Studying infection disease models with chemical reaction network theory
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Network representation for biochemical systems
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Deterministic model Stochastic model Hybrid model

- ODE - Markov chain
- PDE - SPDE
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Deterministic modeling for reaction networks
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Deterministic modeling for reaction networks
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x(t) = (xa(t),xp(t)) : Concentration of A and B



Deterministic modeling for reaction networks
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Stochastic modeling for reaction networks
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Stochastic modeling for reaction networks

Kl K3
4o 4 B=A, A=10
| \4—)8 K Ky
D—- A

Where to go When to go



Stochastic modeling for reaction networks
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# of A

X(t) = (Xa(t), Xg(t)): Copy numbers of A and B , Continuous time Markov chain

PX(t+At)=2+(1,-1)"|X(t) = 2) = Ap_a(x)At + o(At)
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Network structural conditions = Dynamical Properties
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Derive qualitative behaviors of the associated dynamics
by solely using graph topological conditions,
regardless of the parameters k;s.

Often unknown in practical research.

Theorem [Horn and Jackson(1972), Feinberg (1972)] :
If # nodes-# connected components-dim{reaction vectors} = 0 and weakly reversible network

= The associated ODE under mass action admits a unique locally stable steady state on each compatibility class.

Kq # of complexes = 3
EX) 27 — B # of connected component = 1
dim(reaction vectors) = dim{ (-2,1), (0,-1), (2,0) } =2

0 3-2-1=0
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Derive qualitative behaviors of the associated dynamics
by solely using graph topological conditions,
regardless of the parameters k;s.

Often unknown in practical research.

Theorem [Anderson, Craciun and Kurtz (2010)] :

If # nodes-# connected components-dim{reaction vectors} = 0 and weakly reversible network
= For the associated Markov chain under mass action,

lim p(A,t) =m(A)forany A C Z¢, and = isa product form of Poissons.

t—o0

N\ Stationary distribution

Kq # of complexes = 3
EX) 27 — B # of connected component = 1
dim(reaction vectors) = dim{ (-2,1), (0,-1), (2,0) } =2

0 3-2-1=0



When the network structural conditions can be used for studying infection-disease models?
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In macroscale, each model may have the same structure, but have different parameters.



Infection-disease models of small communities
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Infection-disease models of small communities
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Infection-disease models of small communities

Classroom (Fri)
O 0 o o o)
o o O
°cos. ©03806 008 Weekly
°0°6 88 8 Test
Dorm 1 Dorm 2
Ol0]0|0|0]0 0|0 O|0|0]|0|0]|O OO0
0] (0] (0] (0] (@] (@) Qlo 0] (0] [e] (0] [][®) olo
Classroom (Mon/Wed) flClassroom (Tue/Thur) JJClassroom (Mon/Wed) JClassroom (Tue/Thur)
00 o 00 o 0 0 o 00 o
600980060698 [c008%]|cc0c g5
0o O OO0 O OO0 O OO0 O
©o0o O 0o O 6o o "]J©90 0

B

Classroom (Fri)
00 o 1o ®)
O o O
°° 8. ©©86008 Weekly
°0°0 88 8 Test
Dorm 1 Dorm 2
0] (0] (@] [0] (0] [®] Ol0 Ol0]0]0]|0]0 0|0
(o] (0] (0] (0] (0] [®) (0] (@) o] [e] [e][e][e][0) 0|0
Classroom (Mon/Wed) Classroom (Tue/Thur)
OO0 (ONN®) O 0 OO0
60698 006598 |[e6698 008938
©0 0 00 © oo o° oo 0°
oo ©O OO0 O oo O © 0 O

Joint work with German Enciso (UC Irvine) and Suzanne Sindi (UC Merced)




Structural reduction for steady states

Toy examples
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Yuji Hirono, Takashi Okada, Hiroyasu Miyazaki, Yoshimasa Hidaka, "Structural reduction of chemical reaction networks based on topology", Phys. Rev. Research 3, 043123
(2021).
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Structural reduction for steady states

More complex example
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Yuji Hirono, Takashi Okada, Hiroyasu Miyazaki, Yoshimasa Hidaka, "Structural reduction of chemical reaction networks based on topology", Phys. Rev. Research 3, 043123
(2021).



Structural reduction for steady states
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Relate the algebraic structure of the deterministic system to homology and cohomology.

Yuji Hirono, Takashi Okada, Hiroyasu Miyazaki, Yoshimasa Hidaka, "Structural reduction of chemical reaction networks based on topology", Phys. Rev. Research 3, 043123

(2021).



Structural reduction for steady states

Extending to the stochastic model
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