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Motivation slide 2

Summer 2018
O Heatwaves, wildfires, drought, heavy rainfall ...

Global surface temperatures in June 2018 averaged 0.78C higher
than normal

Variation from 1951 - 1980 average

North America Europe Africa Asia

2018 ranked as the Several countries Fourth highest June Seventh highest
sixth warmest June had temperatures temperatures since June temperature on
since continental that ranked among 1910 record

records began in the six warmest

1910 Junes on record

Guardian graphic. Source: Nasa, NOAA
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Extrapolation
O For disaster planning, public health, construction (and insurance) we need to extrapolate to
— the tails of distributions, beyond previous events
- new conditions in a warmer (and more variable?) world.
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Motivations for modelling extremes
0O Estimation of changes in extremes, for better forecasting.

O Risk assessment at a single important site.
O Risk estimation for particular (compound?) events:
—  What is the risk of crop failure due to drought over a large region?
—  What might the total insurance payout be in case of a major windstorm, or flooding of a major city?
O Attribution of events to possible causes: to what extent is a heatwave caused by climate change?
O These involve:
— accurate interpolation or extrapolation;
— accurate marginal and/or joint modelling of extreme events.
O Risk estimation can involve bold extrapolation:
— e.g., prediction of ‘ten-thousand year event’ from 80 years of data.
O Basic problem: the events are (used to be!) rare, so there may be little (or no) directly relevant data.
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Why specialised models?

O Task is extrapolation to rarer events.
O The (multivariate) normal distribution is too inflexible for accurate modelling of distribution tails.
O Extrapolation from a fit to the entire distribution can be misleading:
— there may be regime change in the tails,
— different fits to the bulk may give very different tail estimates—in particular, the light tails of
the Gaussian density can grossly underestimate probabilities of rare events,
- multivariate Gaussian models predict independence of very rare compound events (‘the formula
that killed Wall Street’).
0O Standard copulas can deal with transformations to marginal distributions, but not with joint
dependence.
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Gaussian tails and probabilities
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O Gaussian (black), Cauchy (red) and too (blue) densities matched to have probabilities 0.05 for |Y'| > 1.96
O Ratios of Cauchy/Gaussian and toq/Gaussian probabilities for Y| > y:

Y 2 3 4 5 6 7
Cauchy ratio  1.08 12 387 34247 8.3 x10%° 5.5x 10°
tog ratio 1.01 1.7 6.1 58 1589 1.3 x 10°
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Joint Gaussian tails for rare events

I I
g
%
%

o

I
& &

Conditional probability
°
S
8
3
Conditional probability

00 02 04 06 08 10
I I I
o
o

00 02 04 06 08 10
o

I
o

U
2 0 2 4 6 8 10 12 2 0 2 4 6 8 10 12

O Conditional probabilities P(Z2 > z | Z1 > z) as a function of z, for
— bivariate Gaussian data with correlation 0.9 (left)
— Dbivariate extreme-value data with extremal coefficient 1.23 (right)
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Extremal paradigm

0 We need a basis for extrapolation outside the sample, possibly based on a small (extreme) subset
of the data.

O The uncertainty will inevitably be large, and must be taken into account.

O Standard models and methods are too limiting, because
— they cannot accommodate heavy tails

— their joint tail properties are too inflexible for wide use, and risk mis-(under-?) estimating
probabilities for joint events.

O Hence the extremal paradigm:
- Fit asymptotically-justified models which extrapolate ‘appropriately’,
— (but check the adequacy of these models carefully!)
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Scalar Extremes slide 10

Max-stability and the GEV
O Basic notion is max-stability: ‘the maximum of 100 consecutive years of data equals the maximum of the ten
decadal maxima’.
O This implies that if X;,..., X, ~° F and there are sequences {an} > 0 and {b,} such that
max(X1,...,Xn) —bn
Qn

M, =

has a non-degenerate limiting distribution G, then G must satisfy the stability postulate (Fréchet, 1927)
GT(br +ary) = Gly), T>0.

O The Extremal Types Theorem (Fisher and Tippett, 1928) states that the only solution is the generalized
extreme-value (GEV) distribution:

(L+e=n)7e g#0,

G(y) = exp{—A , with A(y) =
(y) = exp{=A(y)}, with A(y) {exp(_L;n)7 £€=0,

where a4+ = max(a,0), 7 is a real location parameter, 7 is a positive scale parameter, and £ is a real shape
parameter.

O The GEV is a ‘universal’ law, analogous to use of Gaussian for averages.
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‘Three types’
Gumbel, Frechet, Weibull
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O & determines the rate of tail decay, with:
— & > 0 giving the heavy-tailed Fréchet, Type Il, bounded below;
— & =0 giving the light-tailed Gumbel, Type |, with support on R;
— & < 0 giving the short-tailed (reverse) Weibull, Type Ill, bounded above.
O Minima have limiting distribution 1 — G(—y), so no need to consider them separately.
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Extrapolation
O To extrapolate to T-year maxima (below, with 7" = 50 in red) from a GEV fitted to annual maxima, we use

GT(y; T, 5) = G(T]T7 7T, 5)7

where nr =+ 7(T¢ — 1)/€ and 77 = 7T¢; £ is unchanged.

O In applications the parameters are estimated and the uncertainty may be large.
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Poisson process
O Random point pattern P in a state space £ defined by properties of counts
NA ={z:zePnA}, ACE,

satisfying two properties:
— N(A1),...,N(Ax) independent for disjoint Aq, ..., Ak,
— N(A) ~ Poiss{u(A)},

where the measure p is non-atomic, and often has an intensity /.

O

Mapping theorem: if g : £ — £* does not create atoms, then P* = g(P) is also a Poisson process.

O

Restriction of process P to £ C £ is also Poisson.

O Let Xi,...,X, X F and for bn € R and a, > 0 define point processes

PnI{M:j:L...,}, £=R.
an

O Then the rescaled maximum M,, has a non-degenerate limiting distribution G iff P,, converges to a Poisson process
with mean measure A(y) = A{(y,o00)} for y € R.
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Point process ap~»~vintine

~ ~ ~ . ~

(X-b)/a
(X-b)/a
(x-b)/a
(x-b)/a

@ @ @ @

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

t t t t

O Take Xi,...,X, 2 F for which the GEV limit holds and form binomial processes

_ JXi—ba) .
"Pn—{<n+1, . ).]fl,...,n}.

O Asn — oo, Pn converges to a Poisson process P on [0, 1] x R with measure

w{[t1,t2] X (z,00)} = (t2 —t1)A(z), 0<t1 <tz <1,z €R.
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Threshold exceedances

O Exceedances of a threshold u occur at the times of a homogeneous Poisson process of rate A(u), and their sizes are
independent with the generalized Pareto distribution (GPD)

H(z) = {1 —(L+&efo) [0 £#0,

z >0,
17exp(fx/a), €:07

where £ e Rand o =7+ &(u—n) > 0.

O The GPD can be derived from the ratio of the limiting measures
1—-H(z) =A(z+u)/A(w), z>0.

O Use of this approximation is called peaks over threshold (POT) analysis.

O Analogous to the max-stability of the GEV, the GPD is threshold-stable, so it is the natural model for exceedances
over high thresholds—and under low ones, by replacing H(z) with 1 — H(—x).

0 Extrapolation to higher levels is analogous to the GEV.
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Generalized Pareto distribution
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A flexible distribution whose density can take a variety of shapes.

Left: exponential density (£ = 0, black), heavy-tailed density (£ = 0.5, red) and light-tailed density
(¢£ = —0.2, blue, with upper terminal shown); all have o = 1.

Right: densities with negative shape parameter and upper terminal zp = 1, with £ = —1 (black), £ = —2
(red), £ = —0.5 (blue) and & = —0.8 ( ).
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Shape parameter ¢

O

O

& has characteristic ranges for different types of data:

— for rainfall, typically £ ~ 0.1,

— for extreme hot or cold temperatures, typically £ ~ —0.2,

— for wind speeds, typically £ <0,

— for athletics data, typically £ < 0,

— for negative financial returns, typically £ > 0, maybe even £ > 1 for very risky assets.
¢ is difficult to estimate, and its uncertainty dominates extrapolation, so if possible we
— combine data from different (but compatible!) sources to reduce uncertainty, or

— use Bayesian methods, if good prior information is available.

The rth moment of the GEV exists only if £ < 1/r, so the mean exists only if £ < 1, the variance only if £ < 1/2, etc.
In applications (particularly in finance) some moments may not exist.

MLE does not have its usual properties if £ < —1/2.
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Statistical implementation

O

O

The GEV and GPD are limit models, but are used as approximations for maxima for finite block size m and
for finite threshold w, so there is a trade-off:

— taking m too small/u too low gives more data but estimation may be biased,
— increasing m or u reduces bias, but may give too little data for useful assessment of uncertainty.

Methods for automatic choice of m or u have been proposed, but may perform badly, so informal (generally
graphical) methods are often used.

Quantile regression is sometimes used to choose w in big datasets.
Sensitivity analysis is crucial: conclusions should not depend heavily on the choice of m or w.

Usually fit models using likelihood or Bayes methods, which are flexible and general.
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Quantiles and return levels

O
O

Assume we use the GEV to model annual maxima, Y.
Take 0 < p < 1 and define the GEV quantile y, by G(yp) = p, giving

(—logp)~* —1
.

We call y, the return level associated with the return period 1/(1 — p), so yo.95 is the 20-year return level, yo.99 is
the 100-year return level, etc.

Yp=n+T

Is this useful in a non-stationary setting?

Shape=0.2

jantile

Shape=0

Shape=-0.2

T T T T
2 0 2 4 6

~Log(log(1-p))
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Estimation or prediction?

O

O

Return levels, values at risk, expected shortfalls and probabilities would be known if we knew the underlying data
generating mechanism—they are parameters to be estimated.

Very often we are interested in future events, e.g., the largest flood Y7 to be seen in the next 1" years, which is a
random variable—even if we knew the data generating mechanism exactly, we should consider Y7 as random until
the T years have passed.

Should we focus on prediction of future events, rather than probabilities for fixed levels?

In a Bayesian context, this is (in principle) straightforward, we compute the posterior predictive density of Yr
conditional on the observed data Y =y, i.e.,

[ fyr |y 0) f(y ] 0)m(9)do
Tor 19) = = T oymeyae

where 7(0) is the prior density for parameters 6. We could also compute summaries, such as quantiles of f(yr | y)
or its mean E(Yr | Y =vy).

In a frequentist setting, we may estimate properties of the T-year maximum, such as its median or its expectation (if
finite).
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Annual maxima for Vargas

300 400
| 1

Daily rainfall (mm)
200
!

. ikt L i
19I50 19I60 19I70 19I80 19I90 ZOIOO
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Vargas GEV fit

1961-1999 1961-1998
Location n  47.153.77 47.873.73
Scale T 20.553,29 19.522,92
Shape f 0.360,15 0-140.16

Parameter estimates and standard errors with and without the 1999 maximum.

O Note:
— the sizes of the standard errors relative to the estimates;

— the large change in Edue to dropping the final maximum;

— the Gumbel distribution (£ = 0) is well inside a 95% confidence interval for £ if 1999 is dropped, but not

otherwise.

O The largest observation has a huge effect on inferences, particularly for &.

10

slide 23



Predictive densities

Predictive densities for annual daily maximum (black) and 39-year daily maximum (red), based on data without
1999, with the 1999 daily maximum shown by the vertical line:
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Gumbel fits to the monthly maxima would be poor:
O there can be zero maxima (March, April?);

0 mixtures — some values lie well off the line for the rest;
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Peaks over threshold (POT) analysis, u = 40mm
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Exploratory techniques
0 The mean of the GPD satisfies

E(X—u|X>u):1J%€:Tl+_§€u, £<1.

so if the GPD is applicable above some threshold v, a plot of

Y (@ —u)I(z; > u)
Z?:1 I(z; > u)

should be a straight line of gradient £/(1 — &) when u > v.

VS u

O Likewise, if the point process model is appropriate for data above some threshold u, plots of the ML
estimates of 7, 7 and £ based on data above those thresholds should become constant, above u.

O The main issue with these plots (and many others for extremal data) is that the region of interest usually
has too few observations, and hence too wide confidence intervals, to draw firm conclusions.

slide 27
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Example: Venezuela rainfall
Mean residual life plot (top left) and parameter stability plots for fits of point process model:
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Extremogram
The extremogram for a stationary series { X} estimates

mh(u) = P(Xegn >u| Xe >w), h=12,....

If there is no serial dependence, we should see 7, (u) = P(X; > w) for all h (blue in picture, upper 95% point is red).
O This is (almost) the ACF for the time series I(X; > u);
O estimated by (almost) the corresponding correlogram;

O beware poor sampling properties—is there an annual cycle for X; > 20mm?
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Comments
O There is (slight) autocorrelation in large values, leading to some clustering, but

— under often-plausible conditions on the long-range dependence of extremes, block maxima from a stationary
process have limiting GEV distribution

exp {—0A(y)},

where the extremal index 6 € (0, 1], determines the behaviour of clusters;

— the basic Poisson process approximation extends to allow clusters of extremes of mean size 1/6 (and otherwise
arbitrary configuration).

O Seasonality in extremes could stem from variation in the numbers of large rainfall days, or in the sizes of large
rainfall amounts, or both — need to formulate regression models appropriately if distinguishing these is of interest.

O Analyzing annual maxima avoids having to deal with any clustering or seasonality.
O Analysis of the exceedances would allow more detailed modelling of clusters.

O This dataset ends after the largest event, so there is a stopping rule. Ignoring this will bias estimates of risk upwards.
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Multivariate Extremes slide 31

Multivariate extremes

O Substantive motivation: many extremal problems are intrinsically multivariate:
— overwhelming of sea defences by high tides and strong winds;
- flooding at many locations of a river system;
— heatwaves have successive very hot days over a wide spatial area.

O Statistical motivation: uncertainty may be reduced by combining information from several
sources.

O In one dimension it's obvious what is ‘extreme’, but
— what is ‘extreme’ in two or more dimensions?
— how can we summarize and model extremal dependence?

O One approach is to use a scalar structure variable.
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Structure variable

O A structure variable S = s(X1,..., Xp) is a univariate function:

— for example, insurance loss
D
S = g ad(Xa),
d=1

where the functions a,(-) express losses due to risks Xj.

0O Then we have a scalar time series S1,...,.S, to which previous ideas apply, using block maxima or
threshold exceedances.

O Advantages: simple analysis, ignores dependence between X1,..., Xp.

O Disadvantages:
— if a new structure variable is introduced, a new analysis is needed—which may disagree with original;
— missing values of X4 not allowed;

— don't learn which combinations of X5,..., Xp yield extreme events.
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Extremes for two variables

O For simplicity, consider bivariate case (X,Y’) with the same marginal distributions.

O Given a high threshold u, we might consider any of the following scenarios as extreme:
— at least one of X and Y exceeds u, i.e., max(X,Y) > u;
— both X and Y exceed u, i.e., min(X,Y) > u;

— afunction s(X,Y") exceeds u, e.g., X +Y > u, though s(-) could also measure distance from some
multivariate centre for the data; or

— given that X > u, we consider the distribution of Y, where Y is called a concomitant of X; the
extremal set is X > u.

O There are other possibilities, but these already make life complicated enough.

O The grey regions on the next slide are considered under these four scenarios.

slide 34
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Extremes in two dimensions
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Models for multivariate extremes
O In extension of the univariate case, we ask:
If non-degenerate limiting distributions exist for maxima of rescaled (X1,..., Xp), what forms can
they have?
O Clearly the limiting margins of suitably rescaled variables must be GEV, so we consider the component-wise
transformations
X; —ba\ V¢ D
Pn = <1+§]7) ij=1,..., p CE=Ry — {0},
Gn, n
where Xi,..., Xy, an >0, b, and £ are all D x 1 vectors; we replace (1 + ¢ ~)1+/5 by exp(-) when £ = 0.
O In this case the marginal maxima are unit Fréchet, P(Z < z) = exp(—1/z), for z > 0.
O With this transformation, P,, converges to a Poisson process P on £ with mean measure
. X —b,\ "¢
lim nP{<1+§ n) €-p=npn()
n— oo Qn
+
that defines the joint distribution of the maxima (up to marginal transformation).
slide 36
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Poisson process limit

O Letz=(21,...,2p) € € and let
.Az :g*[o,zl] X o+ X [O,ZD].

The maximum of P, lies below z iff P, N A, = (), and this has limiting probability
P(Z<z)=P(PNA.=0)=exp{—u(A:)}, z€¢g,
where Z denotes the componentwise maximum of the points in P.
O Equivalently we define the exponent function

V(Zl, .. .,ZD) = H(Az),

and can show that

— the marginal unit Fréchet distributions of the Z4 yield V(z,00,...,00) = 1/z for any permutation of the
arguments;

— the function V is homogeneous of order —1, i.e.,
V(tzi,...,tzp) = t71V(Zl, ...yZD), Zl,...,zD > 0,t >0,

which implies max-stability of the distribution of Z.
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Limit distribution of componentwise maxima
O It follows that the limiting distribution of suitably rescaled maxima is of the form
P(Z1 < z,...,Zp < zp) =exp{—p(A:)}, z,...,2p>0,

where b
w(Az)=V(z1,...,2p) = DE {Igjic(Wd/zd)} ,

and

— the angular variable W = (W1,...,Wp) lies in the simplex,

WeSp_1={(wi,...,wp): wa zo,zwd =1},

— the angular distribution v of W satisfies the marginal constraints
E(Wy)=1/D, d=1,...,D,

but is otherwise arbitrary.

O Hence (up to marginal transformations) we can model multivariate threshold exceedances using a Poisson process
with measure p, or joint maxima using the distribution exp{—pu()}.

slide 38
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Extremal functions

O

O

If we write P ={Q, : j =1,2,...} using extremal functions @Q;, then
Qj :Rjo, Rj >0,Wj € Sp-1,
where
- the pseudo-radii R; are points of a Poisson process on (0, 00) with intensity D/r? independent of

i
- the pseudo-angles W; ~ v,

and the extremal functions form a Poisson process on £ with intensity

w(dg) = p(dr, dw) = % x v(dw).

The Q; represent individual extreme events (storms, heatwaves, ...).
We can simulate the (); by starting with the largest R; and working downwards.

The same decomposition applies in more generality, with the W functions lying in a suitable function space.

slide 39

Husler—Reiss simulations

Simulated Poisson processes for the Hiisler—Reiss model with A = 0.5,4 (left, right). In each case 10000 points with the
largest pseudo-radii have been simulated; the limits appear curved because of the log axes. The intersections of the
dotted lines show the componentwise maxima: on the right both arise from a single event, whereas on the left they arise
from two separate events.
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Husler—Reiss distribution

O A natural analogue of the normal distribution in multivariate extremal contexts.

O The bivariate version has a scalar parameter A > 0 and

1 A 1 29 1 A 1 21
1% =—®{Z 4 _log 2 —p{Z 4 —log (2 >0
(21,22) - {2+)\0g(21)}+22 {2+)\og<22>}, 21,22 >0,

where ® denotes the standard normal cumulative distribution function.

O Its limits are total independence and total dependence,

1/2141/2z9, X — o0,
1/ min(z1, 22), A — 0.

V(Zl, 2’2) — {

O For this model,
W= =1+ exp(e + \?1/2),

where T = +1 with equal probabilities independently of ¢ ~ N (0,1).
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Events from subsets of 1V

O If V is differentiable, there can be densities on the D-dimensional simplex Sp_1 and on each of its
sub-faces, defined by setting subsets of the wy to zero.

O Hence v can have 2P — 1 components in general — a complicated object!

O These correspond to particular combinations of extremes and can be viewed as components of a mixture
distribution.

O If D = 3, for example, there are three singleton components, three pair components, and one triple
component, so perhaps the limiting rare events are

W1 only, W, W3 together, or W1, Wy, W3 together,
corresponding to
Q1>07Q2:Q3:05 Q1:07Q27Q3>05 or Q17Q27Q3>07

with other combinations impossible.

O In applications we never see (4 = 0, so we have to declare Q4 = 0 when Q4 < € for some small positive €.

slide 42
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Asymptotic dependence and independence
O All max-stable models are asymptotically dependent (AD), i.e.,

x(u) =P {X2 > F2_1(u) | X1 > Ffl(u)} —-x>0, u—1,

or exactly independent if x = 0.

O

n many applications x(u) — 0 as uw — 1, i.e., the variables are asymptotically independent (Al), and we then use

_ _ IOgP{FQ(XQ) > u}
X(W) = 2B (Xa) > u, B (X1) > ]

1= u—1,

to measure the level of Al. The scaling is chosen so that if
— X and Y are independent, Y = 0;

— if X and Y are perfectly dependent, X(u) = 1,

— ifX andY are AD, x =1;

— —1 < Xx(u) <1, and X increases with increasing dependence.

O

Both x(u) and X(u) can be estimated non-parametrically from data.
O Can construct Al models from AD ones by inversion.
O Models encompassing both AD and Al exist (e.g., Heffernan & Tawn, 2004).
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Extremal coefficient
O A simple summary of dependence is the extremal coefficient,

which satisfies 6 = 1 for perfectly dependent data, and 8 = D for independent data, and is (loosely) interpreted as
the ‘number of independent maxima’ contributing to Z, because

P{max(Z1,...,Zp) <z} = P(Zi1<z...,Zp <2)
exp{—V(z,...,2)}
exp{—-V(1,...,1)/z}
{exp(—1/2)} "0z >0,

the distribution of the maximum of 6 = V/(1,...,1) independent Fréchet variables.
O When D = 2,

X:limP(Z1>Z|Z2>Z)=2—0, 1<6<2,
zZ—00

and 2 — 0 is sometimes called the extremal correlation.

slide 44
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Extremal coefficients for snow depth

Koppigen (483m)

Adelboden (1350m)

Davos (1560m)

Maloja (1800m)

Extremal coefficient computed relative to Koppigen, Adelboden, Davos and Maloja (white points), kriged to the
whole of Switzerland using a linear trend on absolute altitude difference (Blanchet & Davison, 2011).
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Concurrence probability

O The concurrence probability is the probability pp that all D components of a multivariate maximum Z arise from a
single extreme event, or equivalently that the limiting Poisson process contains a point Q such that @ = Z with
probability one.

[0 This event occurs if @ = z and A, is void, or equivalently if the maximum of the other points of the Poisson process
is below z, so

po = [ exp (A} @z = Bw B {max Wi} .

where W, W™ K.
[0 Total dependence yields pp = 1, whereas independence yields pp = 0.
[0 pp has a nice interpretation, but its computation typically involves numerical integration.

O In spatial applications the probability that the same Q leads to extremes at locations s and s’ is pp = p2(s, s’), and

I(s) = / pa(s, s')ds'

measures the mean area of the events leading to extremes at s.
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Concurrence for high/low temperature extremes

0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.00 0.05 0.10

Figure 8. Maps of the extremal concurrence probability for the Worland station (triangle) for the Fall (top) and Spring (bottom) seasons. The left panels show results for the
time period 1911-1950 while the middle panels to 1951-2010. The rightmost panels plot the pointwise p-values relative to the hypothesis test of concurrence probabilities
difference between the two time periods—see Section 4.5.

From Dombry, Ribatet and Stoev (2018)
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Concurrence for high/low temperature extremes

E{lc(s)I}

100 anomalies

25 3.0

— TR

variations

Figure 9. Top: Spatial distribution of the expected extremal concurrence cell areas anomalies, that is, the pointwise difference between E{|C(s)|} for period 1951-2010 and
period 1911-1950. Bottom: Spatial distribution of the extremal concurrence cell area variations, that is, the pointwise ratio between var{|C(s)|} for period 1951-2010 and
1911-1950. Each column corresponds to one season. From left to right: Fall, Winter, Spring, and Summer.

From Dombry, Ribatet and Stoev (2018)
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Inference

Typically we

O fit the GEV or GPD to the margins, allowing for covariates, trends, seasonality .. .;

O transform the data using the marginal fits Ay, for d = 1,...,D;

O check for AD/AI using x(u) and X (u);

O fit suitable models to the marginally transformed data,
— avoiding using exact values of any very small observations;
— often avoiding full likelihood or Bayesian inference (use pairwise likelihood or other tricks);
— compare models, check fit, etc.

O estimate risks/rare event probabilities, . ..,

[0 perform sensitivity analysis as needed.

Better understanding of overall uncertainty if we do all the fitting in a single step (but the computation can be too
burdensome).
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Comments

O After transformation of the margins to a standard form, the joint distributions have a nonparametric structure
imposed by max-stability.

O Other marginal transformations could be used (e.g., to uniform, Gumbel, exponential, ... margins); use of unit
Fréchet is just for convenience.

O

There are close links between the maximum and point process representations.

O There are many parametric models for bivariate data, but fewer for D > 2.

O Dependence measures exist:

— x and X measure asymptotic dependence (AD) and asymptotic independence (Al);

— the extremal coefficient is a scalar summary of dependence, with § = 1 for fully dependent data and § = D for
independent data;

— the concurrence probability is another scalar summary, with a simple interpretation.

O Inference becomes awkward in (very) high dimensions.
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Spatial Extremes

slide 51

O
O

Models

We consider extremes at the points of a set X (e.g., an area of a map).

We again apply marginal transformations A;(-) to a unit Fréchet distribution at each z.

O Individual multivariate events were represented as

Q= R;W;, W; €Sp LSRRI R; ~ Poisson process(1/r),

and now the W; become independent replicates of some spatial process W (z) on X for which E{W (x)} =1 for
every x, so we have

Qj(z) = R;Wj(x),
and Z(z) = sup; Q;(z) for every z.

i=12,..., z€X

O Inference is based on observations at D = {z1,...
that

,xp}, so follows the same lines as for multivariate data, except

— the marginal transformations must pool information over X for prediction at =z ¢ D,

— the distribution of W (z) uses geostatistical ideas (variogram, ...) to model dependence — Brown—Resnick
process extends the Hiisler—Reiss model and is particularly useful.

slide 52
Likelihood for events
O Base extremal modelling on those individual events ¢ falling into extreme set A:
— allows more detailed modelling and may include more data,
— if u(A) is readily computed, likelihood is
. . PV (z1,...,2p)
exp {—u(A)} x , =2 ,
p{—n(A)} x [T ila), g Iy
geA
— but components of some ¢ may be non-extreme, so use a censored likelihood.
o — RO1 R11
o ROO .o R10
o st
0‘0 0‘2 0‘4 0‘8 O.‘S 1‘0 (‘) 2 4‘1 [‘3 E‘i
x q(0.2)
slide 53

24



Saudi Arabian rainfall
O Jeddah liable to intense (but rare!) strong convective rainstorms, leading to flash floods, extensive damage and
deaths.

[0 15-minute radar data available at 750 grid cells over 17 years, so daily annual maxima are space-rich but time-poor.

Somalia

DR Congo
L.Google . Map data ©2017_Imagery ©2017 TemaMetrics

20 °E 30 °E 40 °E 50 °E 60 °E

(Davison et al. 2019)
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Saudi Arabian rainfall
[0 Censor annual maxima < 3mm.

O Use local likelihood estimates of location and scale parameters, with £ &~ 0.14 constant.

O Transform maxima to standard Fréchet scale, and fit spatial models using censored pairwise local likelihood

17

—V)(ViVa — Via)
2(9) = w/Izi/>u/7zi > uq)lo {exp( .
() ;d;d a,al (21,4 d» Zi,d > ua) log D, )

O Information criteria suggest reasonable fit of isotopic Brown—Resnick model with variogram (h/\)%, with range
A = 13km range and shape a =~ 0.7.

2.0

1.8

16

1.4

Extremal coefficient

= Empirical
Smith

7 —— Schlather

—— Brown-Resnick

—— Extremal t

12

1.0

0 200 400 600 800
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Megina

slide 56

§rﬁH#€aAF§lﬂlﬁg é’ﬁima'l:'oeMRﬂ?'aﬁte [1, D] for locations around Jeddah.

Region D = {s1,...,sp} D | Empirical 573

Smith  Schl. B.-R. Ext.-t
[39,40]°E x [21,22]°N 14 4.17(1.90,6.44) 3.47 3.16 4.41 3.44
39,41°E x [21,23]°N 62 | 14.25(6502000) 973 6.06 11.27 871
39,42]°F x [21,24]°N 142 | 20909 543006 19.00 9.01  20.10 15.96
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Saudi Arabian rainfall: Risk estimation

0O Use simulation of individual events to compute probabilities that annual maximum averaged over 14 grid

cells S around Jeddah/Makkah exceeds vmm/day, i.e.,
p(v) =P {|5|1 > Z(s) > v} ;
SES

obtaining
p(50) = 0.072, p(71.1) =0.019, p(100) = 0.0048,

with respective return periods around 14, 54 and 208 years.
O Daily rainfall total on 25 November 2009 was 71.1mm/day, leading to 122 deaths.
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Causality slide 59

Causality 101

O The formal study of causality concerns how manipulation of variables (causes) of a set of units affect other
variables (effects) of those units.

O Three broad types of causal statement:
— evidence-based mechanism as in hard science (genetics, physics, ...);

— stable association not explainable by another allowable variable (no confounders); or (intermediate
between these)

— (potential or actual) experiments and counterfactuals.
O Examples:
— Clausius—Clapeyron mechanism, global heating and rainfall;

— Granger causality — the predictability of one time series improves (often in information-theoretic terms)
if we have access to another time series;

— attribution of individual events to global heating?

O Requiring potential for manipulation means that some variables (e.g., time) cannot be causal.
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Causality 101, 1l

O Manipulation of potential causes is sometimes possible (e.g., by randomisation).

O For a given unit with response Y and possible cause A we would like to know
Ya=1 - Yao,

where Y—q is the response when A = a € {0, 1}.

O The key difficulty even in a randomised experiment is that one of Ya—1 and Ya—¢ is unobserved (counterfactual),
so we need assumptions

— about the relations between the Ya—1 — Ya—¢ for different units, and
— to relate observable data on individual units to some average of Ya—1 — Ya—o.
0 In an observational study we need assumptions to link
E(Ya=a) (unobservable)
E(Y|A=a) (can be estimated).

O A major benefit of formal causal inference is to clarify the background assumptions, whose plausibility can be
discussed (and sometimes checked).

slide 61

28



Causality 101, I

O Climate scientists often want to compare a real rare event (or series thereof), Ya—1, with Ya—o, where a = 1
corresponds to the real world and a = 0 corresponds to an imaginary world without anthropomorphic climate
change, e.g., computing

or some variant.

O Major issues are:

0 Much more later ...

P(Ya=1)/P(Ya=o), P(Ya=1) —P(Ya=o)

both probabilities are typically small, so the details of the computation matter (not using EVT may seriously
underestimate them) and the uncertainty may be large;

computing P(Ya=1) relies on past data/known mechanisms, so cannot account for regime changes;
numerous (but related) climate models could be used to get Ya—o, so sensitivity analysis is tricky;
the climate system would be non-stationary even with A = 0;

the event is often defined post-hoc, so there is an element of selection;

often the computation takes place just after the event, but this is not accounted for.
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Closing slide 63

Discussion

O Extreme-value statistics

is a well-developed (and growing!) domain of statistics dealing with extrapolation for rare(r) events,

— relies on point process theory and regular variation (suppressed here),
— to provide asymptotically-justified models that are never exactly correct,
— can be fitted (with some effort) to high-dimensional problems/processes, and

— has many applications to complex problems in climate science.

slide 64

References (mostly review papers)

Blanchet & Davison (2011) Annals of Applied Statistics.

Coles (2001) An Introduction to Statistical Modelling of Extreme Values. Springer.
de Haan & Ferreira (2006) Extreme Value Theory. Springer.

Dombry, Ribatet & Stoev (2018) Journal of the American Statistical Assocation.
Davison, Padoan & Ribatet (2012) Statistical Science.

Davison & Huser (2015) Annual Review of Statistics and its Applications.

Gelfand, Fuentes, Hoeting & Smith, eds. (2019) Handbook of Environmental and Ecological Statistics.
Chapman & Hall/CRC.

Huser & Wadsworth (2020) Wiley Interdisciplinary Reviews (WIREs) Computational Statistics.

O 00o0oo0oo

O

slide 65

30



	Motivation
	Summer 2018
	Extrapolation
	Motivations for modelling extremes
	Why specialised models?
	Gaussian tails and probabilities
	Joint Gaussian tails for rare events
	Extremal paradigm

	Scalar Extremes
	Max-stability and the GEV
	`Three types'
	Extrapolation
	Poisson process
	Point process approximation
	Threshold exceedances
	Generalized Pareto distribution
	Shape parameter 
	Statistical implementation
	Quantiles and return levels
	Estimation or prediction?
	Annual maxima for Vargas
	Vargas GEV fit
	Predictive densities
	Monthly maxima
	Peaks over threshold (POT) analysis, u=40mm
	Exploratory techniques
	Example: Venezuela rainfall
	Extremogram
	Comments

	Multivariate Extremes
	Multivariate extremes
	Structure variable
	Extremes for two variables
	Extremes in two dimensions
	Models for multivariate extremes
	Poisson process limit
	Limit distribution of componentwise maxima
	Extremal functions
	Hüsler–Reiss simulations
	Hüsler–Reiss distribution
	Events from subsets of W
	Asymptotic dependence and independence
	Extremal coefficient
	Extremal coefficients for snow depth
	Concurrence probability
	Concurrence for high/low temperature extremes
	Concurrence for high/low temperature extremes
	Inference
	Comments

	Spatial Extremes
	Models
	Likelihood for events
	Saudi Arabian rainfall
	Saudi Arabian rainfall
	Saudi Arabian rainfall: Estimates
	Saudi Arabian rainfall: Model fit
	Saudi Arabian rainfall: Risk estimation

	Causality
	Causality 101
	Causality 101, II
	Causality 101, III

	Closing
	Discussion
	References (mostly review papers)


