Asymptotic Theory of the Planar Stepping Stone Model

Ted Cox BIRS, August 2004

Contents

1	Discrete Time Stepping Stone Model	2
2	The Single Colony Case	6
3	$\mathcal{S}=$ the torus $\Lambda(L)$ in \mathbb{Z}^d	8
4	Migration rate vs. system size	9
5	Times $t \ll \tau_L = \frac{L^2 \log L}{2\pi \sigma^2 \nu}$	19
6	s > 2 lineages	21

We focus on

- spatially explicit stepping stone model on the torus in \mathbb{Z}^2
- coalescing random walks on the torus in \mathbb{Z}^2
- effect of spatial structure on some measures of kinship

Based on work with Rick Durrett and Iljana Zähle:

The stepping stone model: new formulas expose old myths (*with R. Durrett*). **Ann. Appl. Probab.**, 12 (2002), 1348-1377.

The stepping stone model II: Genealogies and the infinite sites model (with R. Durrett and I. Zähle). To appear, Ann. Appl. Probab.

1 Discrete Time Stepping Stone Model

Model for the evolution of gene frequencies in a population.

Colonies of individuals subject to migration and mutation.

- . Time discrete, $n = 0, 1, \ldots$
- **.** Colonies located at sites $x \in S$
- Colony size N (diploid), 2N (haploid case)
- **. Types** mutations produce new types
- . Mutation probability $\mu > 0$
- . Migration probability $\nu \in (0,1]$
- . Migration kernel $q(x,y), x, y \in \mathcal{S}, q(x,x) = 0$

Formation of generation n + 1 **at colony** C_x

Each individual, independently:

- prob. μ : assumes a new type
- prob. 1μ : assumes type of individual chosen at random from colony C_y with probability

$$p(x,y) = (1-\nu)I(x,y) + \nu q(x,y)$$

Note

- Wright-Fisher type model
- . keep kernel q(x, y) fixed, allow other parameters to vary

Duality

We can trace **lineages** of individuals backward in time, following paths of **coalescing random walks**.

Two lineages

 W_n^1, W_n^2 : independent walks on \mathcal{S} , kernel p(x, y).

 U_n^1, U_n^2 : independent, uniformly distributed on $\{1, 2, \dots, 2N\}.$

Note. In *k* steps of W_n^1 , about νk are steps to different colonies.

Hitting Times

Starting with walks at 0 and x,

 T_{0x} = time required for two lineages to **reside in the same colony**

 $= \inf\{n : W_n^1 = W_n^2\}$

 t_{0x} = time required for two lineages to **coalesce** = $\inf\{n : (W_n^1, U_n^1) = (W_n^2, U_n^2)\}$ Given the distribution of t_{0x} , we can compute

h = probability of *identity by descent* for two
 (different) individuals picked at random
 from entire population

$$= E(1-\mu)^{2t_0}$$

 $\phi(x)$ = probability of *identity by descent* for two (different) individuals picked at random from colonies C_0 and C_x

$$= E(1-\mu)^{2t_{0x}}$$

$$F_{ST}$$
 = Wright's statistic
= $\frac{\phi(0) - h}{1 - h}$ (following Nei (1975)

2 The Single Colony Case

One colony, migration parameter $\nu = 0$ t_0 is **geometric**,

$$P(t_0 = k) = \left(\frac{1}{2N}\right)\left(1 - \frac{1}{2N}\right)^{k-1}, \qquad k = 1, 2, \dots$$

For large N, $\qquad \frac{t_0}{2N} \stackrel{\text{d}}{\approx} \mathcal{E}(1)$

Calculation of h

$$h = E(1 - 2\mu)^{2t_0}$$

= $E((1 - 2\mu)^{2N})^{t_0/2N}$
 $\approx E(e^{-4N\mu\mathcal{E}(1)})$
= $\frac{1}{1 + 4N\mu}$

s > 2 lineages

Consider *s* distinct lineages (coalescing rw's).

 $\zeta_n^s =$ number of remaining lineages at time *n* For large *N*, can show

$$\zeta_{[2Nt]}^s) \stackrel{\mathrm{d}}{\approx} D_t^s, \qquad t > 0$$

where $D_t^s, t \ge 0$ on $\{1, 2, ..., s\}$ is the pure death process, with

$$k \to 1$$
 at rate $\binom{k}{2}$

Can also keep track (on time scale 2*N*) of which of the *s* random walks have coalesced , leading to **Kingman's** coalescent.

Consistent with previous s = 2 case?

$$\zeta_{[2Nt]} = 2 \quad \Longleftrightarrow \quad t_0 > [2Nt]$$

and

$$P(D_t^2 = 2) = P(\mathcal{E}(1) > t) = e^{-t}$$

3 S = the torus $\Lambda(L)$ in \mathbb{Z}^d

 $\Lambda(L) = (-L/2, L]^2 \cap \mathbb{Z}^2$ (wrap around)

Dynamics: each individual, independently:

- prob. μ : assumes a new type
- prob. 1μ : assumes type of individual chosen at random from colony C_y with prob.

$$p^{L}(x,y) = (1-\nu)I(x,y) + \nu q^{L}(x,y)$$

where

$$q^{L}(x,y) = \sum_{z \in \mathbb{Z}^{2}} q(x,y+Lz)$$

Assumptions: q(x, y) = q(y, x) = q(0, y - x), finite range, covariance matrix $\sigma^2 I$

Other models: island model, circular, ...

Seek distributions of

$$t_{0x}^L$$
 and ζ_n^s

as $L \to \infty$, and possibly $N \to \infty$, $\nu \to 0$

4 Migration rate vs. system size

We consider the following "regimes"

Migration rate vs. system size

$$N\nu \gg \log L$$
$$N\nu \approx \log L$$
$$N\nu \ll \log L$$

Why? Let \tilde{t}_{00}^L be coalescent time for two walks starting in same colony. Then

$$t_{0x}^L \stackrel{\mathrm{d}}{=} T_{0x}^L + \tilde{t}_{00}^L$$

and we will see that

$$\tilde{t}_{00}^L \approx 2NL^2$$

and if $|x| \approx L$ then

$$T_{0x}^L \approx \frac{L^2 \log L}{\nu}$$

Previous work: 2N = 1, $\nu = 1$, nearest-neighbor kernel

Migration rate vs. system size

Behavior of t_{00}^L : high migration rate

Theorem (C., Durrett) Assume $\frac{N\nu}{\log L} \to \infty$ as $L \to \infty$. Then for any t > 0,

$$\sup_{x \in \Lambda_L} \left| P\left(\frac{t_{0,x}^L}{2NL^2} > t \right) - e^{-t} \right| \to 0.$$

That is, uniformly in $x \in \Lambda(L)$, for large *L*,

$$\frac{t_{0,x}^L}{2NL^2} \stackrel{\mathrm{d}}{\approx} \mathcal{E}(1)$$

We use

Theorem (Strobeck (1987))

$$E(t_{00}^L) = 2NL^2 (= population \ size)$$

Spatial scales

 $x_1, x_2, \ldots, x_s \in \Lambda(L)$

For $i \neq j$,

$$|x_i - x_j| \approx L^\beta, \qquad 0 \le \beta \le 1$$

 $\beta = 1 \iff$ uniformly spread out on torus

Behavior of T_{0x}^L

Theorem (C., Durrett) Suppose $x = x_L$ satisfies

$$\frac{\log^+ |x|}{\log L} \to \beta \in [0, 1] \qquad \text{as } L \to \infty.$$

For all t > 0, uniformly for $\nu \in (0, 1]$,

$$P\left(\frac{T_{0x}^L}{\left(\frac{L^2\log L}{2\pi\sigma^2\nu}\right)} > t\right) \to \beta e^{-t}$$

That is, if $|x| \approx L^{\beta}$ and $\tau_L = \frac{L^2 \log L}{2\pi \sigma^2 \nu}$ then $\frac{t_{0,x}^L}{\tau_L} \stackrel{d}{\approx} \begin{cases} 0 & \text{prob. } 1 - \beta \\ \mathcal{E}(1) & \text{prob. } \beta \end{cases}$ **Low migration rate:** $N\nu = O(\log L)$

Theorem (C., Durrett) Assume $\frac{4\pi\sigma^2 N\nu}{\log L} \to \alpha \in [0,\infty)$ and $x = x_L$ satisfies $\frac{\log^+ |x|}{\log L} \to \beta \in [0,1]$ as $L \to \infty$. Then for any t > 0,

$$P\left(\frac{t_{0,x}^L}{\tau_L} > (1+\alpha)t\right) \to \left(\beta + (1-\beta)\frac{\alpha}{1+\alpha}\right)e^{-t}.$$

That is, if
$$\frac{4\pi\sigma^2 N\nu}{\log L} \approx \alpha$$
 and $|x| \approx L^{\beta}$ then

$$\frac{t_{0,x}^L}{(1+\alpha)\tau_L} \stackrel{\mathrm{d}}{\approx} \begin{cases} 0 & \text{prob. } \overline{1+\alpha} \\ \mathcal{E}(1) & \text{prob. } \frac{\beta+\alpha}{1+\alpha} \end{cases}$$

$$\tau_L = \frac{L^2 \log L}{2\pi\sigma^2\nu}$$

Example. Approximation of $\phi(x)$ using

$$\frac{t_{0,x}^L}{(1+\alpha)\tau_L} \approx \begin{cases} 0 & \text{prob. } \frac{1-\beta}{1+\alpha} \\ \mathcal{E}(1) & \text{prob. } \frac{\beta+\alpha}{1+\alpha} \end{cases}$$

where $\frac{4\pi\sigma^2 N\nu}{\log L} \approx \alpha$ and $|x| \approx L^{\beta}$

$$\phi(x) = E((1-\mu)^{2t_{0x}^L})$$

$$= E(((1-\mu)^{2(1+\alpha)\tau_L})^{t_{0x}^L/(1+\alpha)\tau_L})$$

$$\approx \frac{1-\beta}{1+\alpha} + \frac{\beta+\alpha}{1+\alpha}E(((1-\mu)^{2(1+\alpha)\tau_L})^{\mathcal{E}(1)})$$

$$= \frac{1-\beta}{1+\alpha} + \frac{\beta+\alpha}{1+\alpha}\frac{1}{2(1+\alpha)\mu\tau_L}$$

Some special cases.

1. $N\nu \ll \log L$ and $|x| \approx L$ ($\alpha = 0$ and $\beta = 1$) $h = \phi(x) \approx \frac{1}{1 + 2\mu\tau_L} = \frac{1}{1 + 4N_e\mu}$

where

$$N_e = \frac{\tau_L}{2} = \frac{L^2 \log L}{4\pi\sigma^2\nu}$$

For N = 20, L = 50, $\nu = 0.1$ ($N\nu = 2$), q(x, y) uniform on $[-2, 2]^2 \setminus (0, 0)$, $\sigma^2 = 50/24$, $N_e = 3736 \ll NL^2 = 50,000$.

Compare with **the island model:** there are *k* colonies,

$$p(x,y) = \begin{cases} 1-\nu & x=y\\ \nu/(k-1) & x \neq y \end{cases}$$

 $N_e = Nk\left(1 + \frac{(k-1)^2}{4N\nu k^2}\right) > \text{actual population size}$

2. Correlation with distance $N\nu \ll \log L$ ($\alpha = 0$) and $|x| \approx L^{\beta}$ or $\beta \approx \log |x| / \log L$,

$$\phi(x) = E(1-\mu)^{2t_{0,x}^L}$$
$$\approx (1-\beta) + \beta \frac{1}{2\mu\tau_L}$$

$$\phi(0) - \phi(x) \approx 1 - \left((1 - \beta) + \frac{\beta}{2\mu\tau_L} \right)$$
$$= \beta (1 - \frac{\beta}{2\mu\tau_L})$$
$$\approx \beta 2\mu\tau_L$$
$$\approx \log|x| \frac{L^2}{\pi\sigma^2\nu}$$

3. Wright's statistic F_{ST}

$$\frac{4\pi\sigma^2 N\nu}{\log L} \to \alpha > 0$$
$$F_{ST} = \frac{\phi(0) - h}{1 - h}$$

Approximate h ($\beta = 1$) and $\phi(0)$ ($\beta = 0$) as before, get

$$F_{ST} \approx \frac{1}{1+\alpha} \approx \frac{1}{8\pi\sigma^2 N\mu} \log L^2$$

Crow and Aoki (1984), numerical studies, F_{ST} proportional to the log of the number of colonies.

5 Times
$$t \ll \tau_L = \frac{L^2 \log L}{2\pi\sigma^2 \nu}$$

If $\frac{4\pi\sigma^2 N\nu}{\log L} \approx \alpha$ and $|x| \approx L^{\beta}$ then

$$\frac{t_{0,x}^L}{(1+\alpha)\tau_L} \stackrel{\mathrm{d}}{\approx} \begin{cases} 0 & \text{prob. } \frac{1-\beta}{1+\alpha} \\ \\ \mathcal{E}(1) & \text{prob. } \frac{\beta+\alpha}{1+\alpha} \end{cases}$$

Change to continuous time version of model (Moran type).

For $0 < \delta \leq 1$ and c > 0 let

$$\Gamma(L, c, \delta) = (L^{\delta} / \log L, c\delta L^{\delta} \log L)$$

Theorem (C. Durrett, Zähle) Assume

 $2N\nu\pi\sigma^2/\log L \to \alpha \in [0,\infty)$ as $L \to \infty$. For any fixed $\beta_0 > 0$, uniformly in $\beta_0 \le \beta \le \gamma \le 1$ and $|x| \in \Gamma(L,c,\beta)$,

$$P\left(t_{0x}^{L} > \frac{L^{2\gamma}}{2\nu}\right) \to \frac{\beta + \alpha}{\gamma + \alpha}$$

as $L \to \infty$.

6 s > 2 lineages

$$h_L = (1+\alpha)\tau_L = (1+\alpha)L^2 \log L/(2\pi\sigma^2\nu)$$
$$\mathcal{G}(L,n,1) = \left\{ A = \{x_1, \dots, x_s\} : \\ \forall i, x_i \in \Lambda(L), \, \forall i \neq j, |x_i - x_j| \ge \frac{L}{\log L} \right\}.$$

Theorem (C. Durrett, Zähle) Assume $2N\nu\pi\sigma^2/\log L \rightarrow \alpha \in [0,\infty)$ as $L \rightarrow \infty$. Uniformly in $t \ge 0, A \in \mathcal{G}(L,s,1)$,

$$|P(|\zeta_{h_L t}^A| = k) - P(D_t^s = k)| \to 0.$$

$$\mathcal{G}(L, n, c, \delta) = \Big\{ A = \{ x_1, \dots x_n \} :$$

$$\forall i, x_i \in \Lambda(L), \ \forall i \neq j, |x_i - x_j| \in \Gamma(L, c, \delta) \Big\}.$$

Theorem (C. Durrett, Zähle) Assume

 $2N\nu\pi\sigma^2/\log L \to \alpha \in [0,\infty)$ as $L \to \infty$. Uniformly in $\beta_0 \leq \beta \leq \gamma \leq 1$ and $A \in \mathcal{G}(L, s, c, \beta)$,

$$P\left(\left|\zeta_{\frac{L^{2\gamma}}{2\nu}}^{A}\right| = k\right) - P\left(D_{\log\frac{\gamma+\alpha}{\beta+\alpha}}^{s} = k\right) \to 0$$

Uniformly for $t \geq 0$ and $A \in \mathcal{G}(L, s, c, \beta)$,

$$\Pr\left(|\zeta_{\frac{L^2}{2\nu}+h_L t}^A|=k\right) - P\left(D_{\log\frac{1+\alpha}{\beta+\alpha}+t}^s=k\right) \to 0.$$