus in Z?

. effect of spatial structure on some measures of
kinship

Based on work with Rick Durrett and Iljana Zihle:

The stepping stone model: new formulas expose old myths
(with R. Durrett). Ann. Appl. Probab., 12 (2002),
1348-1377.

The stepping stone model 1I: Genealogies and the infinite
sites model (with R. Durrett and 1. Zihle). To appear, Ann.
Appl. Probab.



1 Discrete Time Stepping Stone
Model

Model for the evolution of gene frequencies in a
population.

Colonies of individuals subject to migration and
mutation.

. Time discrete, n =0,1,...

. Colonies located atsitesxz € S

. Colonysize N (diploid), 2N (haploid case)
. Types mutations produce new types

. Mutation probability p > 0

. Migration probability v < (0, 1]

. Migration kernel ¢(z,y),z,y € S, q(z,z) =0



Formation of generation n + 1 at colony C,

Each individual, independently:
. prob. u:  assumes a new type

. prob. 1 — u:  assumes type of individual chosen
at random from colony C,, with probability

p(z,y) = (1 —v)I(z,y) + vq(z,y)

Note
. Wright-Fisher type model

. keep kernel ¢(z,y) fixed, allow other parameters to
vary



Duality

We can trace lineages of individuals backward in time,
following paths of coalescing random walks.

Two lineages

W1 W2 independent walks on S, kernel p(z, y).

Uy, U? : independent, uniformly distributed on
(1,2,...,2N).

Note. In k steps of W}, about vk are steps to different
colonies.

Hitting Times
Starting with walks at 0 and x,

Tor = time required for two lineages to reside in the

same colony
= inf{n: Wl =w?32}

tox = time required for two lineages to coalesce
= inf{n: (W, Uy) = (W5, U2)}



Given the distribution of ¢y, we can compute

probability of identity by descent for two
(different) individuals picked at random

from entire population

E(1 — p)*o

= probability of identity by descent for two

(different) individuals picked at random

from colonies Cy and C,,

= E(1— p)*os
Wright's statistic
$0) — A (following Nei (1975)

1 —nh



2 The Single Colony Case

One colony, migration parameter v = (

to is geometric,

For large N, 208 (1)

Calculation of h

h=E(1—2u)%
(1 —2p)*N)fo/2N

(€—4N,u5(1))

b
E

Q

1
- 1+4Np




s > 2 lineages
Consider s distinct lineages (coalescing rw’s).

¢, = number of remaining lineages at time n

For large IV, can show
S d S
Cranyy) = Dy, t>0

where D}t > 0on {1,2,...,s} is the pure death

process, with
k
k — 1 at rate <2>

Can also keep track (on time scale 2N) of which of the
s random walks have coalesced , leading to Kingman’s
coalescent.

Consistent with previous s = 2 case?

C[2Nt] =2 <= ty> [2Nt]

and
P(D =2)=PE(1) >t)=¢"



3 S = thetorus A(L) in Z¢

A(L) = (—L/2, L]* N Z* (wrap around)
Dynamics: each individual, independently:
. prob. pu: assumes a new type

. prob. 1 — p: assumes type of individual chosen
at random from colony C), with prob.

p"(z,y) = 1 —v)(z,y) +ve"(z,y)

where

¢"(z,9) = > _ qlz,y+ Lz)
2 €72

Assumptions: q(z,y) = q(y,x) = ¢(0,y — z), finite
range, covariance matrix o2/

Other models: island model, circular, ...

Seek distributions of
tgw and (;
as L — oo, and possibly N — oo, v — 0
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4 Migration rate vs. system size

We consider the following “regimes”

Migration rate vs. system size
Nv > log L
Nv =~ log L
Nv < log L

Why? Let tf, be coalescent time for two walks starting
in same colony. Then

6, = Toy + o
and we will see that
th ~ 2NL?
and if |z| ~ L then

L?log L

v

L
TOxN

Previous work: 2N = 1, v = 1, nearest-neighbor kernel
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Migration rate vs. system size

- N
Toz < to logVL B
- Ao Ny
TE =<tk c (0,
Ox 00 log I — ( OO)
- N
T >t L0

log L
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Behavior of t},: high migration rate

N
Theorem (C., Durrett) Assume 1 VL » 00 as L — oo.
0g

Then for any t > 0,

P %@ ¢ —t
oNLZ ") €

— 0.

sup
rEA

That is, uniformly in x € A(L), for large L,

0.
INL?

S E(1)

We use

Theorem (Strobeck (1987))

E(t5) = 2N L*(= population size)
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Spatial scales

r1,X2,...,Tg € A(L)

For i # 3,

3 = 1 <= uniformly spread out on torus
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Behavior of T},

Theorem (C., Durrett) Suppose x = x, satisfies

log™ ||
log L

— 3 € [0,1] as L — oo.

For all t > 0, uniformly for v € (0, 1],

P > ¢ —t
% log L — pe
2wy
L?log L
That is, if |z| ~ LP and 77, = 05 then
2mo2y

6o a )0 prob. 1 — f3
L £(1) prob. S
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Low migration rate: Nv = O(log L)

Ao’ Ny

Theorem (C., Durrett) Assume a € [0, 00)
log L
and satisfies log™ |z Belo,1]las L — o
r =2 — — .
b log L ’

Then for any t > 0,

P(tg’x>(1+oz)t> ~ (ﬁ+(1—5) - )e_t.

TL

4o’ N
That is, if —— " ~ a and lz| ~ LP then
log L
( 1 —
0 prob. g
/L 1 1+«
0,z N<
1
e E(1) prob fta
\ p . 1 + «
B L?log L

2moly
14



Example. Approximation of ¢(x) using

( b
O .

1

L
tO,a:

(1 ‘|‘Oé)’7'L

d
R4

@

Q

_I_
1 i
\5( ) prob o

4o’ N
where =2 Y ~ 4 and x| ~ L°
log L

(a) = B((1 — p)2tor)
= B(((1 — p)2+e)meyte, /(e

~ 1-8 pBH+o

E(((1 — )20+ E(1)
o 1+a (((1—p) )£y

1—5+5+a 1
14+ « 1—|-Ck2(1—|—04),u7'L
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Some special cases.

1. Nv<logLand|z|~L(a=0and g =1)

1 1
h p— A p—
)~ T, T 15 4N
where
N, — L _ L?log L
2 Aro?y

For N =20, L =50, v =0.1 (Nv = 2), ¢(x,y) uniform
on [—2,2]%\ (0,0), 0% = 50/24,
N. = 3736 < NL? = 50, 000.

Compare with the island model: there are k colonies,

1 —v T =1

PEDZ 1) oy

(k—1)°
ANvk?

Ne = Nk (1 + ) > actual population size
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2. Correlation with distance Nv < log L (o« = 0) and
|| ~ LP or B ~ log |z|/log L,

¢(0)—¢(w)~1_((1_5>+ o )

:5(1_

~ B2uTy,

~ ]
©5 |x‘7r02y
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3. Wright's statistic Fisr

Aro? Ny

log L —a >0
0)—h
FST:(b(l)_h

Approximate h (8 = 1) and ¢(0) (8 = 0) as before, get

1 1
For ~ ~ log L?
T 1 o 8mo?N ©5

Crow and Aoki (1984), numerical studies, Figp
proportional to the log of the number of colonies.
18



L?log L

5 Timest <K 77 =

2Ty
Aro? N
if 2% Y ~ aand lz| ~ LP then
log L
( 1 .
0 prob. g
L 1+ «
tO,x f(\iJ <
(1 -+ OZ)TL -
£(1) prob, 2@

\ 1+ «
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Change to continuous time version of model (Moran
type).
ForO<d<landc > 0let

I'(L,c,6) = (L°/log L,cdL° log L)

Theorem (C. Durrett, Zahle) Assume
2Nvrmo?/log L — a € [0,00) as L — oc. For any fixed
Bo > 0, uniformly in By < B <~y < land|z| € I'(L,c,J),

Ptk >L—27 _)ﬂ%—oz
0T 7 9y v+ «

as L. — oo.
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6 s> 2lineages

hy = (1+a)r, = (1+a)L?log L/(2wo?v)

QUM%D:{A:{MV“%}:

L
Vi,z; € A(L), Vi # j, |x; — x| > logL}'

Theorem (C. Durrett, Zihle) Assume
2Nvro?/log L — « € [0,00) as L — oo. Uniformly in
t>0,Aeg(L,s, 1),

PG | = k) — P(D} = k)| — 0.
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G(L,n,c,d) = {A ={z1,... T} :
Vi, z; € A(L), Vi # j, |v; — z;] € D(L, c, 5)}.

Theorem (C. Durrett, Zahle) Assume
2Nvmo?/log L — « € [0,00) as L — oo. Uniformly in
60 S 6 S Y S 1617”16114 < Q(L,S,C,ﬁ),

P(K’%ﬂ|:k)—P(Dfog7+a :k) 0

B+«

Uniformly fort > 0and A € G(L, s, c, B),

A _ S _
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