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Motivation / This talk

� Most impacts of climate change are expected to occur through extreme events.
e.g., sea level rise,

� How extreme events are / will be affected by climate change?
What events to expect in the future?

� Statistics play a central role.

This talk:

� A review of recent research and statistical challenges in investigating extreme events and climate
change.

� I assume the audience is familiar with stats (e.g., GEV), but not familiar with climate data.
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IPCC assessments on extremes (last 10-yr)
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Which events and the current knowledge

� Temperature (easy): warm↗, cold↘

� Heavy precipitation (quite easy): ↗ (most regions)

� Droughts (quite difficult): depends on def, region, period,
length, . . .

� Floods

� Coastal floods / waves

� Storms: tropical cyclones, extratropical storms

� Convective storms: thunderstorms, convective gusts,
lightning, hail, etc

� Compound events: hot and dry, frost on active vegetation

Approved Version Summary for Policymakers IPCC AR6 WGI 

SPM-23 Total pages: 41 
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Figure SPM.6, IPCC WGI AR6.
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Which events and the current knowledge

� Temperature (easy): warm↗, cold↘

� Heavy precipitation (quite easy): ↗ (most regions)

� Droughts (quite difficult): depends on def, region, period,
length, . . .

� Floods

� Coastal floods / waves

� Storms: tropical cyclones, extratropical storms

� Convective storms: thunderstorms, convective gusts,
lightning, hail, etc

� Compound events: hot and dry, frost on active vegetation
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Figure SPM.6, IPCC WGI AR6.
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Which events and the current knowledge

� Temperature (easy): warm↗, cold↘

� Heavy precipitation (quite easy): ↗ (most regions)

� Droughts (quite difficult): depends on def, region, period,
length, . . .

� Floods

� Coastal floods / waves

� Storms: tropical cyclones, extratropical storms

� Convective storms: thunderstorms, convective gusts,
lightning, hail, etc

� Compound events: hot and dry, frost on active vegetation
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Data

� Observations

Big bunch of literature to describe observed changes
in extreme events

� Models

S57DECEMBER 2015AMERICAN METEOROLOGICAL SOCIETY |

also shows the yearly average and maximum value 
found in this subset. The maximum rainfall amount 
found in the rain gauge set in 2014 is 320 mm day−1. 
This value was exceeded only in 2002 and 1980, with 
total values of 539 mm day−1 and 334 mm day−1 (see 
Fig. 12.1b). The highest seasonal mean of the 14 sta-
tion maxima is observed in 2014 with 156 mm day−1.

Average seasonal maxima have a trend of about 
4% decade−1, with a two-sided significance of p~5% 
using all years, but p has a more robust value of 10% 
when excluding 2014 (see Fig. 12.1c). Individual se-
ries trends, calculated using all available years, vary 
between 0 and 10% decade−1, with median values 
around 4%–5% decade−1, and none of them is nega-
tive. However, only two stations have trends with p 
less than 5% (Fig. 12.2a). To compare all stations over 
a common 50-year period we also calculated trends 
over the period 1965–2014 and found similar, and in 

fact more often larger than smaller positive trends 
than in the full data series (Fig. 12.2a). 

Pooled time-dependent return period analysis. To es-
timate changes in return periods, we pooled all 14 
station years and fitted an extreme value function to 
the resulting dataset that depends on a time-varying 
covariate. We modeled the time series with a Gum-
bel distribution after transforming the precipitation 
with a power 2/3 to compensate the expected power 
3/2 scaling that results from three factors that each 
contribute a scaling 1/2 to extreme precipitation in 
the Gaussian approximation:  the mass flux, specific 
humidity and precipitation efficiency (Wilson and 
Toumi 2005; van den Brink and Können 2011). The 
shape and scale parameters are assumed to vary 
together with the global mean temperature, as a co-
variate to simulate climate change. Uncertainties are 

Fig. 12.1. (a) Mean SON maxima of daily precipitation amounts (mm day−1) as obtained from the SAFRAN 
(Système d’Analyze Fournissant des Renseignements Atmosphériques à la Neige) reanalysis (Quintana-Segui 
et al. 2008), together with the locations of the stations used in the analysis; (b) Individual time series of SON 
seasonal maxima of daily amounts for each selected site, together with the series of average of these maxima. 
(c) Two-sided p values obtained for the trend in the SON maximum averaged over the 14 stations, using a time 
period ranging from 1950 to the value in abscissa.

This content downloaded from 
�������������193.54.110.59 on Fri, 24 Jun 2022 11:42:33 UTC������������� 

All use subject to https://about.jstor.org/terms

Seasonal max precip time-series
From Vautard et al. (2015)

1549

Weather and Climate Extreme Events in a Changing Climate� Chapter 11

11

2020), as well as in numerous regional studies (Table 11.7). The area 
fraction with extreme warmth in Asia increased during 1951–2016 
(Imada et al., 2018). The frequency of warm extremes increased and 
the frequency of cold extremes decreased in East Asia (B. Zhou et al., 
2016; Chen and Zhai, 2017; Yin et al., 2017; W. Lee et al., 2018; Qian 
et al., 2019) and west Asia (Acar Deniz and Gönençgil, 2015; Erlat 
and Türkeş, 2016; Rahimi and Hejabi, 2018; Rahimi et al., 2018) with 
high confidence. The duration of heat extremes has also lengthened 
in some regions, for example, in southern China (Luo and Lau, 
2016), but there is medium confidence of heat extremes increasing 
in frequency in South Asia (AlSarmi and Washington, 2014; Sheikh 
et al., 2015; Mazdiyasni et al., 2017; Zahid et al., 2017; Nasim et al., 
2018; Khan et al., 2019; Sen Roy, 2019). Warming trends in daily 
temperature extremes indices have also been observed in central 
Asia (Hu et al., 2016; Feng et al., 2018), the Hindu Kush Himalaya (Sun 
et al., 2017), and South East Asia (Supari et al., 2017; Cheong et al., 
2018). The intensity and frequency of cold spells in all Asian regions 
have been decreasing since the beginning of the 20th century (high 
confidence) (Sheikh et al., 2015; Donat et al., 2016a; Dong et al., 
2018; van Oldenborgh et al., 2019).

In Australasia (Table 11.10), there is very robust evidence for very 
likely increases in the number of warm days and warm nights and 
decreases in the number of cold days and cold nights since 1950 
(Lewis and King, 2015; Jakob and Walland, 2016; Alexander and 
Arblaster, 2017). The increase in extreme minimum temperatures 
occurs in all seasons over most of Australia and typically exceeds the 
increase in extreme maximum temperatures (X.L. Wang et al., 2013b; 
Jakob and Walland, 2016). However, some parts of Southern Australia 
have shown stable or increased numbers of frost days since the 
1980s (Dittus et al., 2014) (see also Section 11.3.4). Similar positive 
trends in extreme minimum and maximum temperatures have been 
observed in New Zealand, in particular in the autumn and winter 
seasons, although they generally show higher spatial variability 
(Caloiero, 2017). In the tropical Western Pacific region, spatially 
coherent warming trends in maximum and minimum temperature 

extremes have been reported for the period 1951–2011 (Whan et al., 
2014; McGree et al., 2019). 

In Central and South America (Table 11.13), there is high confidence 
that observed hot extremes (TN90p, TX90p) have increased, and 
cold extremes (TN10p, TX10p) have decreased over recent decades, 
though trends vary among different extremes types, datasets, and 
regions (Skansi et al., 2013; Dittus et al., 2016; Rusticucci et al., 2017; 
Meseguer-Ruiz et al., 2018; Salvador and de Brito, 2018; Dereczynski 
et al., 2020; Dunn et al., 2020; Olmo et al., 2020). An increase in 
the intensity and frequency of heatwave events was also observed 
between 1961 and 2014 in an area covering most of South America 
(Ceccherini et al., 2016; Geirinhas et al., 2018). However, there 
is medium confidence that warm extremes (TXx and TX90p) have 
decreased in the last decades over the central region of South-Eastern 
South America (SES) during austral summer (Tencer and Rusticucci, 
2012; Skansi et al., 2013; Rusticucci et al., 2017; Wu and  Polvani, 
2017). There is medium confidence that TNn extremes are warming 
faster than TXx extremes, with the largest warming rates observed 
over North-East Brazil (NEB) and Northern South America (NSA) for 
cold nights (Skansi et al., 2013). 

In Europe (Table  11.16), there is very robust evidence for a  very 
likely increase in maximum temperatures and the frequency of 
heatwaves. The increase in the magnitude and frequency of high 
maximum temperatures has been observed consistently across 
regions, including in central Europe (Twardosz and Kossowska-Cezak, 
2013; Christidis et al., 2015; Lorenz et al., 2019) and southern Europe 
(Croitoru and Piticar, 2013; El Kenawy et al., 2013; Christidis et al., 
2015; Nastos and Kapsomenakis, 2015; Fioravanti et al., 2016; Ruml 
et al., 2017). In Northern Europe, a strong increase in extreme winter 
warming events has been observed (Matthes et al., 2015; Vikhamar-
Schuler et al., 2016). Temperature observations for winter cold spells 
show a  long-term decreasing frequency in Europe (Brunner et al., 
2018; van Oldenborgh et al., 2019), and typical cold spells, such 
as that observed during the 2009–2010 winter, had an occurrence 

Non-significant trends
Significant trendsColour

No data

Figure 11.9 | Linear trends over 1960–2018 for three temperature extreme indices: (a) the annual maximum daily maximum temperature (TXx), (b) the annual 
minimum daily minimum temperature (TNn), and (c) the annual number of days when daily maximum temperature exceeds its 90th percentile from a base period of 1961–1990 
(TX90p); based on the HadEX3 dataset (Dunn et al., 2020). Linear trends are calculated only for grid points with at least 66% of the annual values over the period and which 
extend to at least 2009. Areas without sufficient data are shown in grey. No overlay indicates regions where the trends are significant at the p = 0.1 level. Crosses indicate 
regions where trends are not significant. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).

Figure 11.9, IPCC AR6 WG1 (2021)
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Data

� Observations

Big bunch of literature to describe observed changes
in extreme events

� Models
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also shows the yearly average and maximum value 
found in this subset. The maximum rainfall amount 
found in the rain gauge set in 2014 is 320 mm day−1. 
This value was exceeded only in 2002 and 1980, with 
total values of 539 mm day−1 and 334 mm day−1 (see 
Fig. 12.1b). The highest seasonal mean of the 14 sta-
tion maxima is observed in 2014 with 156 mm day−1.

Average seasonal maxima have a trend of about 
4% decade−1, with a two-sided significance of p~5% 
using all years, but p has a more robust value of 10% 
when excluding 2014 (see Fig. 12.1c). Individual se-
ries trends, calculated using all available years, vary 
between 0 and 10% decade−1, with median values 
around 4%–5% decade−1, and none of them is nega-
tive. However, only two stations have trends with p 
less than 5% (Fig. 12.2a). To compare all stations over 
a common 50-year period we also calculated trends 
over the period 1965–2014 and found similar, and in 

fact more often larger than smaller positive trends 
than in the full data series (Fig. 12.2a). 

Pooled time-dependent return period analysis. To es-
timate changes in return periods, we pooled all 14 
station years and fitted an extreme value function to 
the resulting dataset that depends on a time-varying 
covariate. We modeled the time series with a Gum-
bel distribution after transforming the precipitation 
with a power 2/3 to compensate the expected power 
3/2 scaling that results from three factors that each 
contribute a scaling 1/2 to extreme precipitation in 
the Gaussian approximation:  the mass flux, specific 
humidity and precipitation efficiency (Wilson and 
Toumi 2005; van den Brink and Können 2011). The 
shape and scale parameters are assumed to vary 
together with the global mean temperature, as a co-
variate to simulate climate change. Uncertainties are 

Fig. 12.1. (a) Mean SON maxima of daily precipitation amounts (mm day−1) as obtained from the SAFRAN 
(Système d’Analyze Fournissant des Renseignements Atmosphériques à la Neige) reanalysis (Quintana-Segui 
et al. 2008), together with the locations of the stations used in the analysis; (b) Individual time series of SON 
seasonal maxima of daily amounts for each selected site, together with the series of average of these maxima. 
(c) Two-sided p values obtained for the trend in the SON maximum averaged over the 14 stations, using a time 
period ranging from 1950 to the value in abscissa.
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2020), as well as in numerous regional studies (Table 11.7). The area 
fraction with extreme warmth in Asia increased during 1951–2016 
(Imada et al., 2018). The frequency of warm extremes increased and 
the frequency of cold extremes decreased in East Asia (B. Zhou et al., 
2016; Chen and Zhai, 2017; Yin et al., 2017; W. Lee et al., 2018; Qian 
et al., 2019) and west Asia (Acar Deniz and Gönençgil, 2015; Erlat 
and Türkeş, 2016; Rahimi and Hejabi, 2018; Rahimi et al., 2018) with 
high confidence. The duration of heat extremes has also lengthened 
in some regions, for example, in southern China (Luo and Lau, 
2016), but there is medium confidence of heat extremes increasing 
in frequency in South Asia (AlSarmi and Washington, 2014; Sheikh 
et al., 2015; Mazdiyasni et al., 2017; Zahid et al., 2017; Nasim et al., 
2018; Khan et al., 2019; Sen Roy, 2019). Warming trends in daily 
temperature extremes indices have also been observed in central 
Asia (Hu et al., 2016; Feng et al., 2018), the Hindu Kush Himalaya (Sun 
et al., 2017), and South East Asia (Supari et al., 2017; Cheong et al., 
2018). The intensity and frequency of cold spells in all Asian regions 
have been decreasing since the beginning of the 20th century (high 
confidence) (Sheikh et al., 2015; Donat et al., 2016a; Dong et al., 
2018; van Oldenborgh et al., 2019).

In Australasia (Table 11.10), there is very robust evidence for very 
likely increases in the number of warm days and warm nights and 
decreases in the number of cold days and cold nights since 1950 
(Lewis and King, 2015; Jakob and Walland, 2016; Alexander and 
Arblaster, 2017). The increase in extreme minimum temperatures 
occurs in all seasons over most of Australia and typically exceeds the 
increase in extreme maximum temperatures (X.L. Wang et al., 2013b; 
Jakob and Walland, 2016). However, some parts of Southern Australia 
have shown stable or increased numbers of frost days since the 
1980s (Dittus et al., 2014) (see also Section 11.3.4). Similar positive 
trends in extreme minimum and maximum temperatures have been 
observed in New Zealand, in particular in the autumn and winter 
seasons, although they generally show higher spatial variability 
(Caloiero, 2017). In the tropical Western Pacific region, spatially 
coherent warming trends in maximum and minimum temperature 

extremes have been reported for the period 1951–2011 (Whan et al., 
2014; McGree et al., 2019). 

In Central and South America (Table 11.13), there is high confidence 
that observed hot extremes (TN90p, TX90p) have increased, and 
cold extremes (TN10p, TX10p) have decreased over recent decades, 
though trends vary among different extremes types, datasets, and 
regions (Skansi et al., 2013; Dittus et al., 2016; Rusticucci et al., 2017; 
Meseguer-Ruiz et al., 2018; Salvador and de Brito, 2018; Dereczynski 
et al., 2020; Dunn et al., 2020; Olmo et al., 2020). An increase in 
the intensity and frequency of heatwave events was also observed 
between 1961 and 2014 in an area covering most of South America 
(Ceccherini et al., 2016; Geirinhas et al., 2018). However, there 
is medium confidence that warm extremes (TXx and TX90p) have 
decreased in the last decades over the central region of South-Eastern 
South America (SES) during austral summer (Tencer and Rusticucci, 
2012; Skansi et al., 2013; Rusticucci et al., 2017; Wu and  Polvani, 
2017). There is medium confidence that TNn extremes are warming 
faster than TXx extremes, with the largest warming rates observed 
over North-East Brazil (NEB) and Northern South America (NSA) for 
cold nights (Skansi et al., 2013). 

In Europe (Table  11.16), there is very robust evidence for a  very 
likely increase in maximum temperatures and the frequency of 
heatwaves. The increase in the magnitude and frequency of high 
maximum temperatures has been observed consistently across 
regions, including in central Europe (Twardosz and Kossowska-Cezak, 
2013; Christidis et al., 2015; Lorenz et al., 2019) and southern Europe 
(Croitoru and Piticar, 2013; El Kenawy et al., 2013; Christidis et al., 
2015; Nastos and Kapsomenakis, 2015; Fioravanti et al., 2016; Ruml 
et al., 2017). In Northern Europe, a strong increase in extreme winter 
warming events has been observed (Matthes et al., 2015; Vikhamar-
Schuler et al., 2016). Temperature observations for winter cold spells 
show a  long-term decreasing frequency in Europe (Brunner et al., 
2018; van Oldenborgh et al., 2019), and typical cold spells, such 
as that observed during the 2009–2010 winter, had an occurrence 

Non-significant trends
Significant trendsColour

No data

Figure 11.9 | Linear trends over 1960–2018 for three temperature extreme indices: (a) the annual maximum daily maximum temperature (TXx), (b) the annual 
minimum daily minimum temperature (TNn), and (c) the annual number of days when daily maximum temperature exceeds its 90th percentile from a base period of 1961–1990 
(TX90p); based on the HadEX3 dataset (Dunn et al., 2020). Linear trends are calculated only for grid points with at least 66% of the annual values over the period and which 
extend to at least 2009. Areas without sufficient data are shown in grey. No overlay indicates regions where the trends are significant at the p = 0.1 level. Crosses indicate 
regions where trends are not significant. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).

Figure 11.9, IPCC AR6 WG1 (2021)
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Climate models: principle

Source : IPSL

Models are based on:

• physical equations (Navier-Stokes, thermodynamics, radiation, etc).

• numerical resolution of PDEs.

Resolution:

• spatial (H) ∼ 100 km,

• spatial (V) ∼ 500 m,

• temporal ∼ 15’.

Models simulate the climate system:

• atmosphere, ocean, land surfaces, biosphere, cryosphere, rivers, . . .

• IV and forcings.
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Climate models: practical use

� Model development and use is a huge ef-
fort!!

� Numerical experiments: pi-control, historical,
scenarios, theoretical experiments, . . .

� Coordinated simulations: CMIP ensemble
(∼40 models in CMIP6).

� Several types of models/resolution:
global (∼100km), regional (∼10km), km-scale
(∼1km), . . .

a specific effort has been made to ensure the conservation of water and salt in each component and in the
coupling procedure. Concerning energy, all components with the noticeable exception of the atmosphere
are conservative. In the atmospheric model ARPEGE‐Climat, the effects of physical parameterizations are
expressed in a flux‐conservative formalism and therefore the physics is intrinsically conservative for mass
and energy. But, as mentioned earlier, the semi‐Lagrangian dynamical core does not ensure energy conser-
vation and no “energy fixer” has been implemented yet in ARPEGE‐Climat. However, under fixed condi-
tions, the model should reach an equilibrium state after a spin‐up phase.

Tuning is aimed at limiting the spin‐up drift before reaching equilibrium, so that the final state remains close
to the observed one. The model spin‐up has been run under fixed preindustrial conditions corresponding to
piControl CMIP6 forcings. The ocean component starts from the World Ocean Atlas 2013 (WOA, Locarnini
et al., 2013). The initial sea ice concentration is set to 100% and its surface temperature at −10 °C where sea
surface temperature is at freezing point. The sea ice thickness is initialized to 2 m in the Arctic and 1m in the
Antarctic. The initial thickness of the snow layer upon sea ice is set to zero. The land surface reservoirs are
initialized from an equilibrium state obtained by running SURFEX in offline mode forced by atmospheric
fields taken from a preindustrial AMIP simulation with ARPEGE‐Climat.

Figure 3 illustrates the two‐step behavior of the CNRM‐CM6‐1 spin‐up: it is particularly strong and rapid
during the first 100 years, which are then followed by a weak warming trend in global surface air tempera-
ture (GSAT). The warming trend is still present in the piControl experiment but limited to 0.02 K/century.
The most noticeable feature is a large multidecadal variability superimposed on this trend. This feature will
be discussed further in section 5, dedicated to variability. Averaged over the 1,000 years of the piControl
simulation, the net heat flux over the ocean is 0.15 W/m2; thus, CNRM‐CM6‐1 has not reached equilibrium.
This imbalance is consistent with a global sea water potential temperature trend of 0.03 K/century.
Compared to CNRM‐CM5.1, the trend in the global mean sea water salinity is significantly reduced.
Similarly, the top of the atmosphere imbalance is reduced from 3.6 W/m2 in CNRM‐CM5.1 to 1.5 W/m2

in CNRM‐CM6‐1. This confirms that CNRM‐CM6‐1 better conserves energy and mass than its
former version.

4. Modern Mean Climate Evaluation

In this section, we assess the performance of CNRM‐CM6‐1 to replicate modern observations and compare
its skill to that of CNRM‐CM5.1. The four major components of the climate system are assessed: atmosphere,
land, ocean, and sea ice. In the following analysis, unless otherwise stated, we have used the 10‐member
ensemble historical simulations available for both model versions and focused on the 30 years period
1981–2010 to compare with observational or reanalysis data over the same period. In some cases, the period
has been restricted to match with the period of availability of reference data sets. Details on the observation-
ally derived data sets have been grouped in Appendix A.

4.1. Atmosphere

As the atmosphere component parameterizations have been fully revised in CNRM‐CM6‐1, a thorough eva-
luation of the atmospheric representation will be done in a forthcoming paper based on the analysis of the
AMIP DECK experiment (http://www.umr‐cnrm.fr/cmip6/references). Here, we summarize mainly the
mean surface biases that could be affected by the coupling with the other components.

Figure 3. Global annual mean surface air temperature (K) evolution for the CNRM‐CM6‐1 piControl experiment over
1,000 years in black and for the 10 members historical experiments in colors; dots indicate the first‐year annual mean
for each historical simulations, respectively.

10.1029/2019MS001683Journal of Advances in Modeling Earth Systems
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Model spin-up, pre-industrial control (black), and historical (colors) simulations

with the model CNRM-CM6. From Voldoire et al., 2019, JAMES.
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Latest climate models confirm need for  
urgent mitigation
Many recently updated climate models show greater future warming than previously. Separate lines of evidence 
suggest that their warming rates may be unrealistically high, but the risk of such eventualities only emphasizes the 
need for rapid and deep reductions in emissions.

Piers M. Forster, Amanda C. Maycock, Christine M. McKenna and Christopher J. Smith

So far, one-third of the latest-generation 
climate models from the Coupled 
Model Intercomparison Project phase 

6 (CMIP6) exhibits a higher equilibrium 
climate sensitivity (ECS) than did the 
previous generation (CMIP5). As a result, 
several CMIP6 models simulate greater 
warming over the twenty-first century 
(https://phys.org/news/2019-09-earth-
quickly-climate.html). This might suggest 
smaller remaining carbon budgets or a need 
to reach net-zero emissions sooner to limit 
warming to targets set forth in the Paris 
Agreement. However, carbon budgets and 
net-zero emissions dates are also sensitive 
to other factors, including the transient 
climate response (TCR) and aerosol effects. 
Here, we argue that the CMIP6 models 
showing the highest warming are unlikely 
to be representative of the real world, and 
that CMIP6 projections of global surface 
temperature should not be exclusively 
relied on for policy-relevant decisions. 
Nevertheless, the new generation of results 
still has scientific value and strengthens the 
case for urgent mitigation.

High equilibrium climate sensitivity
ECS represents how much warming  
we can expect for a doubling of the 
atmospheric CO2 concentration from 
its preindustrial state. It has remained a 
persistent uncertainty in climate science, 
with a likely range (66% probability) of 
1.5–4.5 oC assessed in IPCC reports and 
elsewhere1,2. Recently, the preliminary  
ECS range in CMIP6 has skewed high 
relative to CMIP5, with multiple models 
lying above the upper end of the likely ECS  
range (Fig. 1). This has raised questions 
in the climate modelling and research 
community around the plausibility of 
high ECS values and implications for the 
projected rates of surface warming over  
this century (many news and blog 
discussions can be found online3–6).

The climate models in CMIP archives 
are developed by institutes around the 

world, each with different research and 
operational foci. Modelling groups generally 
do not develop their models with a target 
ECS in mind. Rather, they are built from 
fundamental physical laws, and each 
model’s ECS is something that emerges 
from simulations once its development has 
been finalized. Many of the new-generation 
models improve on their predecessors in 
a variety of ways: for example, by more 
faithfully reproducing observations or by 
adding missing Earth system process. Many 
of these improvements do not affect the ECS, 
but some do. One example is the UKESM1-
0-LL model, developed by the UK Earth 
System Modelling project, which shows an 
improved representation of mid-latitude 
mixed-phase clouds (judged against present-
day satellite data)7,8. This leads to a reduced 
damping effect on surface temperature from 
cloud-phase changes7. The result of this 
improvement in the simulation of present 
climate, all else being equal, is an increase 
in ECS. This does not mean the resulting 
higher ECS is more realistic, as other 
processes may be contributing a high bias.

Climate models have previously informed 
the likely range of ECS, but over the past 
decade, increasing evidence has emerged 
from the palaeoclimate record, from 
historic observations and from advances in 
understanding of cloud processes that can 
be used to constrain ranges of ECS, more 
or less independently of climate models2. 
Because the CMIP archives are not explicitly 
designed to sample known uncertainties in 
ECS, there is no requirement for any one 
model’s value to fall within the canonical 
range. Nevertheless, they have largely done 
so, until now (Fig. 1). We think that the 
diversity of ECS across CMIP6 should be 
celebrated; it means that groups are daring 
their models to be imperfect, and this will 
ultimately aid understanding and drive 
progress. The IPCC ‘likely’ range implies a 
33% probability that ECS would be outside a 
1.5–4.5 oC window, so a higher ECS value is 
not unexpected. However, the higher values 

seen in CMIP6 are not supported by other 
lines of evidence2 and may eventually be 
proven wrong.

Global warming projections
Projections of possible climate futures from 
complex climate models are strongly affected 
by their ECS. Complementary simple 
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Fig. 1 | The equilibrium climate sensitivity from 
CMIP5 and 21 currently available CMIP6 climate 
models. Data as of 5 November 2019 from the 
ESMValTool team as part of the European Union’s 
Horizon 2020 CRESCENDO project16. The ECS from 
the IPSL-CM5A-MR model (IPSL) and UKESM1-
0-LL (UKESM) models are used in later figures as 
they lie around the 95th percentile of the CMIP5 
and CMIP6 ECS distributions, respectively.

Nature Climate Change | www.nature.com/natureclimatechange

Left: Response of CMIP6 models to SSP2-4.5 scenario
Right: Warming response to 2×CO2 in CMIP5/6 models
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1 Extreme events in climate

2 Data

3 Questions to investigate

4 Some statistical challenges and personal work

5 Conclusion
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Questions

How extreme events are / will be affected by climate change?

In IPCC AR6 WG1 Chapter 11:

� Mechanisms and Drivers

� Observed trends

� Model evaluation

� Detection and Attribution, Event attribution

� Projections

Extreme events and Climate Change: a statistical perspective Aurélien Ribes
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Projections

Describe how extreme events respond in (model) pro-
jections.

Examples:
Temp: Wehner et al. (2020, WACE);
Precip: Kharin et al. (2012, below); John et al. (2022).

Weather and Climate Extremes 30 (2020) 100284

5

illustrates that removing model differences in climate sensitivity by 
framing projections in terms of global warming levels as discussed in the 
previous section significantly reduces model differences in the magni
tude of changes. The global land average change of annual TXx is 
slightly (10–20%) larger than each selected global warming level and 
reflects the difference in land and ocean warming that results by con
struction from transient rather than lengthy stabilized simulations. 
However, maximum warming amounts are about twice the selected 
global warming levels. No land regions exhibit cooling of annual TXx in 
either multimodel average. Also, few land regions are hatched indi
cating that the projected changes in annual TXx are quite large 
compared to cross model variability. As discussed below, the differences 
between the model generations at the 4C global warming level in 
average annual TXx changes is the largest of the eight temperature 
metrics discussed in this paper. However, the global average of this 
difference (~0.5C) is small compared to the global average change 
(~5C) and is much smaller at lower global warming levels. 

Similarly, Fig. 2 shows projected multi-model changes in 20 year 
return values of annual TXx (very hot days) for the same set of available 
CMIP5 and CMIP6 models at the selected global warming levels. Despite 
the much larger magnitude of the 20 year return value of TXx than its 
annual average value, the projected future changes do not significantly 
differ between them. Like the annual TXx changes, the global land 
average changes in its 20 year return value are about the same magni
tude in each model generation and slightly larger than the selected 
global warming levels. Maximum return value warmings are larger than 
the maximum annual warmings but tend to be small isolated regions 
reflecting statistical fit uncertainties or internal variability rather than 
anything physically meaningful. Stability of changes in extreme hot 
temperatures across rarities ranging from 20 to 100 year return values 
had been noted previously in comparing results from stationary climate 
model simulations (Wehner et al., 2018) and attributed to the shape of 
the bounded GEV distributions (Coles, 2001). This stability in hot day 
temperature changes extends to 1 year return values and non-stationary 

Fig. 3. Multimodel average projected changes in annual TNn (cold nights) from available CMIP5 (left) and CMIP6 (right) at global warming levels of 1.5, 2, 3 and 4C 
above preindustrial (1850–1900) average values. Hatching indicates that the magnitudes of the multimodel projections are less than the cross-model standard 
deviation of the projections. Units: oC. 

M.F. Wehner                                                                                                                                                                                                                                     

Change in TNn 20-yr RV, at various Global Warming Levels (GWLs); from

Wehner et al., 2020, WACE.
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Projections

Describe how extreme events respond in (model) pro-
jections.

Examples:
Temp: Wehner et al. (2020, WACE);
Precip: Kharin et al. (2012, below); John et al. (2022).

Weather and Climate Extremes 36 (2022) 100435

5

A. John et al.

Fig. 1. Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by both global mean surface temperature change (𝛥GSAT in K, left panel) and local mean
surface temperature change (𝛥T in K, right panel). The changes are calculated for the future period of 2051–2100 relative to the historical period of 1951–2014 using the SSP5-8.8
scenario. (a),(b) show the 10% quantile maps, (c),(d) show the median maps and (e),(f) show the 90% quantile maps, calculated from the CMIP6 multimodel ensemble. The bottom
panel shows the width of the confidence range of extreme precipitation, computed as the difference between the 90% and 10% quantile maps. Stippling highlights the grid cells
where the rate of change is more than 7%/K for respective scalings with 𝛥GSAT (left panel) and 𝛥T (right panel). GMD denotes the global mean differences. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Confidence interval on daily precip 20-yr RV change; from John et al. (2022).
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Detection / attribution

� Detection: are observations consistent with
internal variability only?

� Attribution: assess the relative contribution of
(various) external forcings.
e.g., ANT / NAT, GHG / AER, etc.

Example: Min et al (2011), Zhang et al (2013) looked at an-
nual max 1d rainfall (RX1D) worldwide and report a statisti-
cally discernible human influence.

LETTER
doi:10.1038/nature09763

Human contribution to more-intense precipitation
extremes
Seung-Ki Min1, Xuebin Zhang1, Francis W. Zwiers1{ & Gabriele C. Hegerl2

Extremes of weather and climate can have devastating effects on
human society and the environment1,2. Understanding past changes
in the characteristics of such events, including recent increases in
the intensity of heavy precipitation events over a large part of the
Northern Hemisphere land area3–5, is critical for reliable projections
of future changes. Given that atmospheric water-holding capacity is
expected to increase roughly exponentially with temperature—and
that atmospheric water content is increasing in accord with this
theoretical expectation6–11—it has been suggested that human-
influenced global warming may be partly responsible for increases
in heavy precipitation3,5,7. Because of the limited availability of
daily observations, however, most previous studies have examined
only the potential detectability of changes in extreme precipita-
tion through model–model comparisons12–15. Here we show that
human-induced increases in greenhouse gases have contributed to
the observed intensification of heavy precipitation events found
over approximately two-thirds of data-covered parts of Northern
Hemisphere land areas. These results are based on a comparison of
observed and multi-model simulated changes in extreme precipita-
tion over the latter half of the twentieth century analysed with an
optimal fingerprinting technique. Changes in extreme precipita-
tion projected by models, and thus the impacts of future changes
in extreme precipitation, may be underestimated because models
seem to underestimate the observed increase in heavy precipitation
with warming16.

We compare observed and simulated changes in extreme precipita-
tion based on the annual maxima of daily (RX1D) and five-day con-
secutive (RX5D) precipitation amounts for the second half of the
twentieth century. We chose these indices because they characterize
extreme events that often cause impacts on society1,2, and because these
annual extremes can be used to estimate the probability of rare events
such as 100-year return values, which are used in the design of infra-
structure. We use the Hadley Centre global land-based gridded climate
extremes data set (HadEX)4, which is based on daily observations from
6,000 stations and covers the period 1951–2003. We restrict our ana-
lysis to the period 1951–99 for comparison with model simulations
and because of loss of coverage at the end of the period of record (Sup-
plementary Information). Multi-model simulations were obtained
from the Coupled Model Intercomparison Project Phase 3 (CMIP3)
archive and from individual modelling centres (Supplementary Table 1).
The RX1D and RX5D indices were calculated from all available simu-
lations from eight models. We used the 1951–99 segments of simula-
tions of the twentieth century with either historical anthropogenic
forcing (greenhouse gases and other anthropogenic factors including
aerosols, ANT; 6 models, 19 runs) or a combination of historical
natural (solar and volcanic) plus anthropogenic forcing (ALL; 5 models,
16 runs). Three models provided both ANT and ALL runs. We also
used unforced control simulations (CTL; 106 non-overlapping 49-year
segments).

Owing to the high spatial variability of precipitation and the sparse-
ness of the observing network in many regions, estimates of area means

of extreme precipitation may be uncertain; for example, for regions
where the distribution of individual stations does not adequately
sample the spatial variability of extreme values across the region. In
order to reduce the effects of this source of uncertainty on area means,
and to improve representativeness and inter-comparability, we
standardized values at each grid-point before estimating large area
averages by mapping extreme precipitation amounts onto a zero-to-
one scale15. The resulting ‘probability-based index’ (PI) equalizes the
weighting given to grid-points in different locations and climatic
regions in large area averages and facilitates comparison between
observations and model simulations15,17,18. Observed and simulated
annual extremes are converted to PI by fitting a separate generalized
extreme value (GEV) distribution15,19 to each 49-year time series of
annual extremes and replacing values with their corresponding per-
centiles on the fitted distribution. Model PI values are interpolated
onto the HadEX grid to facilitate comparison with observations (see
Methods Summary and Supplementary Information for details).

Figure 1 shows the spatial patterns of the observed and multi-model
mean trends in PI for RX1D and RX5D during 1951–99. Trends are
shown only for grid-points with more than 40 years of observations.
This confines the analysis to Northern Hemisphere land areas, includ-
ing North America and Eurasia (including India). Spatial coverage for
RX5D is somewhat greater than for RX1D due to broader spatial
interpolation of the available station values4, possibly affecting reliability
(Supplementary Information). We therefore also analyse RX5D only at
locations where RX1D is available, and find that our main detection
results are not affected (Supplementary Fig. 1). Observations show
overall increasing trends in PI, with 65% and 61% of the total data-
covered areas having positive trends for RX1D and RX5D, respectively.
The multi-model mean from ANT simulations shows positive trends in
both extreme indices almost everywhere, consistent with future projec-
tions17–20, but with smaller amplitude than observed. Multi-model ALL
simulations exhibit similar moderate increasing trends in RX1D, but
show a mixed pattern of moistening and drying for RX5D (see below).

In order to consider long-term changes in extreme precipitation, we
calculate non-overlapping five-year mean PI anomaly time series for
1955–99 and append a four-year mean for 1951–54. The time evolution
of five-year mean PI anomalies averaged over Northern Hemisphere
land (using the locations plotted in Fig. 1) is shown in Fig. 2.
Observations exhibit increasing trends for both RX1D and RX5D, in
accord with previous studies3–5. The ANT simulations show also
increasing trends, but with smaller amplitudes than observed, consist-
ent with Fig. 1. No individual simulation has a trend as strong as
observed (Supplementary Fig. 2). The ALL simulations exhibit weak
positive trends globally in RX1D, and spatially variable weak positive
and negative trends in both RX1D and RX5D. This seems to be partly
due to the inclusion of natural forcing (NAT) in the ALL simulations,
which on its own would have induced long-term overall cooling and
drying trends for the analysis period13,15, thus reducing the positive
trends in intense precipitation due to ANT forcing (Supplementary
Fig. 3). Considering that models underestimate the observed changes

1Climate Research Division, Environment Canada, Toronto, Ontario M3H5T4, Canada. 2School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, UK. {Present address: Pacific Climate Impacts
Consortium, University of Victoria, Victoria, British Columbia V8W2Y2, Canada.
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Event attribution

� Concept: consider a specific event that did happened

� Investigate / Describe human contribution to that event
Assess human influence on probability / intensity of the event?
What to expect in the future?

� Historical example: European 2003 HeatWave
Stott et al., 2004, Nature

Key indices: PR= p1
p0

, ∆I = I1 − I0, FAR= p1−p0
p1

.

FAR: Fraction of Attributable Risk.

� Now: rapid attribution (eg, WWA).

� Potential interest: awareness-raising, legal aspects.

Methods
A set of speckle-tracking algorithms5 was used to determine the 1992, 1994, 1995 and 2000

velocities from 1–24-day image pairs. Speckle tracking uses the displacements of the

correlated speckle patterns in pairs of SAR images to derive ice motion estimates.

Individual errors were up to a few hundred metres per year (see Fig. 2), but errors on

averages (for example, Fig. 3) are below 100myr21. We did not tide-correct the speckle-

tracked data, so there are biases on the floating ice that do not spatially average out. To

assess this error, we estimated velocity for five 1992 InSAR pairs, each with different tidal

errors. The standard deviation for these estimates was 69myr21. Our 1992 and 1994

estimates are temporal averages of multiple (2 to 5) same-year pairs, which further reduces

this error. The 2001 through 2003 estimates were derived using the IMCORR25 feature-

tracking software applied to 16-to-64-day Landsat image pairs. Established methods26

were applied to passive microwave data to determine the 2002 melt extent.

Received 7 July; accepted 8 October 2004; doi:10.1038/nature03130.
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The summer of 2003 was probably the hottest in Europe since at
latest AD 15001–4, and unusually large numbers of heat-related
deaths were reported in France, Germany and Italy5. It is an ill-
posed question whether the 2003 heatwave was caused, in a simple
deterministic sense, by a modification of the external influences on
climate — for example, increasing concentrations of greenhouse
gases in the atmosphere — because almost any such weather event
might have occurred by chance in an unmodified climate. However,
it is possible to estimate by how much human activities may have
increased the risk of the occurrence of such a heatwave6–8. Here we
use this conceptual framework to estimate the contribution of
human-induced increases in atmospheric concentrations of green-
house gases and other pollutants to the risk of the occurrence of
unusually high mean summer temperatures throughout a large
region of continental Europe. Using a threshold for mean summer
temperature that was exceeded in 2003, but in no other year since
the start of the instrumental record in 1851, we estimate it is very
likely (confidence level >90%)9 that human influence has at least
doubled the risk of a heatwave exceeding this threshold magnitude.

Temperatures near the Earth’s surface are rising globally10, and
evidence is mounting that most of the warming observed in recent
decades has been caused by increasing atmospheric concentrations
of greenhouse gases9,11,12. Anthropogenic increases in annual-mean
temperatures have also been detected on continental scales, in
Europe, North America and other land regions13–15. We first inves-
tigate the origins of long-term changes in decadal-mean European
summer (June–August) temperatures, determining the changes
attributable to anthropogenic drivers of the climate system and
changes attributable to natural drivers. We then estimate how the
risk of mean June–August temperatures exceeding a particular
extreme threshold in any individual summer has changed as a result
of this anthropogenic interference in the climate system.

Over the course of the twentieth century, June–August tempera-
tures in Europe exhibited an overall increase, and a distinctive
temporal pattern of temperature change, including cooling in the
1950s and 1960s (Fig. 1). We focus on the region bounded by 108W
and 408 E and 30–508N (Fig. 1 inset), this being one of the regions
chosen in previous studies13,16 to represent climatically coherent
regions sufficiently large to exhibit climate change signals above the
noise of natural internal variability. We use a pre-selected region in
order to minimize any bias that could result from selecting our
region already knowing where the most extreme temperatures
occurred. Even in such a large domain, 2003 was the warmest
summer on record. The history of temperature change averaged
over this region is well reproduced by simulations of the HadCM3
climate model17, even at the model’s relatively low spatial resolution
(3.758 longitude by 2.58 latitude), when driven with both anthropo-
genic and natural drivers of climate change (Fig. 1; see red, green,
blue and turquoise lines). Four simulations (denoted ALL) were
made with different initial conditions18, each with the same com-
bination of well mixed greenhouse gases, sulphate aerosols and
changes in tropospheric and stratospheric ozone, as well as natural
changes in solar output and explosive volcanic eruptions12. A
calculation of the temperature changes due to natural drivers
alone (obtained by combining a simulation with solar forcing and
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uncertainty in the anthropogenic warming. Averaged over the
region of interest (Fig. 1 inset), summer temperatures in 2003
exceeded the 1961–90 mean by 2.3 K (Fig. 1, black star). To quantify
changes in risk, we need an objective definition of the event in
question. Using 2.3 K itself is problematic for three reasons: first,
relying too closely on the details of what actually occurred when
defining what we are looking for introduces a selection bias in our
attribution procedure; second, temperature anomalies in 2003 may
have been amplified by soil-moisture feedbacks2 or interactions
with the North Atlantic20, both of which may be under-estimated,
although we do observe similar magnitude spikes in model summer
temperatures in Fig. 1; third, given the length of model-simulated
variability we have available, inferring the statistics of temperature
excursions over 2 K requires extrapolation of extreme value distri-
butions, which introduces further uncertainties. 2003 was the first
year to reach or exceed a threshold of 1.6 K (2001 being the second-
warmest European summer, at 1.5 K). We therefore consider
how the probability of exceeding this threshold has changed, by
comparing this estimated late-twentieth-century probability with
the estimated probability of exceeding the same absolute threshold
if there had been no anthropogenic influence on climate. Increasing
this threshold to any value up to 2.3 K strengthens our conclusions
regarding attributable risk; hence using a threshold that only just
exceeds the second warmest summer is relatively conservative.
Assuming that sub-decadal continental-scale variability is station-

ary and adequately represented by HadCM3, we estimate possible
distributions of temperatures in individual summers in the presence
and absence of anthropogenic influence. We do this by adding
HadCM3 control variability to reconstructions of 1990s decadal-
mean temperatures both with all external factors included, and with
anthropogenic factors removed, allowing for uncertainty in these

decadal-mean temperatures from the detection analysis (Fig. 3b).
Figure 4a shows the estimated likelihood of the risk (probability) of
exceeding a 1.6K threshold in the presence of anthropogenic climate
change (red line) and in the absence of anthropogenic change (green
line), expressed both as a frequency (number of occurrences per
thousand years, bottom axis) and as a return period (top axis). The
clear shift from the green to the red distribution implies that an
appreciable fraction of the risk of such hot summers can be attributed
tohuman influence on climate. Even in the presence of anthropogenic
warming, we conclude that the estimated probability of exceeding
1.6K appears to be low (best estimate is a 1 in 250 year event (Fig. 4a,
red curve) but this risk may be increasing rapidly).

The fraction attributable risk (FAR) is estimated in Fig. 4b (see
Methods). In certain circumstances, the figure of relevance in estab-
lishing possible liability for compensation has been FAR ¼ 0.5,
corresponding to a doubling of risk over natural conditions21 (mean-
ing that one event in twowould have happened naturally). According
to our calculation, there is a greater than 90%chance that over half the
risk of European summer temperatures exceeding a threshold of 1.6K
is attributable to human influence on climate. Although there is a
large spread, reflecting the remaining uncertainties in the effects of
climate change on this spatial scale, the anthropogenic FAR could be
substantially greater than 0.5. Also marked on Fig. 4b is a vertical line
representing an overall ‘best estimate’ of the human contribution to
the increased risk of these very hot European summers7, given the
information that we have available at present. On this basis, human
influence is to blame for 75% of the increased risk of such a heatwave.

Our analysis shows that European summers are warming owing
to anthropogenic climate change. Under un-mitigated emissions
scenarios, summers like 2003 are likely to be experienced more

 

 

Figure 3 Estimated likelihood functions for anthropogenic and natural contributions to

European summer temperature changes. The curves show estimated distributions of

anthropogenic (red) and natural (green) scaling factors on model-simulated responses (a).

1990s summer temperatures (relative to pre-industrial climate) including all external

drivers of climate change (red) and with anthropogenic drivers removed (green) (b). A

scaling factor of zero (horizontal solid line in a) implies no contribution to observed 1990s

temperatures from this driver, while unity (horizontal dashed line in a) implies no

systematic under- or over-estimate by the model of the observed response to this driver.

The width of these distributions reflects the uncertainties for these probabilities.

 

Figure 4 Change in risk of mean European summer temperatures exceeding the 1.6 K

threshold. a, Histograms of instantaneous return periods under late-twentieth-century

conditions in the absence of anthropogenic climate change (green line) and with

anthropogenic climate change (red line). b, Fraction attributable risk (FAR). Also shown, as

the vertical line, is the ‘best estimate’ FAR, the mean risk attributable to anthropogenic

factors averaged over the distribution.
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Extreme events Data Questions Statistical challenges Conclusion

Event attribution

� Concept: consider a specific event that did happened

� Investigate / Describe human contribution to that event
Assess human influence on probability / intensity of the event?
What to expect in the future?

� Historical example: European 2003 HeatWave
Stott et al., 2004, Nature

� Now: rapid attribution (eg, WWA).

� Potential interest: awareness-raising, legal aspects.

Methods
A set of speckle-tracking algorithms5 was used to determine the 1992, 1994, 1995 and 2000

velocities from 1–24-day image pairs. Speckle tracking uses the displacements of the

correlated speckle patterns in pairs of SAR images to derive ice motion estimates.

Individual errors were up to a few hundred metres per year (see Fig. 2), but errors on

averages (for example, Fig. 3) are below 100myr21. We did not tide-correct the speckle-

tracked data, so there are biases on the floating ice that do not spatially average out. To

assess this error, we estimated velocity for five 1992 InSAR pairs, each with different tidal

errors. The standard deviation for these estimates was 69myr21. Our 1992 and 1994

estimates are temporal averages of multiple (2 to 5) same-year pairs, which further reduces

this error. The 2001 through 2003 estimates were derived using the IMCORR25 feature-

tracking software applied to 16-to-64-day Landsat image pairs. Established methods26

were applied to passive microwave data to determine the 2002 melt extent.
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The summer of 2003 was probably the hottest in Europe since at
latest AD 15001–4, and unusually large numbers of heat-related
deaths were reported in France, Germany and Italy5. It is an ill-
posed question whether the 2003 heatwave was caused, in a simple
deterministic sense, by a modification of the external influences on
climate — for example, increasing concentrations of greenhouse
gases in the atmosphere — because almost any such weather event
might have occurred by chance in an unmodified climate. However,
it is possible to estimate by how much human activities may have
increased the risk of the occurrence of such a heatwave6–8. Here we
use this conceptual framework to estimate the contribution of
human-induced increases in atmospheric concentrations of green-
house gases and other pollutants to the risk of the occurrence of
unusually high mean summer temperatures throughout a large
region of continental Europe. Using a threshold for mean summer
temperature that was exceeded in 2003, but in no other year since
the start of the instrumental record in 1851, we estimate it is very
likely (confidence level >90%)9 that human influence has at least
doubled the risk of a heatwave exceeding this threshold magnitude.

Temperatures near the Earth’s surface are rising globally10, and
evidence is mounting that most of the warming observed in recent
decades has been caused by increasing atmospheric concentrations
of greenhouse gases9,11,12. Anthropogenic increases in annual-mean
temperatures have also been detected on continental scales, in
Europe, North America and other land regions13–15. We first inves-
tigate the origins of long-term changes in decadal-mean European
summer (June–August) temperatures, determining the changes
attributable to anthropogenic drivers of the climate system and
changes attributable to natural drivers. We then estimate how the
risk of mean June–August temperatures exceeding a particular
extreme threshold in any individual summer has changed as a result
of this anthropogenic interference in the climate system.

Over the course of the twentieth century, June–August tempera-
tures in Europe exhibited an overall increase, and a distinctive
temporal pattern of temperature change, including cooling in the
1950s and 1960s (Fig. 1). We focus on the region bounded by 108W
and 408 E and 30–508N (Fig. 1 inset), this being one of the regions
chosen in previous studies13,16 to represent climatically coherent
regions sufficiently large to exhibit climate change signals above the
noise of natural internal variability. We use a pre-selected region in
order to minimize any bias that could result from selecting our
region already knowing where the most extreme temperatures
occurred. Even in such a large domain, 2003 was the warmest
summer on record. The history of temperature change averaged
over this region is well reproduced by simulations of the HadCM3
climate model17, even at the model’s relatively low spatial resolution
(3.758 longitude by 2.58 latitude), when driven with both anthropo-
genic and natural drivers of climate change (Fig. 1; see red, green,
blue and turquoise lines). Four simulations (denoted ALL) were
made with different initial conditions18, each with the same com-
bination of well mixed greenhouse gases, sulphate aerosols and
changes in tropospheric and stratospheric ozone, as well as natural
changes in solar output and explosive volcanic eruptions12. A
calculation of the temperature changes due to natural drivers
alone (obtained by combining a simulation with solar forcing and
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uncertainty in the anthropogenic warming. Averaged over the
region of interest (Fig. 1 inset), summer temperatures in 2003
exceeded the 1961–90 mean by 2.3 K (Fig. 1, black star). To quantify
changes in risk, we need an objective definition of the event in
question. Using 2.3 K itself is problematic for three reasons: first,
relying too closely on the details of what actually occurred when
defining what we are looking for introduces a selection bias in our
attribution procedure; second, temperature anomalies in 2003 may
have been amplified by soil-moisture feedbacks2 or interactions
with the North Atlantic20, both of which may be under-estimated,
although we do observe similar magnitude spikes in model summer
temperatures in Fig. 1; third, given the length of model-simulated
variability we have available, inferring the statistics of temperature
excursions over 2 K requires extrapolation of extreme value distri-
butions, which introduces further uncertainties. 2003 was the first
year to reach or exceed a threshold of 1.6 K (2001 being the second-
warmest European summer, at 1.5 K). We therefore consider
how the probability of exceeding this threshold has changed, by
comparing this estimated late-twentieth-century probability with
the estimated probability of exceeding the same absolute threshold
if there had been no anthropogenic influence on climate. Increasing
this threshold to any value up to 2.3 K strengthens our conclusions
regarding attributable risk; hence using a threshold that only just
exceeds the second warmest summer is relatively conservative.
Assuming that sub-decadal continental-scale variability is station-

ary and adequately represented by HadCM3, we estimate possible
distributions of temperatures in individual summers in the presence
and absence of anthropogenic influence. We do this by adding
HadCM3 control variability to reconstructions of 1990s decadal-
mean temperatures both with all external factors included, and with
anthropogenic factors removed, allowing for uncertainty in these

decadal-mean temperatures from the detection analysis (Fig. 3b).
Figure 4a shows the estimated likelihood of the risk (probability) of
exceeding a 1.6K threshold in the presence of anthropogenic climate
change (red line) and in the absence of anthropogenic change (green
line), expressed both as a frequency (number of occurrences per
thousand years, bottom axis) and as a return period (top axis). The
clear shift from the green to the red distribution implies that an
appreciable fraction of the risk of such hot summers can be attributed
tohuman influence on climate. Even in the presence of anthropogenic
warming, we conclude that the estimated probability of exceeding
1.6K appears to be low (best estimate is a 1 in 250 year event (Fig. 4a,
red curve) but this risk may be increasing rapidly).

The fraction attributable risk (FAR) is estimated in Fig. 4b (see
Methods). In certain circumstances, the figure of relevance in estab-
lishing possible liability for compensation has been FAR ¼ 0.5,
corresponding to a doubling of risk over natural conditions21 (mean-
ing that one event in twowould have happened naturally). According
to our calculation, there is a greater than 90%chance that over half the
risk of European summer temperatures exceeding a threshold of 1.6K
is attributable to human influence on climate. Although there is a
large spread, reflecting the remaining uncertainties in the effects of
climate change on this spatial scale, the anthropogenic FAR could be
substantially greater than 0.5. Also marked on Fig. 4b is a vertical line
representing an overall ‘best estimate’ of the human contribution to
the increased risk of these very hot European summers7, given the
information that we have available at present. On this basis, human
influence is to blame for 75% of the increased risk of such a heatwave.

Our analysis shows that European summers are warming owing
to anthropogenic climate change. Under un-mitigated emissions
scenarios, summers like 2003 are likely to be experienced more

 

 

Figure 3 Estimated likelihood functions for anthropogenic and natural contributions to

European summer temperature changes. The curves show estimated distributions of

anthropogenic (red) and natural (green) scaling factors on model-simulated responses (a).

1990s summer temperatures (relative to pre-industrial climate) including all external

drivers of climate change (red) and with anthropogenic drivers removed (green) (b). A

scaling factor of zero (horizontal solid line in a) implies no contribution to observed 1990s

temperatures from this driver, while unity (horizontal dashed line in a) implies no

systematic under- or over-estimate by the model of the observed response to this driver.

The width of these distributions reflects the uncertainties for these probabilities.

 

Figure 4 Change in risk of mean European summer temperatures exceeding the 1.6 K

threshold. a, Histograms of instantaneous return periods under late-twentieth-century

conditions in the absence of anthropogenic climate change (green line) and with

anthropogenic climate change (red line). b, Fraction attributable risk (FAR). Also shown, as

the vertical line, is the ‘best estimate’ FAR, the mean risk attributable to anthropogenic

factors averaged over the distribution.
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Extreme events Data Questions Statistical challenges Conclusion

Causality

� The 2010 Russian heatwave (R10) example:
Dole et al, 2011: R10 is “mainly natural in cause”,
Rahmstorf and Coumou, 2010: R10 “would not have occurred” without climate change.

Reconciling (Otto et al, 2012): most of the heat anomaly is natural; CC increased the risk significantly.

� Relationship between “(event) Attribution” and “Causal theory”,
e.g., Hannart et al., 2016, BAMS; Hannart et al., 2018, JClim

PN=max
(
1− fracp0p1, 0

)
, PS=max

(
1− 1−p1

1−p0
, 0

)
, PNS=max(p1 − p0, 0).

� Usually, “human influence” is a necessary, but not sufficient cause.
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Extreme events Data Questions Statistical challenges Conclusion
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Related to the extremes events

� Statistical model selection, e.g., non-stationary models

yt ∼ GEV (µ0 + µ1xt , σ0 + σ1xt , ξ).

� Select appropriate covariate xt ,
� Constant ξ?
� GEV models may not fit annual max.

Ben Alaya et al., 2020 (JClim), 2021 (WACE).

� Specific investigation of Low Likelihood High Impact scenarios / events,
sse, e.g., Sutton, 2019, BAMS.

� If no data: statistical investigation of environmental conditions (incl. AI).
e.g., Tropical cyclogenesis, Menkes et al., 2009, Clim Dyn; CAPE, Singh et al., 2017, PNAS.
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Extreme events Data Questions Statistical challenges Conclusion

Related to the data

� Observations
� measurement uncertainty,
� homogeneity,
� missing data,
� (spatial) representativity,
� short records,
� . . .

� Models
� Systematic bias – need for bias correction (= stats),
� Too coarse resolution – statistical downscaling,
� Models do not necessarily agree,
� Combining models: model uncertainty, non-independence,

poor design.
Knutti et al., 2010, Jclim; Knutti et al., 2013, GRL
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Combining observations and models (1)

� Obs. now provide indication about warming
strength

� Combination of model and obs to assess past
and future changes

� GSAT warming in IPCC AR6...
Tokarska et al., 2020, Sci Adv; Liang et al., 2020, GRL; Ribes et al., 2021,

Sci Adv.

� ... now moving towards extremes.
Thackeray et al., 2022, NCC
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0.85 [0.67 to 0.98] °C. GSAT diagnosed for 1986–2005 (AR5 recent 
past) relative to 1850–1900 is 0.08°C higher than was diagnosed 
in AR5, due to methodological and dataset updates (Cross-Chapter 
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The uncertainty in GSAT relative to 1850–1900 includes the very 
likely ranges of assessed GSAT change relative to 1995–2014 
(depending on scenario and period, between 0.5°C and 2.4°C; 
Figure  4.11d and Table  4.5), the uncertainty in historical GSAT 
change from the mean over 1850–1900 to 1995–2014 (about 0.3°C; 
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Figure 4.11 | Multiple lines of evidence for global surface air temperature (GSAT) changes for the long-term period, 2081–2100, relative to the average 
over 1995–2014, for all five priority scenarios. The unconstrained CMIP6 5–95% ranges (coloured bars) in (a) differ slightly because different authors used different 
subsamples of the CMIP6 archive. The constrained CMIP6 5–95% ranges (coloured bars) in (b) are smaller than the unconstrained ranges in (a) and differ because of 
different samples from the CMIP6 archive and because different observations and methods are used. In (c), the average of the ranges in (b) is formed (grey bars). Green bars in 
(c) show the emulator ranges, defined such that the best estimate, lower bound of the very likely range, and upper bound of the very likely range of climate feedback parameter 
and ocean heat uptake coefficient take the values that map onto the corresponding values of ECS and TCR of Section 7.5 (see Box 4.1). The time series in (d) are constructed 
by taking the average of the constrained CMIP6 ranges and the emulator ranges. The y-axes on the right-hand side are shifted upward by 0.85°C, the central estimate of the 
observed warming for 1995–2014, relative to 1850–1900 (Cross-Chapter Box 2.3, Table 1). Further details on data sources and processing are available in the chapter data 
table (Table 4.SM.1).

Fig 4.11 from IPCC AR6 (2021)
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Fig 4.11 from IPCC AR6 (2021)

Extreme events and Climate Change: a statistical perspective Aurélien Ribes



Extreme events Data Questions Statistical challenges Conclusion

Combining observations and models (1)

� “Best available information” requires blending models + obs

� There might be interest in doing so.

Illustration: yt ∼ GEV (µ0 + µ1xt , σ0 + σ1xt , ξ).

� Parameters: θ = (µ0, µ1, σ0, σ1, ξ),

� ξ hard to estimate from obs (short record),

� µ0, σ0 often biased in models.

We use a Bayesian treatment:

� Models provide a prior π(θ) ∼ N(µ,Σmod ).

� We derive the posterior p(θ|y).

Ref: Robin & Ribes (2020), ASCMO

Figure 6. a) Examples of sample of σ(t) after Bayesian constraint. b) Stationary scale parameters versus shape parameters for multi-model

synthesis (red), Bayesian constraint (blue) and from observations (green). c) Same as b), but between non-stationary scale parameters and

shape parameters. d) Same as b), but between stationary and non-stationary scale parameters.

26

Figure 5. GEV parameters µ(t), σ(t), ξ(t), and their uncertainty. Values in transparent blue describe the multi-model distribution, i.e. no

observational constraint is applied. Values in blue illustrate the Bayesian constraint. The (dotted) blue lines are the best estimates, and filled

zones show 95% confidence ranges. a) Parameter µ(t) in factual world. b) Parameter σ(t) in factual world. c) Parameter ξ(t) in (counter)

factual world. d) Parameter µ(t) in counterfactual world. e) Parameter σ(t) in counterfactual world. f) Upper bound of the fitted GEV

distribution in the factual world, given by µ(t)−σ(t)/ξ(t) if ξ(t)< 0, and ∞ otherwise. The black points are the observations, and the

dotted black line the maximal value of observations (in year 2019).
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Conclusion

� A wide range of events – some are very poorly known.

� One central question: evaluating / quantifying the future hazard.

� Causal theory involved in relating extreme events to the human influence on climate,
with potential societal implications.

� A number of statistical challenges that need continued statistical research,
e.g., smart blending of model + observation data.
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