W I A S

 $W\,eierstra \&-Institut\,f\"ur\,Angewandte\,Analysis\,und\,Stochastik$

BIRS workshop

Matthias Birkner work in progress, joint with

Jochen Blath, Marcella Capaldo, Alison Etheridge, Martin Möhle,

Jason Schweinsberg, Anton Wakolbinger

Continuous-mass stable branching and its resampling counterpart

Mohrenstr 39 10117 Berlin birkner@wias-berlin.de www.wias-berlin.de August 9, 2004

individuals have a random number of offspring, independently, according to a fixed probability distribution

> the totality of offspring forms the next generation

⊳da capo ...

WIAS

IAS

WIAS

BIRS workshop

WIAS

Free branching: Galton-Watson forests

Free branching: Galton-Watson forests

Order the individuals (artificially), let

 $\xi_t(n) := \#$ descendants of founders $1, \ldots, n$ alive in generation t.

For fixed *n*, $\xi_t(n)$, t = 0, 1, 2, ... is a Galton-Watson process with $\xi_0(n) = n$.

Free branching & neutral types

Example: there are 2 neutral types, red and blue.

Describes a genealogy:

 $\triangleright {\rm fixed} \ {\rm population} \ {\rm size} \ N$

▷ individuals have a random number of offspring, the offspring numbers (ν_1, \ldots, ν_N) are exchangeable with $\sum_{i=1}^N \nu_i = N$

> the totality of offspring forms the next generation

⊳da capo ...

BIRS workshop

18

WIAS

WIAS

S

BIRS workshop

23

WIAS

BIRS workshop

Fixed population size: Canning's model

Again: order the individuals (artificially), let

 $\eta_t(n) := \#$ descendants of founders $1, \ldots, n$ alive in generation t.

We could again think of neutral types (without mutation), e.g. red and blue.

Relation between

?

First answer Condition a Galton-Watson process to have *constant* population size N, obtain a model from Canning's class.

Easy, but is there more?

In Canning's model, we think of *relative* frequencies of types.

We can do the same in a free branching model by *normalising* with the current total population size (at least before extinction), i.e. considering

$$\widetilde{\xi}_t(n) := \frac{\xi_t(n)}{\xi_t(N)}$$

Relations?

Yes, in a suitable limit of population size $N \to \infty$.

 $Z^{(N)} = (Z_k^{(N)})_{k=0,1,2,...}, N \in \mathbb{N}$ a sequence of Galton-Watson processes (possibly with offspring distributions depending on N),

- $m_N \rightarrow 0$ mass rescaling, $Z_0^{(N)} = [m_N^{-1}]$
- (+ conditions ...).

$$\left(m_N Z_{[Nt]}^{(N)}\right)_{t\geq 0} \Longrightarrow X,$$

where X is a *continuous state branching process*, i.e. an \mathbb{R}_+ -valued Markov process that enjoys the *branching property*:

X, X', X'' independent copies, $X_0 = 0, X'_0 = x', X''_0 = x'', x = x' + x''$ $\implies X \stackrel{\text{law}}{=} X' + X''.$

Example Assume the *N*-th offspring distribution has

$$\triangleright$$
 mean = 1 + $\mu/N + o(1/N)$,

 \triangleright variance = $\sigma^2 + o(1)$

> (and, say, uniformly bounded third moment).

 $Z_0^{(N)} = N, \text{ then } \left(N^{-1} Z_{[Nt]}^{(N)} \right)_{t \ge 0} \Rightarrow \text{Feller's branching diffusion, generator}$ $\mathscr{L}_{(2)} f(z) = \frac{1}{2} \sigma^2 z f''(z) + \mu z f'(z).$ (i.e. $\operatorname{Var}[Z_{t+\Delta t} - Z_t | Z_t] \approx \sigma^2 Z_t \Delta t, \operatorname{E}[Z_{t+\Delta t} - Z_t | Z_t] \approx \mu Z_t \Delta t.$)

BIRS workshop

August 9, 2004

34

W I A S

If the approximating offspring distributions are in the domain of attraction of a stable law of index $\alpha \in (0, 2)$, i.e.

 $\mathbb{P}(\text{more than } n \text{ children}) \sim \text{Const.} \times n^{-\alpha}$

(note: in particular, no variance), the limit process Z will have discontinuous paths. Generator

$$\mathscr{L}_{(\alpha)}f(z) = c_{\alpha}zf'(z) + z \int_{(0,\infty)} \{f(z+h) - f(z) - h\mathbf{1}_{(0,1]}(h)f'(z)\}h^{-1-\alpha}dh.$$

Interpretation:

if the present mass is z, a new litter of mass h is produced at rate $z \times h^{-1-\alpha}$.

Why the name?

> Lamperti's construction connects them with stable Lévy processes:

$$X_t = Y\left(\int_0^t X_s \, ds\right),$$

where Y is a stable process without negative jumps, stopped upon hitting 0. > Scaling properties

Equation for Laplace transforms

Existence of mean: $\alpha > 1 \Rightarrow \mathbf{E}_x X_t < \infty$, $\alpha < 1 \Rightarrow \mathbf{E}_x X_t = \infty$ for all t > 0.

Extinction/Explosion: $\alpha < 1 \Rightarrow X$ has growing paths, explodes in finite time, $\alpha > 1 \Rightarrow X$ becomes extinct in finite time. *Z* a given CSBP. The corresponding *Dawson-Watanabe superprocess*^{*} is a process *X* with values in the measures on [0, 1] such that

for $B \subset [0,1]$: $(X_t(B))_{t \ge 0} \stackrel{\text{law}}{=} Z$, started from $Z_0 = |B|$,

 $X_{\cdot}(B_1), X_{\cdot}(B_2), \ldots, X_{\cdot}(B_n)$ are independent if B_1, \ldots, B_n are disjoint.

Interpretation: $X_t(B)$ = mass of descendants alive at time t whose ancestors where $\in B$

*Note: this is a "toy version".

 $(\Gamma_t)_{t\geq 0}$ with values in the equivalence relations on $\{1, 2, \ldots, \}$, exchangeable. Possible interpretation: $i \sim_{\Gamma_t} j$ iff individuals i and j have a common ancestor at most t time units ago.

For restriction to any $\{1, \ldots, N\}$: If there are presently p classes,

at rate
$$\beta_{p,j}^{\Lambda} = \int_{[0,1]} x^{j-2} (1-x)^{p-j} \Lambda(dx)$$

any given *j*-tuple of classes merges to one ($j \ge 2$). Λ is a finite measure on [0, 1].

Note: $\Lambda = \delta_0$ corresponds to Kingman's coalescent, if $\Lambda((0, 1]) > 0$, there will be *multiple mergers*.

Interpretation of "non-Kingman" part: \mathcal{N} a Poisson point process on $[0, \infty) \times (0, 1]$ with intensity measure $dt \otimes x^{-2} \Lambda(dx)$.

For $(t, x) \in \mathcal{N}$: at time *t* each class throws a coin with success probability *x*. All the successful classes merge to one.

w i a s

 $(\rho_t)_{t\geq 0}$ a Markov process with values in the probability measures on [0, 1]. Interpretation (if ρ_0 = uniform measure): $\rho_t(B)$ = fraction of mass alive at time t whose ancestors at time 0where in $B \subset [0, 1]$.

On test functions of the form $F(\rho) = \int \dots \int \rho(dx_1) \dots \rho(dx_p) f(x_1, \dots, x_p)$, the generator acts as

$$\mathscr{L}_{FV,\Lambda}F(\rho) = \sum_{\substack{J \subset \{1,\dots,p\},\\|J| \ge 2}} \int \dots \int \rho(dx_1) \dots \rho(dx_p) \beta_{p,|J|}^{\Lambda} \left(f(a_1^J,\dots,a_p^J) - f(a_1,\dots,a_p) \right).$$

$$\uparrow$$

$$a_i^J = a_{\min J} \text{ if } i \in J$$

Interpretation: *y*-jumps come with intensity $y^{-2}\Lambda(dy)$. At the instant of a *y*-jump, an individual *X* is chosen according to the current ρ , and

$$\rho \to y \delta_X + (1-y)\rho.$$

Note: alternative form of generator $\mathscr{L}_{FV,\lambda}G(\rho) = \int y^{-2}\Lambda(dy) \int \rho(dx) \left(G(y\delta_x + (1-y)\rho) - G(\rho) \right)$

For a partition γ of $\{1, \ldots, p\}$ with $|\gamma|$ classes and a probability measure ρ on [0, 1] consider test functions of the type

$$\Phi_{f}(\gamma, \rho) := \int \rho(dx_{1}) \dots \rho(dx_{|\gamma|}) f\left(\vec{y}(\gamma; x_{1}, \dots, x_{|\gamma|})\right)$$

$$\uparrow$$

$$y_{j} = x_{i} \text{ if } j \in i \text{-th class of } \gamma$$

("assign an independent ρ -sample to each class of γ "), where $f : [0,1]^p \to \mathbb{R}$. Then we have with

 $(\Gamma_t^{(p)})$ restriction of Λ -coalescent to $\{1, \ldots, p\}$, (ρ_t) Λ -FV process

$$\mathbb{E}\left[\Phi_f(\Gamma_0^{(p)},\rho_t)\right] = \mathbb{E}\left[\Phi_f(\Gamma_t^{(p)},\rho_0)\right] \quad \text{for all } t \ge 0.$$

Sample interpretation of the duality

BIRS workshop

August 9, 2004

Let X be a finite variance DW process (on [0,1]), i.e. $\alpha = 2$. Then X([0,a)) and X([a,1]) are independent Feller diffusions.

Well known:

$$\left(\frac{X_t([a,1])}{X_t([0,1])}\right)_{t\geq 0} = \left(\frac{X_t([a,1])}{X_t([0,a)) + X_t([a,1])}\right)_{t\geq 0}$$

is a time changed Wright-Fisher diffusion

Main result

Let (X_t) be a stable DW process on [0,1] (with trivial motion) of index $\alpha \in (0,2]$, τ = time of explosion or extinction of X. For $t < \tau$ put

$$R_t(B) := \frac{X_t(B)}{X_t([0,1])}, \quad B \subset [0,1].$$

Consider the additive functional

$$A_t := \int_0^t \frac{1}{(X_s([0,1]))^{\alpha-1}} \, ds, \qquad t < \tau$$

with inverse $\varphi(s) := A^{-1}(s)$.

Theorem The time changed normalised process

$$\tilde{R}_s := R_{\varphi(s)}, \quad 0 \le s \le A_{\tau-1}$$

is a generalised Fleming-Viot process, dual to the $Beta(2 - \alpha, \alpha)$ -coalescent.

Note: this yields a "skew product" representation for the DW process:

$$X_t(\cdot) = X_t([0,1])R_t(\cdot),$$

where the second component is a time-changed generalised FV process.

The time changed normalised process $\tilde{R}_s := R_{\varphi(s)}$ is dual to the $Beta(2 - \alpha, \alpha)$ -coalescent.

Remarks

- There is no such skew product representation for general, non-stable DW processes.
- ▷ (Neutral) types & mutation: pass from [0,1] to $[0,1] \times E$, where *E* is the *type space*, mutation would correspond to a Markov motion on *E* for the "individual masses".
- $\triangleright {\rm The\ case\ } \alpha = 2$ is Perkin's disintegration theorem.
- > The case $\alpha = 1$ corresponds to the well known relation between Neveu's branching process and the Bolthausen-Sznitman coalescent (Bertoin & Le Gall, 2000). Note that there is no time-change in this case.
- > The result suggests a relation between $R_{k,n}^*$, the genealogy connecting a k-sample from generation n in a Galton-Watson process where the individual offspring distribution has tails $\sim x^{-\alpha}$, and that generated by the $Beta(2-\alpha, \alpha)$ -coalescent.

For a finite measure μ on [0,1] ($\mu \neq 0$) denote $\rho := \mu/\mu([0,1])$. For test functions of the form

$$F(\mu) = G(\rho) = \int \rho(dx_1) \dots \int \rho(dx_p) \prod_{i=1}^p \mathbf{1}_{(a_i, b_i]}(x_i)$$

one checks that the generator of the $\alpha\mbox{-stable DW}$ process acts as

The "modified look down" point of view (Donnelly & Kurtz, 1999)

 (Z_t) a stable CSBP, $\alpha < 2$. At the jump times of Z, each level throws a coin with success probability $\Delta Z_t/(\Delta Z_t + Z_{t-})$. All "successful" levels participate in this look down event, and look down to the smallest successful level.

The "modified look down" point of view (Donnelly & Kurtz, 1999)

This is a clever (alternative) way of embedding a genealogy into a CSBP. Moreover, run "backwards" and appropriately time-changed, it yields a $Beta(2 - \alpha, \alpha)$ -coalescent.

- Free branching and resampling models can generate similar (neutral) genealogies.
- >When will one see multiple mergers in a genealogy?
 - -Under a selective sweep,
 - -a bottleneck,
 - -in a neutral, not exogenously controlled scenario?
- >Result suggests $Beta(2 \alpha, \alpha)$ -coalescents as an interesting subclass of all Λ -coalescents.