Asymptotic Theory of the Planar Stepping Stone Model

Ted Cox
BIRS, August 2004

Contents

1 Discrete Time Stepping Stone Model
 2

2 The Single Colony Case 6
$3 \mathcal{S}=$ the torus $\Lambda(L)$ in \mathbb{Z}^{d} 8
4 Migration rate vs. system size 9

5 Times $t \ll \tau_{L}=\frac{L^{2} \log L}{2 \pi \sigma^{2} \nu}$
$6 s>2$ lineages21

We focus on

- spatially explicit stepping stone model on the torus in \mathbb{Z}^{2}
. coalescing random walks on the torus in \mathbb{Z}^{2}
- effect of spatial structure on some measures of kinship

Based on work with Rick Durrett and Iljana Zähle:
The stepping stone model: new formulas expose old myths (with R. Durrett). Ann. Appl. Probab., 12 (2002), 1348-1377.

The stepping stone model II: Genealogies and the infinite sites model (with R. Durrett and I. Zähle). To appear, Ann. Appl. Probab.

1 Discrete Time Stepping Stone Model

Model for the evolution of gene frequencies in a population.

Colonies of individuals subject to migration and mutation.

- Time discrete, $n=0,1, \ldots$
- Colonies located at sites $x \in \mathcal{S}$
. Colony size N (diploid), $2 N$ (haploid case)
- Types mutations produce new types
- Mutation probability $\mu>0$
- Migration probability $\quad \nu \in(0,1]$
- Migration kernel $q(x, y), x, y \in \mathcal{S}, q(x, x)=0$

Formation of generation $n+1$ at colony C_{x}

Each individual, independently:

- prob. μ : assumes a new type
- prob. $1-\mu$: assumes type of individual chosen at random from colony C_{y} with probability

$$
p(x, y)=(1-\nu) I(x, y)+\nu q(x, y)
$$

Note

. Wright-Fisher type model

- keep kernel $q(x, y)$ fixed, allow other parameters to vary

Duality

We can trace lineages of individuals backward in time, following paths of coalescing random walks.

Two lineages

W_{n}^{1}, W_{n}^{2} : independent walks on \mathcal{S}, kernel $p(x, y)$. U_{n}^{1}, U_{n}^{2} : independent, uniformly distributed on $\{1,2, \ldots, 2 N\}$.
Note. In k steps of W_{n}^{1}, about νk are steps to different colonies.

Hitting Times

Starting with walks at 0 and x ,
$T_{0 x}=$ time required for two lineages to reside in the same colony

$$
=\inf \left\{n: W_{n}^{1}=W_{n}^{2}\right\}
$$

$t_{0 x}=$ time required for two lineages to coalesce

$$
=\inf \left\{n:\left(W_{n}^{1}, U_{n}^{1}\right)=\left(W_{n}^{2}, U_{n}^{2}\right)\right\}
$$

Given the distribution of $t_{0 x}$, we can compute
$h=$ probability of identity by descent for two (different) individuals picked at random from entire population

$$
=E(1-\mu)^{2 t_{0}}
$$

$\phi(x)=$ probability of identity by descent for two (different) individuals picked at random from colonies C_{0} and C_{x}

$$
=E(1-\mu)^{2 t_{0 x}}
$$

$F_{S T}=$ Wright's statistic

$$
=\frac{\phi(0)-h}{1-h} \quad \text { (following Nei (1975) }
$$

2 The Single Colony Case

One colony, migration parameter $\nu=0$
t_{0} is geometric,

$$
P\left(t_{0}=k\right)=\left(\frac{1}{2 N}\right)\left(1-\frac{1}{2 N}\right)^{k-1}, \quad k=1,2, \ldots
$$

For large $N, \quad \frac{t_{0}}{2 N} \stackrel{\mathrm{~d}}{\approx} \mathcal{E}(1)$

Calculation of h

$$
\begin{aligned}
h & =E(1-2 \mu)^{2 t_{0}} \\
& =E\left((1-2 \mu)^{2 N}\right)^{t_{0} / 2 N} \\
& \approx E\left(e^{-4 N \mu \mathcal{E}(1)}\right) \\
& =\frac{1}{1+4 N \mu}
\end{aligned}
$$

Consider s distinct lineages (coalescing rw's).
$\zeta_{n}^{s}=$ number of remaining lineages at time n
For large N, can show

$$
\left.\zeta_{[2 N t]}^{s}\right) \stackrel{\mathrm{d}}{\approx} D_{t}^{s}, \quad t>0
$$

where $D_{t}^{s}, t \geq 0$ on $\{1,2, \ldots, s\}$ is the pure death process, with

$$
k \rightarrow 1 \text { at rate }\binom{k}{2}
$$

Can also keep track (on time scale $2 N$) of which of the s random walks have coalesced, leading to Kingman's coalescent.

Consistent with previous $s=2$ case?

$$
\zeta_{[2 N t]}=2 \quad \Longleftrightarrow \quad t_{0}>[2 N t]
$$

and

$$
P\left(D_{t}^{2}=2\right)=P(\mathcal{E}(1)>t)=e^{-t}
$$

$3 \mathcal{S}=$ the torus $\Lambda(L)$ in \mathbb{Z}^{d}
$\Lambda(L)=(-L / 2, L]^{2} \cap \mathbb{Z}^{2}$ (wrap around)
Dynamics: each individual, independently:

- prob. μ : assumes a new type
- prob. $1-\mu$: assumes type of individual chosen at random from colony C_{y} with prob.

$$
p^{L}(x, y)=(1-\nu) I(x, y)+\nu q^{L}(x, y)
$$

where

$$
q^{L}(x, y)=\sum_{z \in \mathbb{Z}^{2}} q(x, y+L z)
$$

Assumptions: $q(x, y)=q(y, x)=q(0, y-x)$, finite range, covariance matrix $\sigma^{2} I$

Other models: island model, circular, ...
Seek distributions of

$$
t_{0 x}^{L} \quad \text { and } \quad \zeta_{n}^{s}
$$

as $L \rightarrow \infty$, and possibly $N \rightarrow \infty, \nu \rightarrow 0$

4 Migration rate vs. system size

We consider the following "regimes"
Migration rate vs. system size

$$
\begin{aligned}
& N \nu \gg \log L \\
& N \nu \approx \log L \\
& N \nu \ll \log L
\end{aligned}
$$

Why? Let \tilde{t}_{00}^{L} be coalescent time for two walks starting in same colony. Then

$$
t_{0 x}^{L} \stackrel{\mathrm{~d}}{=} T_{0 x}^{L}+\tilde{t}_{00}^{L}
$$

and we will see that

$$
\tilde{t}_{00}^{L} \approx 2 N L^{2}
$$

and if $|x| \approx L$ then

$$
T_{0 x}^{L} \approx \frac{L^{2} \log L}{\nu}
$$

Previous work: $2 N=1, \nu=1$, nearest-neighbor kernel

Migration rate vs. system size

$$
\begin{array}{lc}
T_{0 x}^{L} \ll \tilde{t}_{00}^{L} & \frac{N \nu}{\log L} \rightarrow \infty \\
T_{0 x}^{L} \asymp \tilde{t}_{00}^{L} & \frac{4 \pi \sigma^{2} N \nu}{\log L} \rightarrow \alpha \in(0, \infty) \\
T_{0 x}^{L} \gg \tilde{t}_{00}^{L} & \frac{N \nu}{\log L} \rightarrow 0
\end{array}
$$

Behavior of t_{00}^{L} : high migration rate

Theorem (C., Durrett) Assume $\frac{N \nu}{\log L} \rightarrow \infty$ as $L \rightarrow \infty$. Then for any $t>0$,

$$
\sup _{x \in \Lambda_{L}}\left|P\left(\frac{t_{0, x}^{L}}{2 N L^{2}}>t\right)-e^{-t}\right| \rightarrow 0
$$

That is, uniformly in $x \in \Lambda(L)$, for large L,

$$
\frac{t_{0, x}^{L}}{2 N L^{2}} \stackrel{\mathrm{~d}}{\approx} \mathcal{E}(1)
$$

We use
Theorem (Strobeck (1987))

$$
E\left(t_{00}^{L}\right)=2 N L^{2}(=\text { population size })
$$

Spatial scales

$x_{1}, x_{2}, \ldots, x_{s} \in \Lambda(L)$

For $i \neq j$,

$$
\begin{aligned}
& \quad\left|x_{i}-x_{j}\right| \approx L^{\beta}, \quad 0 \leq \beta \leq 1 \\
& \beta=1 \Longleftrightarrow \text { uniformly spread out on torus }
\end{aligned}
$$

Behavior of $T_{0 x}^{L}$

Theorem (C., Durrett) Suppose $x=x_{L}$ satisfies

$$
\frac{\log ^{+}|x|}{\log L} \rightarrow \beta \in[0,1] \quad \text { as } L \rightarrow \infty
$$

For all $t>0$, uniformly for $\nu \in(0,1]$,

$$
P\left(\frac{T_{0 x}^{L}}{\left(\frac{L^{2} \log L}{2 \pi \sigma^{2} \nu}\right)}>t\right) \rightarrow \beta e^{-t}
$$

That is, if $|x| \approx L^{\beta}$ and $\tau_{L}=\frac{L^{2} \log L}{2 \pi \sigma^{2} \nu}$ then

$$
\frac{t_{0, x}^{L}}{\tau_{L}} \stackrel{\mathrm{~d}}{\approx} \begin{cases}0 & \text { prob. } 1-\beta \\ \mathcal{E}(1) & \text { prob. } \beta\end{cases}
$$

Low migration rate: $N \nu=O(\log L)$

Theorem (C., Durrett) Assume $\frac{4 \pi \sigma^{2} N \nu}{\log L} \rightarrow \alpha \in[0, \infty)$
and $x=x_{L}$ satisfies $\frac{\log ^{+}|x|}{\log L} \rightarrow \beta \in[0,1]$ as $L \rightarrow \infty$.
Then for any $t>0$,

$$
P\left(\frac{t_{0, x}^{L}}{\tau_{L}}>(1+\alpha) t\right) \rightarrow\left(\beta+(1-\beta) \frac{\alpha}{1+\alpha}\right) e^{-t}
$$

That is, if $\frac{4 \pi \sigma^{2} N \nu}{\log L} \approx \alpha$ and $|x| \approx L^{\beta}$ then

$$
\frac{t_{0, x}^{L}}{(1+\alpha) \tau_{L}} \stackrel{\mathrm{~d}}{\approx} \begin{cases}0 & \text { prob. } \frac{1-\beta}{1+\alpha} \\ \mathcal{E}(1) & \text { prob. } \frac{\beta+\alpha}{1+\alpha}\end{cases}
$$

$\tau_{L}=\frac{L^{2} \log L}{2 \pi \sigma^{2} \nu}$

Example. Approximation of $\phi(x)$ using

$$
\frac{t_{0, x}^{L}}{(1+\alpha) \tau_{L}} \stackrel{\mathrm{~d}}{\approx} \begin{cases}0 & \text { prob. } \frac{1-\beta}{1+\alpha} \\ \mathcal{E}(1) & \text { prob. } \frac{\beta+\alpha}{1+\alpha}\end{cases}
$$

where $\frac{4 \pi \sigma^{2} N \nu}{\log L} \approx \alpha$ and $|x| \approx L^{\beta}$

$$
\begin{aligned}
\phi(x) & =E\left((1-\mu)^{2 t_{0 x}^{L}}\right) \\
& =E\left(\left((1-\mu)^{2(1+\alpha) \tau_{L}}\right)^{t_{0 x}^{L} /(1+\alpha) \tau_{L}}\right) \\
& \approx \frac{1-\beta}{1+\alpha}+\frac{\beta+\alpha}{1+\alpha} E\left(\left((1-\mu)^{2(1+\alpha) \tau_{L}}\right)^{\mathcal{E}(1)}\right) \\
& =\frac{1-\beta}{1+\alpha}+\frac{\beta+\alpha}{1+\alpha} \frac{1}{2(1+\alpha) \mu \tau_{L}}
\end{aligned}
$$

Some special cases.

1. $\quad N \nu \ll \log L$ and $|x| \approx L(\alpha=0$ and $\beta=1)$

$$
h=\phi(x) \approx \frac{1}{1+2 \mu \tau_{L}}=\frac{1}{1+4 N_{e} \mu}
$$

where

$$
N_{e}=\frac{\tau_{L}}{2}=\frac{L^{2} \log L}{4 \pi \sigma^{2} \nu}
$$

For $N=20, L=50, \nu=0.1(N \nu=2), q(x, y)$ uniform on $[-2,2]^{2} \backslash(0,0), \sigma^{2}=50 / 24$,
$N_{e}=3736 \ll N L^{2}=50,000$.

Compare with the island model: there are k colonies,

$$
\begin{gathered}
p(x, y)= \begin{cases}1-\nu & x=y \\
\nu /(k-1) & x \neq y\end{cases} \\
N_{e}=N k\left(1+\frac{(k-1)^{2}}{4 N \nu k^{2}}\right)>\text { actual population size }
\end{gathered}
$$

2. Correlation with distance $N \nu \ll \log L(\alpha=0)$ and $|x| \approx L^{\beta}$ or $\beta \approx \log |x| / \log L$,

$$
\begin{aligned}
\phi(x) & =E(1-\mu)^{2 t_{0, x}^{L}} \\
& \approx(1-\beta)+\beta \frac{1}{2 \mu \tau_{L}}
\end{aligned}
$$

$$
\begin{aligned}
\phi(0)-\phi(x) & \approx 1-\left((1-\beta)+\frac{\beta}{2 \mu \tau_{L}}\right) \\
& =\beta\left(1-\frac{\beta}{2 \mu \tau_{L}}\right) \\
& \approx \beta 2 \mu \tau_{L}
\end{aligned}
$$

$$
\approx \log |x| \frac{L^{2}}{\pi \sigma^{2} \nu}
$$

3. Wright's statistic $F_{S T}$

$$
\frac{4 \pi \sigma^{2} N \nu}{\log L} \rightarrow \alpha>0
$$

$F_{S T}=\frac{\phi(0)-h}{1-h}$
Approximate $h(\beta=1)$ and $\phi(0)(\beta=0)$ as before, get

$$
F_{S T} \approx \frac{1}{1+\alpha} \approx \frac{1}{8 \pi \sigma^{2} N \mu} \log L^{2}
$$

Crow and Aoki (1984), numerical studies, $F_{S T}$ proportional to the \log of the number of colonies.

5 Times $t \ll \tau_{L}=\frac{L^{2} \log L}{2 \pi \sigma^{2} \nu}$

If $\frac{4 \pi \sigma^{2} N \nu}{\log L} \approx \alpha$ and $|x| \approx L^{\beta}$ then

$$
\frac{t_{0, x}^{L}}{(1+\alpha) \tau_{L}} \stackrel{\mathrm{~d}}{\approx} \begin{cases}0 & \text { prob. } \frac{1-\beta}{1+\alpha} \\ \mathcal{E}(1) & \text { prob. } \frac{\beta+\alpha}{1+\alpha}\end{cases}
$$

Change to continuous time version of model (Moran type).

For $0<\delta \leq 1$ and $c>0$ let

$$
\Gamma(L, c, \delta)=\left(L^{\delta} / \log L, c \delta L^{\delta} \log L\right)
$$

Theorem (C. Durrett, Zähle) Assume

$2 N \nu \pi \sigma^{2} / \log L \rightarrow \alpha \in[0, \infty)$ as $L \rightarrow \infty$. For any fixed $\beta_{0}>0$, uniformly in $\beta_{0} \leq \beta \leq \gamma \leq 1$ and $|x| \in \Gamma(L, c, \beta)$,

$$
P\left(t_{0 x}^{L}>\frac{L^{2 \gamma}}{2 \nu}\right) \rightarrow \frac{\beta+\alpha}{\gamma+\alpha}
$$

as $L \rightarrow \infty$.
$6 \quad s>2$ lineages

$$
\begin{aligned}
& h_{L}=(1+\alpha) \tau_{L}=(1+\alpha) L^{2} \log L /\left(2 \pi \sigma^{2} \nu\right) \\
& \qquad \mathcal{G}(L, n, 1)=\left\{A=\left\{x_{1}, \ldots x_{s}\right\}:\right. \\
& \left.\forall i, x_{i} \in \Lambda(L), \forall i \neq j,\left|x_{i}-x_{j}\right| \geq \frac{L}{\log L}\right\} .
\end{aligned}
$$

Theorem (C. Durrett, Zähle) Assume
$2 N \nu \pi \sigma^{2} / \log L \rightarrow \alpha \in[0, \infty)$ as $L \rightarrow \infty$. Uniformly in $t \geq 0, A \in \mathcal{G}(L, s, 1)$,

$$
\left|P\left(\left|\zeta_{h_{L} t}^{A}\right|=k\right)-P\left(D_{t}^{s}=k\right)\right| \rightarrow 0 .
$$

$$
\begin{aligned}
& \mathcal{G}(L, n, c, \delta)=\left\{A=\left\{x_{1}, \ldots x_{n}\right\}:\right. \\
&\left.\forall i, x_{i} \in \Lambda(L), \forall i \neq j,\left|x_{i}-x_{j}\right| \in \Gamma(L, c, \delta)\right\}
\end{aligned}
$$

Theorem (C. Durrett, Zähle) Assume

$2 N \nu \pi \sigma^{2} / \log L \rightarrow \alpha \in[0, \infty)$ as $L \rightarrow \infty$. Uniformly in $\beta_{0} \leq \beta \leq \gamma \leq 1$ and $A \in \mathcal{G}(L, s, c, \beta)$,

$$
P\left(\left|\zeta_{\frac{L^{2 \gamma}}{2 \nu}}^{A}\right|=k\right)-P\left(D_{\log \frac{\gamma+\alpha}{\beta+\alpha}}^{s}=k\right) \rightarrow 0
$$

Uniformly for $t \geq 0$ and $A \in \mathcal{G}(L, s, c, \beta)$,

$$
\operatorname{Pr}\left(\left|\zeta_{\frac{L^{2}}{2 \nu}+h_{L} t}^{A}\right|=k\right)-P\left(D_{\log \frac{1+\alpha}{\beta+\alpha}+t}^{s}=k\right) \rightarrow 0
$$

