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1 An emerging field
Many geometric objects arising naturally in science and technology possess two desirable properties. They
are convex and semialgebraic. Convex sets have the property that one can move between any two of its points
along a straight line without leaving the set. Semialgebraic sets can be described by combining polynomial
inequalities by simple logical operations. The areas of mathematics primarily investigating these objects are
Convex Analysis and Real Algebraic Geometry, respectively. Algorithmically, the property of being convex
and a semialgebraic description of a set can both be exploited each on its own. However, at the moment, these
methods are totally different and disjoint with huge limitations.

Convexity can lead to very fast numerical algorithms for navigating a geometric object. However, for
these algorithms to work, one needs additional structure such as an easily computable self-concordant barrier
function on the interior of the set [17]. For semialgebraic sets, very general symbolic algorithms are known
to investigate and handle them [4]. However, these algorithms are often not efficient enough for practical
purposes.

In spite of their ubiquity, the investigation of the special features of convex semialgebraic sets have been
neglected for a long time. Only in recent years have new results and methods come up that have resulted in
these geometric objects receiving attention from a wide range of areas including Classical Algebraic Geom-
etry, Complexity Theory, Control Theory, Convex Geometry, Functional Analysis, Optimization Theory and
Real Algebraic Geometry [22, 13, 15, 24, 1, 27]. Starting less than a decade ago, there have been more and
more meetings where people from some of these areas have come together, with convex semialgebraic sets
serving as a central tool of common interest.

The motivation behind organizing this meeting was the realization that it is now time for the emergence
of an area of research where convex semialgebraic sets are the central objects of study rather than supporting
tools. We call this area Convex Algebraic Geometry and it is devoted to the systematic study of convex
semialgebraic sets.

2 The objects of study
Our objects of study live most of the the time in an n-dimensional Euclidean space, i.e., a space spanned by
n axes, any two of which are perpendicular. One-dimensional space consists just of one axis, and its convex
subsets are intervals (which also happen to be semialgebraic).

The first non-trivial, but still very special case, is that of two-dimensional space. This is a plane spanned
by two axes which meet in an origin. Figures in this plane can often be nicely visualized by drawing them on
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a sheet of paper. Examples of convex semialgebraic subsets of the plane include single points, line segments,
open and closed discs (more generally, an open disc together with a finite number of connected subsets of its
boundary), the closed or open area circumscribed by a triangle, a trapezoid or an octagon (or more generally,
a convex polygon). It is also possible to round the corners of such shapes. As another example, the set of all
points (x, y) with y ≥ x2 (the area above a parabola) is a convex semialgebraic set, but we cannot replace x2

by exp(x) here since then we no longer have a semialgebraic set.
Though each of our eyes sees only a two-dimensional picture of our environment, we are used to thinking

in three dimensions since three-dimensional space is locally a good model for the space in which we live.
Examples of convex semialgebraic subsets of three-dimensional space include balls, cones, pyramids, cylin-
ders and platonic solids like a tetrahedron, a cube, an octrahedron, a dodecahedron, an icosahedron, the small
rhombicosidodecahedron or the deltoidal hexecontahedron. Idealized pie slices and houses are also convex
and semialgebraic. Again one can round the corners. In reality, an egg is not convex since one can discover
little hills on the eggshell by looking at it under a microscope. Also its surface is unlikely to be semialgebraic
since it is the result of a biological process. But for all practical purposes we can think of an egg as being
convex and semialgebraic. This is also true for the shape of many, but not all, potatoes.

Mathematicians are used to investigating spaces with more than three dimensions. In fact, they carry over
almost all geometric notions at least to arbitrary finite dimension. One of the many reasons for this is that our
brain has a strong capacity to think in geometric terms, and we want to use this capacity to also understand
phenomena which cannot be described by three coordinates only. The most prominent example of this is
to think of time as an additional space coordinate. For example, to analyze an ice hockey game, it might
be sufficient to think of the positions of the players and the puck at any given time as differently colored
points in two dimensional space. Using the third coordinate for time, these positions move along differently
colored curves in three-dimensional space which can be seen as a braid. For a football game, it might be
more appropriate to start already with three dimensions and add time as a fourth dimension.

By means of analogy (passing from three to four dimensions is much like passing from two to three di-
mensions) and formal logic, mathematicians manage to extend their geometric intuition to higher dimensions.
It is a daily routine for them to think geometrically in high-dimensional spaces. For example, the space of
possible states of an engine could consist of many coordinates describing such parameters as the position and
speed of the cylinders as well as temperature and pressure inside them. Thinking of it as a geometric object
helps in understanding how to steer it from one state to another.

Convexity is highly desirable for many purposes [26, 2, 3]. It is one of the most useful features for
navigating a geometric object. The class of semialgebraic sets, on the other hand, is perhaps the most obvi-
ous class of nonlinear geometric objects that should, in principle, be amenable to algorithms. Thus convex
semialgebraic sets in an arbitrary finite-dimensional space are interesting objects of study especially since
techniques which make use of both convexity and the semialgebraic property are ill-developed at present.

3 Spectrahedra and linear matrix inequalities
Symbolic computation with semialgebraic sets is a classical subject. Extensive work has been done on such
problems such as, effective real quantifier elimination, computing the connected components of the set, poly-
nomial system solving, and computing the dimension [4]. In the presence of convexity, it should however be
possible to solve many of these algorithmic issues in a much more effective way.

Traditionally there are also a lot of techniques, mainly in numerical computation (and here in Convex
Optimization [17]) that take advantage of convexity. Perhaps the most prominent example is Linear Pro-
gramming (LP) which is used in a lot of real world applications.

Until recently, there were very few techniques combining the convex and the semialgebraic points of
view. A very interesting new line of research tries to exploit Semidefinite Programming (SDP) for handling
convex semialgebraic sets. SDP is an increasingly well-known generalization of LP which still has nice
theory and for which good software packages exist. Whereas LP is optimization of a linear function on a
polyhedron (i.e., a solution set of a system of linear inequalities), SDP is optimization of a linear function on
a spectrahedron, i.e., a solution set of a linear matrix inequality (LMI). An LMI is an inequality of the form

L(x) � 0 (x ∈ Rn) (1)
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where L is a symmetric linear matrix polynomial, i.e.,

L = A0 + X1A1 + · · ·+ XnAn

where each Ai is a symmetric s × s-matrix, the Xi are variables and � 0 means positive semidefinite (i.e.,
all eigenvalues are nonnegative). When one restricts the Ai to be diagonal matrices, then (1) is just a linear
system of inequalities. In some vague sense, spectrahedra and SDP generalize polyhedra and LP in much
of the same way that symmetric matrices generalize diagonal matrices. Because symmetric matrices can be
diagonalized, much of the theory of LP (such as interior point methods, see [17]) goes through for SDP. On
the other hand, SDP is much more expressive than LP as can be seen in Figure 1.

Figure 1: A spectrahedron defined by the linear matrix inequality I + xA + yB + zC � 0 (x, y, z ∈ R3)
with 10×10 matrices A, B and C whose entries were uniformly and independently chosen among−1, 0 and
1, and its intersection with the plane defined by z = 0.

An LMI is likely to be a good representation of a convex semialgebraic set. It makes convexity an obvious
feature of the set whereas in a semialgebraic description (a logical formula involving polynomial inequalities)
the convexity is usually hidden. One of the current core questions in Convex Algebraic Geometry is which
convex semialgebraic sets are defined by an LMI, i.e., are spectrahedra, see Section 4. Another extremely
important question is what can be modeled by SDP using slack variables, i.e., which sets are projections (or
equivalently, linear images) of spectrahedra, see Section 5.

4 Rigidly convex sets and real zero polynomials
For trivial reasons not every convex semialgebraic set is a spectrahedron. An important question is what
makes a convex semialgebraic set a spectrahedron? For example spectrahedra are always closed. It is also
known that spectrahedra share other special properties with polyhedra (e.g., they are basic closed and all their
faces are exposed). All properties of spectrahedra known at the moment are subsumed by a crucial notion
introduced by Helton and Vinnikov called rigid convexity [11]. To explain this notion, we need to introduce
the notion of real zero (RZ) polynomials.

A polynomial p is a real zero polynomial at a ∈ Rn (is RZ at a, for short) if p(a) > 0 and all complex
zeros of the univariate polynomial obtained by restricting p to a straight line passing through a are real. In
other words, a polynomial of degree d is RZ at a point a if it has d real zeros counted with multiplicity on
each generic line through a. It can be shown that a polynomial that is RZ at a is also RZ at any point in a
small neighborhood of a. We refer to this by saying that the RZ property spreads out.

A subset C ⊆ Rn is called rigidly convex if there is a point a ∈ Rn and a polynomial p with the real zero
property at a such that C equals the closure of the connected component of {x ∈ Rn | p(x) > 0} at a. Note
that being convex is not part of the definition of “rigidly convex”. However, it can be shown in an elementary
way that each rigidly convex set is indeed convex (cf. [25]).
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Each spectrahedron is rigidly convex inside its affine hull (i.e., identifying its affine hull with Rd where
d is the dimension of the spectrahedron). To see this, we suppose that we are given a full-dimensional
spectrahedron in Rn. Then it can be seen easily that it can be written as {x ∈ Rn | L(x) � 0} for a
symmetric linear matrix polynomial L having the additional property that there is a ∈ Rn with L(a) � 0.
Here � 0 stand for positive definite, i.e., all eigenvalues are (strictly) positive. Now the determinant of L is
easily seen to be RZ at a (essentially because symmetric matrices have all its eigenvalues real) and the given
spectrahedron is the closure of the connected component at a of the positivity set of this determinant.

Rigidly convex sets share all of the currently known properties of spectrahedra [25, 20]. In particular, they
are semialgebraic sets which are basic closed, i.e., can be described by a finite system of weak polynomial
inequalities (by means of the so-called Renegar derivatives which were the subject of many discussions
during the workshop). Also they are convex sets all of whose faces are exposed. Rigid convexity is the
strongest property of spectrahedra known so far. If one wants to show that some basic closed semialgebraic
set with exposed faces is not a spectrahedron, then at the current state of the art, the thing to do, is to show
that it is not rigidly convex.

To this end, it is useful to introduce another slight reformulation of rigid convexity based on the notions of
algebraic interiors and their minimal polynomials, going back to Helton and Vinnikov as well. An algebraic
interior in Rn is the closure of a connected component of the positivity set {x ∈ Rn | p(x) > 0} of a
polynomial p (note that it is always closed, and despite the word “interior”, never open except if it is the
whole space). By definition, rigidly convex sets (and in particular spectrahedra) are algebraic interiors. Such
a polynomial p of smallest possible degree is uniquely defined up to a positive constant factor and we call it
the minimal polynomial of this algebraic interior. A crucial observation is that the minimal polynomial is a
factor of every other such polynomial p.

It follows that an algebraic interior is rigidly convex if and only if its minimal polynomial is a real zero
polynomial at some of its interior points, or equivalently at any of its interior points (since the RZ property
spreads out as mentioned above). For example, the television screen like set {(x1, x2) ∈ R2 | x4

1 + x4
2 ≤ 1}

is an algebraic interior with minimal polynomial 1 − X4
1 − X4

2 . This polynomial is not RZ at the origin.
Hence the television screen is a convex basic closed semialgebraic set with only exposed faces which is not
rigidly convex and therefore not a spectrahedron. On the other hand, the disc {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1}

is an algebraic interior whose minimal polynomial 1 − X2
1 − X2

2 is RZ at the origin. Therefore the disc is
rigidly convex. In fact, it is even a spectrahedron since

{(x1, x2) ∈ R2 | x2
1 + x2

2 ≤ 1} =

(x1, x2) ∈ R2 |

 1 x1 x2

x1 1 0
x2 0 1

 � 0

 .

Starting from spectrahedra which are intrinsically real objects, we defined rigidly convex sets and see now
that the Zariski closure of their boundaries, seen as a complex algebraic varieties are important. This is only
one of the many points where classical complex algebraic geometry comes into play. To visualize this thread
of thinking, we ask the reader to look again at Figure 1 above and then compare it with the derived Figures
2, 3 and 4 below. Topologically, what you see is a set of nested ovals (which might touch), the innermost of
them being the boundary of the convex set we started with.

Helton and Vinnikov showed in their seminal article [11] that each rigidly convex set of dimension at
most two is a spectrahedron. As a quite trivial example, we remark that this is a way of seeing that the
disc mentioned above is a spectrahedron without explicitly writing down an LMI defining it. Their result
relies on the theory of determinantal representations. In fact, they even showed that each RZ polynomial,
say RZ at the origin, in two variables has a positive determinantal representation, i.e. is the determinant
of a linear symmetric matrix polynomial L = A0 + X1A1 + · · · + XnAn where each Ai is a real matrix
and A0 is positive definite (in our case n = 2). Then the associated rigidly convex set, namely the closure
of the connected component of {x ∈ Rn | p(x) > 0} at the origin, equals {x ∈ Rn | L(x) � 0} and
therefore is a spectrahedron. This result of Helton and Vinnikov on positive determinantal representation of
RZ polynomials in two variables is equivalent to an old conjecture of Peter Lax (who was awarded the Abel
Prize in 2005) originally formulated for homogeneous polynomials in three variables, see [14].

One of the most prominent open problems in Convex Algebraic Geometry, subject to many discussions
at the workshop, is whether the results of Helton and Vinnikov can be extended to more than two variables.
In fact, Helton and Vinnikov conjectured that each rigidly convex set (of any dimension) is a spectrahedron.
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Figure 2: The real zero set of the minimal polynomial of the spectrahedron from Figure 1 intersected with
the cube [−1, 1]3, and its intersection with the plane defined by z = 0.

Figure 3: The real zero set of the minimal polynomial of the spectrahedron from Figure 1 intersected with
the cube [−2, 2]3, and its intersection with the plane defined by z = 0.

This very important conjecture is still open. Furthermore, Helton and Vinnikov even conjectured that each
RZ polynomial (in any number of variables) has a positive determinantal representation though their proof
which uses deep Algebraic Geometry clearly could not be extended to more than two variables. After some
discussion among workshop participants, Petter Brändén (Royal Institute of Technology, Stockholm) was
able to solve this major problem in the negative during the workshop. This gave rise to an extra talk that
Petter Brändén gave on Thursday morning in addition to his regular talk on Wednesday. This special talk
was one of the highlights of the workshop since he even gave an extremely sophisticated argument, based on
matroid theory, that even a weaker conjecture is false, namely that some power of each RZ polynomial has a
positive determinantal representation (which would also imply the characterization of spectrahedra by rigid
convexity). See [5] for these results, the proof for the stronger conjecture has been simplified since by Tim
Netzer [19] who also attended the workshop.
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Figure 4: The real zero set of the minimal polynomial of the spectrahedron from Figure 1 intersected with
[−6, 6]× [−6, 6]× {0} and [−20, 20]× [−20, 20]× {0}, respectively.

However, there remain many open questions concerning the existence of positive determinantal represen-
tations. Some of these would still imply a full characterization of spectrahedra via rigid convexity. Others
would work towards it. For example, it is known that the Renegar derivatives [25, 20] of RZ polynomials are
again RZ at the same point. The real zero set of the Renegar derivative of a polynomial interlaces the real
zero set of the polynomial. More precisely, between any of the two ovals (cf. Figures 2 to 4) and outside of
the outermost oval of the real zero set of the RZ polynomial there is an oval of the Renegar derivative. If you
draw the ovals of a polynomial and of its Renegar derivative, then the two innermost ovals are boundaries
of convex sets, the innermost coming from the polynomial and the second innermost one from its Renegar
derivative. Now define the Renegar derivative of a spectrahedron as the rigidly convex set defined by the
Renegar derivative of its minimal polynomial. Even the following very special case of the conjecture of Hel-
ton and Vinnikov is open: Is the Renegar derivative of a spectrahedron (or at least of a polyhedron) again a
spectrahedron?

Also largely open is the question of how to decide whether positive determinantal representations of RZ
polynomials exist and how to produce them in an effective way. See [8] for a recent related result and for an
overview of what has been done in this direction.

5 Projections of spectrahedra and semidefinite representations
As discussed above, perhaps the most natural class of convex sets going beyond polyhedra that is accessible to
effective manipulation consists of spectrahedra. However, many convex semialgebraic sets one would like to
deal with in an effective way are not spectrahedra. Whereas the projection (or linear image) of a polyhedron
remains a polyhedron, the class of spectrahedra is not closed under projections. As a trivial example, the
open half line R>0 of positive real numbers can be written as

R>0 =
{

x ∈ R | ∃y ∈ R :
(

x 1
1 y

)
� 0
}

but it is not a spectrahedron since it is not closed. During the workshop several propositions were made for
naming projections of spectrahedra, including spectrahedral shadow and umbrahedron (from umbra, the latin
word for shadow). Here we call projections of a spectrahedron semidefinitely representable. A set S ⊆ Rn

obviously is semidefinitely representable if and only if there is a symmetric linear matrix polynomial L in the
original variables X1, . . . , Xn and finitely many additional variables Y1, . . . , Ym such that

S = {x ∈ Rn | ∃y ∈ Rm : L(x, y) � 0}.
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We call such an L a semidefinite representation of S (in the literature it is sometimes also called a “lifted LMI
representation”).

Having a semidefinite representation of a convex semialgebraic set is very advantageous [16]. For in-
stance, it allows you to optimize a linear function on the set via SDP by using the Yi as slack variables.
Also it turns out that more and more operations on semialgebraic convex sets (like the taking the interior for
example) can be done in a very efficient way by using semidefinite representations, see for instance [19].

Large classes of convex semialgebraic sets are known to be semidefinitely representable [28, 7, 6, 23, 29].
In their seminal articles [9, 10], Helton and Nie conjecture that each convex semialgebraic set is semidefinitely
representable. Note that the converse is clear since the properties of being convex and of being semialgebraic
are preserved under projections (for trivial reasons and because of Tarski’s real quantifier elimination, respec-
tively). The conjecture of Helton and Nie is still open and is certainly one of the main questions in Convex
Algebraic Geometry. More and more results seem to work in its favor.

First, there are results showing that a lot of basic closed semialgebraic sets are semidefinitely repre-
sentable. The basic method for obtaining these results go back to Lasserre [12] and links semidefinitely
representable sets to sums of squares representations of positive polynomials. The main idea is as follows.
Start with a finite system of weak polynomial inequalities. The idea is to linearize it. Very naively, one could
try to replace each monomial which is a product of at least two variables by a new variable Yi. One would
end up with a finite system of linear inequalities. The projection of its solution set on the X-space would
clearly contain the solution set of the original system of inequalities. On the other hand this projection would
be a polyhedron and therefore in general cannot be equal to the original solution set and not even to its convex
hull. Lasserre’s idea was to generate a whole infinite family of inequalities which are obviously redundant
before the linearization but add valuable information after linearization. The infinite family is chosen in a
way such that it becomes an LMI after linearization. As an example, the inequality−X4

1 +2X2−X +1 ≥ 0
could give rise to the family of additional redundant inequalities (aX1+bX2+c)2(−X4

1 +2X2−X+1) ≥ 0
where a, b, c ∈ R are parameters. This family can now be rewritten as

(
a b c

)( 1−X1−X4
1+2X2

2 X1−X2
1−X5

1+2X1X2
2 X2−X1X2−X4

1X2+2X3
2

X1−X2
1−X5

1+2X1X2
2 X2

1−X3
1−X6

1+2X2
1X2

2 X1X2−X2
1X2−X5

1X2+2X1X3
2

X2−X1X2−X4
1X2+2X3

2 X1X2−X2
1X2−X5

1X2+2X1X3
2 X2

2−X1X2
2−X4

1X2
2+2X4

2

)a
b
c

 =

(−X4
1 + 2X2

2 −X1 + 1)
(
a b c

) 1
X1

X2

(1 X1 X2

)a
b
c

 ≥ 0

where a, b, c ∈ R. After linearization this becomes the LMI 1−X1 − Y1 + 2Y2 X1 − Y3 − Y4 + 2Y5 X2 − Y6 − Y7 + 2Y8

X1 − Y3 − Y4 + 2Y5 Y3 − Y9 − Y10 + 2Y11 Y6 − Y12 − Y13 + 2Y14

X2 − Y6 − Y7 + 2Y8 Y6 − Y12 − Y13 + 2Y14 Y2 − Y5 − Y15 + 2Y16

 � 0.

Now in this example the set of all (x1, x2) ∈ R2 such that there are y1, . . . , y16 ∈ R satisfying this inequality
clearly is all of R2 since it contains the solution set of the original solution set of the original inequality
−X4

1 + 2X2 −X + 1 ≥ 0 whose convex hull is R2.
Lasserre showed that using a procedure that systematizes this approach leads to LMI relaxations whose

solution sets give arbitrarily good approximations to the convex hull of the solution set of the original system
of polynomial inequalities in the case that the latter is compact. This uses machinery from Real Algebraic
Geometry.

Using much more machinery, Helton and Nie showed that in a lot of cases you get under the same
compactness assumption that a sufficiently high relaxation gives exactly the convex hull. See [9, 10] for their
celebrated results. Some of their results use just Lasserre’s construction together with an ingenious proof
bounding the degree of certain sums of squares representations. Their strongest results, which make very
few assumptions apart from compactness, use the Lasserre construction locally and glue together the “local”
LMIs. This glueing approach is not completely constructive yet.

Netzer and others (see [19]) gave several constructions of how to obtain new semdefinitely representable
sets from old ones. These constructions are explicit and can easily be implemented.
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Using all these results, one can show that surprisingly many convex semialgebraic sets are semidefinitely
representable. For example, the television screen from Section 4 has a semidefinite representation

{(x1, x2) ∈ R2 | x4
1+x4

2 ≤ 1} = {(x1, x2) ∈ R2 | ∃y1, y2 ∈ R : 1− y2
1 − y2

2 ≥ 0 & y1 ≥ x2
1 & y2 ≥ x2

2}
=
{
(x1, x2) ∈ R2 | ∃y1, y2 ∈ R :

( 1+y1 y2
y2 1−y1

)
� 0 &

( y1 x1
x1 1

)
� 0 &

( y2 x2
x2 1

)
� 0
}

.

Are all semialgebraic convex sets semidefinitely representable? Before one tries to show this, one might try to
work out more examples. For example, the cone of copositive matrices of fixed size is clearly a semialgebraic
convex set in the vector space of symmetric matrices. Except for small sizes, it seems to be a hard problem
to find a semidefinite representation for it [18].

6 Talks
During this workshop, stimulated by discussions among the workshop participants after his talk, Petter
Brändén (Royal Institute of Technology, Stockholm) found sophisticated counterexamples [5] to one of the
most outstanding generalizations of the famous Lax Conjecture (proved by Helton and Vinnikov in [11], see
[14]) on hyperbolic polynomials. This affects in a direct way one of the mainstreams in current research
on semidefinite representability (see Section 4 above). His “bränd-new” result was presented in his sponta-
neously given second talk. See [5], cf. also [21].

In his video-taped talk, Victor Vinnikov made very accessible the basic ideas behind constructing LMI
representations of spectrahedra. He also referred to Petter Brändén’s counterexample (presented in a sponta-
neous special talk the same morning) and showed that there is some hope for other generalizations of the Lax
conjecture to hold (still having the desired consequences). Here is a complete list of talks.

1. Basu, Saugata Toda’s theorem – real and complex (joint work with Thierry Zell)
2. Blekherman, Greg Convex forms and faces of the cone of sums of squares
3. Brändén, Petter Tropicalization of hyperbolic polynomials
4. Brändén, Petter A counterexample to the generalized Lax conjecture
5. Derksen, Harm (Poly)Matroid Polytopes
6. Hauenstein, Jonathan Numerical algebraic geometry
7. Henk, Martin Representing Polyhedra by Few Polynomials
8. Kaltofen, Erich Certifying the radius of positive semidefiniteness via our ArtinProver package

(joint work with Sharon Hutton and Lihong Zhi)
9. Labs, Oliver Towards visualization tools for convex algebraic geometry

10. Laurent, Monique Error and degree bounds for positivity certificates on the hypercube
11. Marshall, Murray Lower bounds for a polynomial in terms of its coefficients
12. Netzer, Tim Spectrahedra and their projections
13. Parrilo, Pablo Nuclear norm minimization
14. Plaumann, Daniel Exposed faces and projections of spectrahedra
15. Putinar, Mihai Optimization of non-polynomial functions and applications
16. Ranestad, Kristian The convex hull of a space curve
17. Renegar, Jim Optimization over hyperbolicity cones
18. Reznick, Bruce The cones of real convex forms
19. Rostalski, Philipp SDP Relaxations for the Grassmann orbitope
20. Scheiderer, Claus Bounded polynomials and stability of preorderings
21. Smith, Gregory Determinantal equations
22. Sottile, Frank Orbitopes
23. Theobald, Thorsten Amoebas of genus at most 1
24. Vallentin, Frank Approximation algorithms for SDPs with rank constraints
25. Vinnikov, Victor Positive determinantal representations (joint work with Dmitry Kerner)
26. Vinzant, Cynthia Faces of the Barvinok-Novik orbitope
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