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The basic SIR epidemic (without prevention)

The classic SIR epidemic

s ′(t) = −βs(t)i(t)

i ′(t) = βs(t)i(t)− γi(t)

r ′(t) = γi(t)

R0 = β/γ

Assumptions: homogeneous mixing, homogeneous individuals, no
waning of immunity, no seasonality
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Plot of i(t) (prevalence) over time
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The SIR epidemic with prevention

The basic SIR epidemic with prevention

Introduce a (non-pharmaceutical) time-varying prevention strategy
P = {p(t); 0 ≤ t <∞}: contacts reduced by fraction p(t) at t. The SIR
epidemic with prevention, now depending on P, is defined by

s ′P(t) = −β(1− p(t))sP(t)iP(t)

i ′P(t) = β(1− p(t))sP(t)iP(t)− γiP(t)

r ′P(t) = γiP(t)

Final size: rP(∞) = 1− sP(∞)

Total cost of prevention strategy: ||P||1 =
∫∞
0

p(t)dt

Optimization problem: Which preventive strategy P, with cost
satisfying

∫∞
0

p(t)dt ≤ c1, minimizes final size rP(∞)?
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Optimal control, alternatives

Note that rP(∞) =
∫∞
0
γiP(t)dt, so minimizing final fraction infected (=

total incidence) rP(∞) is equivalent to minimizing
∫∞
0

iP(t)dt

Disease burden:

Total incidence ||iP ||1 =
∫∞
0

iP(t) dt

Peak prevalence ||iP ||∞ = supt≥0 iP(t)

Intervention costs (societal and economic):

Total duration ||P||0 =
∫∞
0

1(p(t) > 0) dt

Total cost ||P||1 =
∫∞
0

p(t) dt

Maximum intervention level ||P||∞ = supt≥0 p(t)

We focus on minimizing ||iP ||1 subject to ||P||1 ≤ c1 (no vaccine
available or expected to arrive in near future!)
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Uncontrolled prevalence (top), some preventions (bottom)
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Which prevention reduces final size rP(∞) the most?
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Related problems

Solution is presented at end of talk ...

Other optimality criteria (other than rP(∞) ∝ ultimate fraction
needing hospital care)

p(t) > α not possible (we consider α = 75%)

Peak prevalence (temporal burden on hospitals)

rP(t): cumulative fraction infected up to some fixed t (e.g. vaccine
arrival)

rP(T ): cumulative fraction infected up to some random T (e.g.
vaccine arrival not known exactly)

Other cost functions (other than linear cost
∫∞
0

p(t)dt )

Higher cost for high prevention, e.g.
∫∞
0

p2(t)dt

Extra price for quick/many changes, e.g. +
∫∞
0
|p′(t)|dt
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Minimising peak prevalence

Related problem for minimizing peak prevalence (Miclo, Spiro, and
Weibull, 2022):

Peak prevalence (||IP ||∞ = supt≥0 iP(t)), subject to Total cost
||P||1 ≤ c1, is minimised by

p(t) =


0, t ∈ (0, t1] (wait)

1− 1
R0S(t)

, t ∈ (t1, t2] (maintain)

0, t ∈ (t2,∞) (relax).

Figure comes later (red curve)
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Back to our problem: an interesting by-product

Consider a prevention strategy P(t) consisting of complete lockdowns
(P(t) = 1) during n intervals starting at {ti} and lasting for duration
{τi}. Then final size zP = rP(∞) is the positive solution to the following
equation

1− zP = e−R0(zP−
∑n

k=1 iP (tj )(1−e
−γτj ))

The solution is smaller, the larger
∑n

k=1 iP(tj)(1− e−γτj ) is ...
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Back to our problem: Optimal solution

i(t) when no interventions
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Which prevention strategy (with
∫
p(t)dt ≤ c1) minimizes final epidemic

size?
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Best strategy: complete lockdown starting at peak
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Minimising total incidence (main result)

Theorem

For any initial state with S(0), I (0) > 0, the total incidence ||iP ||1 among
all piecewise continuous intervention strategies such that ||P||1 ≤ c1 and
||P||∞ ≤ c∞ is minimised by an intervention of form

p(t) =


0, t ∈ (0, t1] (wait)

c∞, t ∈ (t1, t1 + c1/c∞] (suppress)

0, t ∈ (t2,∞) (relax)

for a uniquely determined start time t1.

Starting time t1: If c∞ = 1 (complete lockdown possible) then t1 =
peak-prevalence time of unrestricted epidemic. If c∞ < 1 then t1 earlier

Take home message: Heavy lockdowns of short duration outperform
light lockdowns of longer duration.
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Best and worse case bounds

Additional result: For any intervention strategy with finite cost
||P||1 <∞, the total incidence is at least 1− 1/(R0s(0)) (herd immunity
level) and at most 1− s0(∞)/s(0) (total incidence without prevention).

Illustration: Suppose R0 = 3 and s(0) ≈ 1 (no initial immunity). Then
any intervention with finite cost will result in total incidence between
66.7% and 94.0%.

Figure on next slide Suppose that lockdown up 75% is possible, and
that c1 = 15 (full lockdown days). So for instance a 75% lockdown can
go on for 20 days, a 50% lockdown can go on for 30 days and a 25%
lockdown can go on for 60 days.

Theorem states that a 75% lockdown minimizes total incidence, but
when should it start?
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Optimal start time
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Total incidence with 75% lockdown for 20 days for different starting times.
Optimal start time t1 = 23.6 days yields total incidence of 0.758. Universal
bounds equal 0.666 and 0.940.

Starting too early is about equally bad as starting too late.
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Minimizing final size vs minimizing peak prevalence
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Adding prevention before optimal may increase final size!
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Sketch of Proof

We reduce the problem to finite horizon and on–off controls, and then
apply the on–off control theory result in Feng, Iyer, and Li (2021).

Four steps steps:

1 Truncation

2 Quantisation (Lipschitz interpolation lemma + Gronwall’s inequality)

3 Prolongation

4 Feng et al (2021): Many constant level prevention periods minimize
total incidence if they are merged into one long prevention period
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Step 1: Truncation

Lemma (Time to herd immunity)

For any piecewise continuous control such that ||P||1 <∞, the time to
reach herd immunity is finite and bounded by

tH(P) ≤ ||P||1 +
log(βγ s(0))

βi(0)
eγ||P||1 .

Lemma (Uniform integrability)

For any c1 ≥ 0, there exist constants α,C ,T∗ > 0 such that

sup
||P||1≤c1

∫ ∞
T

iP(t) dt ≤ Ce−αT for all T ≥ T∗.
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Step 2: Quantisation

Quantisation of a function P by frequency modulated function P̂ with
amplitude 0.75.
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Lemma (Approximation by on-off controls)

For any b, h > 0, the approximation P̂ = Qb,hP satisfies ||P̂||1 = ||P||1, and∣∣∣∣∫ t

0

(
P̂(s)− P(s)

)
φ(s) ds

∣∣∣∣ ≤ bh (||φ||∞,t + t||φ||Lip,t)

for all t ≥ 0 and all locally bounded and locally Lipschitz continuous φ.
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Step 3: Prolongation

Lemma (Monotonicity)

Let (s1, i1, r1) be an epidemic trajectory controlled by P1 such that
P1 = 0 outside [0,T ]. Let (s2, i2, r2) be an epidemic trajectory with the
same initial state but a modified control P2 = P1 + c1[t1,t2] with
T ≤ t1 ≤ t2. Then r2(∞) ≤ r1(∞).

Prolonged interventions (extended at the end) imply less
infections.

Step 1-3 + result by Feng et al (merge multiple constant level prevention
periods) gives the desired result
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Discussion

Main conclusion (given assumptions and minimzation criteria):

It is best to wait (a surprisingly long time) and then impose as much
lockdown as possible until the intervention cost is used up.

However

Is there a maximal total cost c1 <∞ or a maximal cost per
month/quarter of year/year?

No vaccine (or expected to arrive)

Immunity waning not considered

No seasonality

Homogeneous mixing, homogeneous individuals
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