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Brief Summary
• In survey sampling, some data are sampled according to inclusion 

probabilities instead of using all the data from the target population


• The inclusion probability (or weight) plays an important role to conduct 
valid statistical analysis


• However, classical weighting methods are unstable especially when 
the weights are extremely large


• We propose an estimator that attains 
the semiparametric efficiency bound 
by using a model on the weighting mechanism
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• Variables: 

• : response variable

• : (interesting) covariate

• : other covariates

• : inverse of inclusion probability

• : sampling indicator 

 

    takes 1 if data are sampled 

• : size of sampled dataset


• Target:   

(Xi, Yi, Zi, Wi, δi)N
i=1

i.i.d.∼ F
Y
X
Z
W
δ

n

E(Y), E(Y ∣ x; θ), f(y ∣ x; θ)

Setup
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We consider this setting in this talk

Setting 2 
with partially observed X



Sampling Mechanism
• Non-informative sampling (MAR) 

 

         

• Informative sampling (NMAR) 
 

         
 

We consider informative sampling in this talk

W ⊥ Y ∣ (X, Z)

W ⊥ Y ∣ (X, Z)

6

X

Y

Z

W δ
θ

X

Y

Z

W δ
θ



• We want to know the relationship between 
Payroll ( ) and total Employment ( )


• Size of population : 2029 workplaces


• Sampled size : 142 workplaces

• Stratified sampling (3 strata) 

 

 + simple random sampling 
     

     with nonresponse adjustment


• Model: 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Example: The Canadian Workplace and Employee Survey (Fuller, 2009)
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Z-estimator
(Semiparametric) Z-estimator : Unique solution to 
 

                                          
 

Mean of response variable:                 
 
Regression parameter:         
 

Outcome model:                                  

θ
E {U(X, Y; θ)} = 0

θ = E(Y) ⇒ U(X, Y; θ) = θ − Y

μ(X; θ) = E(Y ∣ X) ⇒ U(X, Y; θ) = A(X){Y − μ(X; θ)}

f(Y ∣ X; θ) ⇒ U(X, Y; θ) =
∂
∂θ

log f(Y ∣ X; θ)
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Score function
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Horvitz-Thompson Estimator 
• Horvitz-Thompson (HT) estimator: the solution to 

 

                          　　　　　 

 
 where  

• The most well known method in survey sampling

• No additional assumptions are required

• Theoretical validity: Unbiased estimating equation  moment method

n

∑
i=1

WiU(Xi, Yi; θ) = 0,

E{U(X, Y; θ)} = 0

⇒
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Available when  is unknownN



Proof  for  Unbiasedness
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E [
n

∑
i=1

WiU(Xi, Yi; θ)] = E [
N

∑
i=1

δiWiU(Xi, Yi; θ)]
= E [

N

∑
i=1

P(δi = 1 ∣ Xi, Yi, Wi)WiU(Xi, Yi; θ)]
= N × E [U(X, Y; θ)]
= 0

=
1
Wi



Smoothing Weight
• Smoothing weight: 


• Beaumont (2008, Biometrika) shows that using  instead of  is more 
efficient in the context of regression analysis


•  is to be estimated

• Misspecification of the model causes bias


• Kim and Skinner (2013, Biometrika) proposed an optimal weight in 
the same setup.  

 There are possibilities that we can construct more efficient estimator  than HT!!

W̃ := E(W ∣ x, y, δ = 1)

W̃ W

W̃(x, y)
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Preparation: Bayes’ Theorem
• Let   and 


• Transformation of   
 

 　　  

• Transformation of   
 

 　  　  

 
  

f1(y ∣ x) = f(y ∣ x, δ = 1) π(x, y) = P(δ = 1 ∣ x, y)

f1 → f

f1(y ∣ x) = f(y ∣ x, δ = 1) =
f(y, δ = 1 ∣ x)
P(δ = 1 ∣ x)

=
f(y ∣ x)π(x, y)

∫ f(y ∣ x)π(x, y)dy

f → f1

f(y ∣ x) =
f1(y ∣ x)π−1(x, y)

∫ f1(y ∣ x)π−1(x, y)dy

12



Conditional Maximum Likelihood (CML) for Outcome model
• Assume that


•  is of our interest

• response probability  is known


• Then, the conditional maximum likelihood (CML) estimator is the efficient: 
the solution to 
 
  

f(y ∣ x; θ)
π(x, y) = P(δ = 1 ∣ x, y)
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n

∑
i=1

S1,θ(Xi, Yi) :=
n

∑
i=1

∂ log f1(Yi ∣ Xi)
∂θ

= 0

=
n

∑
i=1 [Sθ(Xi, Yi) −

∫ Sθ(x, y)π(x, y)f(y ∣ x; θ)dy
∫ π(x, y)f(y ∣ x; θ)dy ]

=
n

∑
i=1

[Sθ(Xi, Yi) − E1{Sθ(x, Y) ∣ x; θ}]

f1(y ∣ x) = f(y ∣ x, δ = 1) =
f(y ∣ x)π(x, y)

∫ f(y ∣ x)π(x, y)dy



How to Handle When  is Unknown??π(x, y)
• Sverchkov and Pfeffermann (1999, Sankya B) shows that 

 

       
 

                              
 

                               


•  can be estimated by the regression  on  with sampled data

• If  is misspecified, the estimator causes bias

E1(W ∣ x, y) = ∫ wf1(w ∣ x, y)dw

=
∫ wP(δ = 1 ∣ w, x, y)f(w ∣ x, y)dw
∫ P(δ = 1 ∣ w, x, y)f(w ∣ x, y)dw

=
1

P(δ = 1 ∣ x, y)
=:

1
π(x, y)

π W (X, Y)
π

14
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Conditional Maximum Likelihood (CML)
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Our Goal
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• Variables: 

• : response variable

• : (target) covariate

• : other covariates

• : inverse of inclusion probability

• : sampling indicator 

 

    takes 1 if data are sampled 

• : size of sampled dataset


• Target:   

(Xi, Yi, Zi, Wi, δi)N
i=1

i.i.d.∼ F
Y
X
Z
W
δ

n

E(Y), E(Y ∣ x; θ), f(y ∣ x; θ)

Setup
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Key Idea: Regard  as a Random VariableW
•  is a probability (propensity score)


• However, we treat  as a random variable and construct a semiparametric model 
 

   
 

   
 

   

• : infinite dimensional nuisance parameters

• NOTE: If our interest is estimating outcome model , then  


• Goal: Estimate  that is not affected by 

W−1 = P(δ = 1 ∣ X, Y, Z, W)

W

f(x, y, z, w ∣ δ = 1; θ, η1, η2, η3)

=
P(δ = 1 ∣ x, y, z, w)f(z, w ∣ x, y; η1)f(y ∣ x; θ, η3)f(x; η2)

∫ P(δ = 1 ∣ x, y, z, w)f(z, w ∣ x, y; η1)f(y ∣ x; θ, η3)f(x; η2)dxdydzdw

=
w−1f(z, w ∣ x, y; η1)f(y ∣ x; θ, η3)f(x; η2)

∫ w−1f(z, w ∣ x, y; η1)f(y ∣ x; θ, η3)f(x; η2)dxdydzdw

η1, η2, η3
f(y ∣ x; θ) f(y ∣ x; θ) = f(y ∣ x; θ, η3)

θ η1, η2, η3
19
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Lemma: Rotnitzky and Robins (1997, Stat. Med.)
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Λ

SeffSθ

 

 The efficient score  is given by 
 
       
 
 

 
   where  is the unique solution to 
 

     
 
    

  Then, the semiparametric efficiency bound for  is 

Seff

Seff = δWD*eff + (1 − δW)
E{(W − 1)D*eff}

E(W − 1)
,

D*eff ∈ ΛF,⊥

Π (WD*eff − (W − 1)
E{(W − 1)D*eff}

E(W − 1)
ΛF,⊥) = SF

eff

θ {E(S⊗2
eff )}−1

Lemma 1. When  is knownN

= =

IPW Augmented term

Tangent space on η1, η2, η3



Target Parameter
1. -estimator: Solution to  

 

                      


2. Regression parameter:     

3. Outcome model:   

Z E{U(X, Y; θ)} = 0

θ = E(Y) ⇒ U(X, Y; θ) = θ − Y

μ(X; θ) = E(Y ∣ X)

f(Y ∣ X; θ)

21



Semiparametic Efficiency Bound for  with partially observed θ X

22

 

         The efficient score for  is  
 
                                , 
 
 

 
   where  and  are different according to the target parameters. 
 
 
   The semiparametric efficiency bound for  is 

θ

Seff = δWD*eff + (1 − δW)c*eff

D*eff c*eff

θ {E(S⊗2
eff )}−1

Theorem 1. When  is knownN

= =

IPW Augmented term



   (i) : 
 
             .

 
   (ii)  
 

                     

 
        where 
 

        

E{U(X, Y; θ)} = 0

D*eff = U(θ), c*eff =
E{(W − 1)U(θ)}

E(W − 1)

μ(x; θ) = E(Y ∣ x)

D*eff = A*eff(X){Y − μ(X; θ)}, c*eff =
E [ E(Wε ∣ X)

E(Wε2 ∣ X)
∂
∂θ μ(X; θ)]

E [E(W − 1) − {E(Wε ∣ X)}2

E(Wε2 ∣ X) ]
,

A*eff(x) =
1

E(Wε2 ∣ x) [E(Wε ∣ x)c*eff +
∂
∂θ

μ(x; θ)]
23

Seff = δWD*eff + (1 − δW)c*eff

π̄ = π̄(x, y) =
1

E(W ∣ x, y)

=

ε



   (iii) Outcome model : 

        
 
 

         

f(y ∣ x; θ)

D*eff = π̄ {Sθ −
E(π̄Sθ ∣ x)
E(π̄ ∣ x) } + (1 −

π̄
E(π̄ ∣ x) ) c*eff,

c*eff =
E { E(π̄Sθ ∣ X)

E(π̄ ∣ X) }
1 − E [ 1

E(π̄ ∣ X) ]

24

Seff = δWD*eff + (1 − δW)c*eff

π̄(x, y)
and its conditional expectation 

are unknown functions

E(π̄ ∣ x) and E(π̄Sθ ∣ x)

π̄ = π̄(x, y) =
1

E(W ∣ x, y)

Sθ = Sθ(x, y) =
log f(y ∣ x; θ)

∂θ



Remark.   is UnnecessaryZ

• Information of  does NOT affect efficiency of  at all

• In missing data analysis, all the covariates that affect  are required to be 

observed

• However, in this case, observing  is enough to explain  

• We do NOT need to sample   even if it has an effect on 

Z θ
δ

W δ

Z W

25
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Example. Adaptive Estimator for E(Y)
• Estimating Equation: 

 

   
 

      

Seff(θ) =
N

∑
i=1

{δiWi(θ − Yi) + (1 − δiWi)
E{(W − 1)(θ − Y)}

E(W − 1) } = 0

⇒ ̂θ =
1
N

N

∑
i=1

{δiWiYi + (1 − δiWi) E{(W − 1)Y}
E(W − 1) }

26

Seff = δWD*eff + (1 − δW)c*eff, U(θ) = θ − Y

E{(W − 1)Y}
E(W − 1)

=
E1{W(W − 1)Y}
E1(W(W − 1))

≈
∑δj=1 Wj(Wj − 1)Yj

∑δj=1 Wj(Wj − 1)

Unknown value

Estimator



Working Models
• Consider an adaptive estimator for (c)  


• The optimal estimating equation involves estimation of unknown functions:

1.  

 

We give a reasonable model later. 

2.   and    
 
Because  is estimable with the Horvitz-Thompson estimator (say, ), 
 

this function can be computed by 
 
 

f(y ∣ x; θ)

π̄(x, y) = {E(W ∣ x, y)}−1

E(π̄ ∣ x) = ∫ π̄(x, y)f(y ∣ x; θ)dy E(π̄Sθ ∣ x)

θ ̂θHT

̂EHT(π̄ ∣ x) = ∫ π̄(x, y)f(y ∣ x; ̂θHT)dy

27



Parametric Model on    —1/2—W

• 


• Assume that 

•  take values on  

•                                                                                                   ( : precision parameter) 

• This is essentially same as the beta regression model 
 

 (Ferrari and Chibari-Neto, 2004, J. Appl. Stat.)


• Thus,   

X ∼ Beta(α, β) ⇔ 1 − X ∼ Beta(β, α) ⇔
1 − X

X
∼ Beta′￼(β, α)

W−1 ∣ (x, y) ∼ Beta(m(x, y)ϕ, {1 − m(x, y)}ϕ)
W−1 (0, 1)

ϕ

O := W − 1 =
1 − W−1

W−1
∼ Beta′￼({1 − m(x, y)}ϕ, m(x, y)ϕ)

28

E(W−1 ∣ x, y) = m(x, y), V(W−1 ∣ x, y) =
m(x, y){1 + m(x, y)}

1 + ϕ



Parametric Model on    —2/2—W
• Distribution on  

 

   
 

                    
 




• By using a property of the beta prime distribution, 
 

         ; 

 

              

O ∣ (x, y, δ = 1)

f1(o ∣ x, y) ∝ f(o ∣ x, y)P(δ = 1 ∣ x, y, o) = f(o ∣ x, y)
1

1 + o

= o{1−m(x,y)}ϕ−1(1 + o)−ϕ ⋅
1

1 + o

⇒ O ∣ (x, y, δ = 1) ∼ Beta′￼({1 − m(x, y)}ϕ, m(x, y)ϕ+1)

E1(W ∣ x, y) = 1 + E1(O ∣ x, y) =
1

m(x, y)

E(W ∣ x, y) = 1 + E(O ∣ x, y) =
ϕ − 1

m(x, y)ϕ − 1
29

(W = O + 1)



Parametric Model on W

30

 

         Assume that . 
 

   Then,    and 
 

                      

W−1 ∣ (x, y) ∼ Beta(m(x, y)ϕ, {1 − m(x, y)}ϕ)
W − 1 =: O ∣ (x, y) ∼ Beta′￼({1 − m(x, y)}ϕ, m(x, y)ϕ)

O ∣ (x, y, δ = 1) ∼ Beta′￼({1 − m(x, y)}ϕ, m(x, y)ϕ+1)

Proposition 1.

• The assumption is essentially same as the beta regression model 
 

 (Ferrari and Chibari-Neto, 2004, J. Appl. Stat.)


• By using the properties of beta prime distribution, we have 
 

E(W−1 ∣ x, y) = m(x, y), V(W−1 ∣ x, y) =
m(x, y){1 + m(x, y)}

1 + ϕ

E1(W ∣ x, y) = 1 + E1(O ∣ x, y) =
1

m(x, y)
;

E(W ∣ x, y) = 1 + E(O ∣ x, y) =
ϕ − 1

m(x, y)ϕ − 1
⇒



Proposed Adaptive Estimator for (c) f(y ∣ x; θ)
1. Assume a parametric model on , e.g. 

 

                  


2. Estimate  by ML based on the likelihood on    (beta prime distribution)


3. Let 


4. Solve the following estimating equation w.r.t.  (say, ): 
 

 

 

where  and  and  are obtained by replacing the unknown functions with the  
estimated ones.

m(x, y)

m(x, y; β) =
exp(β0 + β1x + β2y)

1 + exp(β0 + β1x + β2y)

(ϕ, β) f1(o ∣ x, y)

π̄(x, y; ̂β, ̂ϕ) =
m(x, y; ̂β) ̂ϕ − 1

̂ϕ − 1

θ ̂θeff

Seff(θ, α̂) :=
1
n

n

∑
i=1

{δiWiD̂*eff(Xi, Yi; θ, α̂) + (1 − δiWi) ̂c*eff(α̂)},

α̂ = ( ̂β⊤, ̂ϕ, ̂θ⊤
HT)⊤ D̂*eff(θ, α̂) ̂c*eff(α̂)

31

W−1 ∣ (x, y) ∼ Beta(mϕ, (1 − m)ϕ)



Efficient Score When  is UnknownN

• The efficient score when  is unknown is obtained by letting  be 


• For example,  if the regression model is of our interest, 
 
                           , 
 

where        and  


   This is exactly same as the result of Kim and Skinner (2013, Biometrika)

N c*eff 0

Seff = δWD*eff + (1 − δW) × 0

D*eff = A*eff(X){Y − μ(X; θ)} A*eff(x) =
1

E(Wε2 ∣ x)
∂
∂θ

μ(x; θ)

32



Summary of Efficient Score

33

Z-estimator Regression Outcome 

Known Partial ✔︎ ✔︎ ✔︎

Unknown Partial ✔︎
Kim and Skinner 
(2013, Biometrika)

✔︎

Known Complete ✔︎ ✔︎ ✔︎

Target parameter θInformation

N X

c*eff ≡ 0

: constantc*eff

: function of c*eff x

Seff = δWD*eff + (1 − δW)c*eff

I focused on this part 
in this talk



Extension to Strata Mixed Model
• If the sampling mechanism is stratified sampling, it would be 

reasonable to assume that  follows a beta distribution in each 
stratum , e.g. 
 

    


• However, we need an additional model on  such as the 
multinomial logit model


• The parameters are computable by the EM algorithm


• We can compute  and  analogously

W−1

h

W−1 ∣ (x, y, H = h) ∼ Beta(mh(x, y)ϕh, {1 − mh(x, y)}ϕh)

P(H = h ∣ x, y)

E(W ∣ x, y) E1(W ∣ x, y)

34



Large Sample Property of Proposed Estimator

35

 

     Under some regularity conditions,  has the following two properties: 
 

   (i)  if all the working models are correct,  attains the semiparametric efficiency bound; 
 

  (ii)  even if all the working models are misspecified,  has consistency and asymptotic  
        normality. Let  be the parameter of the working models and  be the probability limit of .  
        Then, the asymptotic variance of  is given by 
 

                     


̂θeff

̂θeff

̂θeff
α α̃ α

̂θeff

V( ̂θeff) = E { ∂Seff(α̃, θ*)
∂θ⊤ }

−1

E(S⊗2
eff (α̃, θ*))E { ∂Seff(α̃, θ*)

∂θ⊤ }
−1

Theorem 2.

• Property (ii) insists robustness of  for model misspecification

• The asymptotic variance is independent of that of 


• Model on  can be nonparametric

̂θeff

α̃

m(x, y)



Semi- and Non-parametric Working Model
• Semparametric working model


• We may keep assuming a beta regression, but with a nonparametric model on 


• Nonparametric working model

• By nonparametrically estimating  and , we can estimate 

 
. 

• We believe that we can show that estimators with above working 
models are also valid, but we have not finished to prove yet. 

m(x, y)

E1(W ∣ x, y) E1(W2 ∣ x, y)

π̄(x, y) =
1

E(W ∣ x, y)
=

E1(W ∣ x, y)
E1(W2 ∣ x, y)

36
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Numerical Study      Setup —1/2—
• Setup:


•  


•  and 

• 

• : size of a population

• : number of iteration


• Model:  
Target parameter ;  True value  

W−1 ∼ Beta(m(x, y)ϕ, {1 − m(x, y)}ϕ) ϕ = 2,500
δ ∣ w ∼ Binom(w−1)
N = 5,000
B = 1,000

Y ∣ x ∼ N(a + bx, σ2)
θ = (a, b, σ2)⊤ θ* = (0, 1, 1)⊤

38

X ∼ N 0,
1

2
2 , Z ∼ N 0,

1

2
2 , Y ∣ (x, z) ∼ N x − z,

1

2
2



Numerical Study      Setup —2/2—
• Scenarios for :  in all cases 

   S1. (No dependency)      
   S2. (Dependency)    
   S3. (Misspecified)                 

• Parametric model on :  


• Methods:

• CC: complete case analysis ( )

• HT: Horvitz-Thompson type estimator

• CML: Conditional Maximum Likelihood

• Effreg, Effout: Proposed estimator


• reg: adaptive estimator for regression model

• out: adaptive estimator for outcome model

μ(x, y) n ≈ 200
logit{m(x, y)} = − 3.2

logit{m(x, y)} = − 3.4 + 0.3x + 0.5y
logit{m(x, y)} = − 3.4 + 0.25x + 0.25z + 0.1y2

m(x, y) logit{m(x, y)} = α0 + α1x + α2y

wi ≡ 1

39



Boxplot for  in Scenario S1b̂
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Boxplot for  in Scenario S2b̂
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Boxplot for  in Scenario S3b̂
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Example: The Canadian Workplace and Employee Survey
• We want to know the relationship between 

Payroll ( ) and total Employment ( )


• Size of population : 2029 workplaces


• Sampled size : 142 workplaces

• Stratified sampling (3 strata) 

 

 + simple random sampling 
     

     with nonresponse adjustment


• Model: 
 

 

Y X

(N)

(n)

Y ∣ X = x ∼ N(a + bx, σ2), θ = (a, b, σ2)
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Working model
• Mean function of : 

 

        , where  

• Mixture probability of strata: 
 

 
 

 

W−1 ∣ (x, y, H = h)

mh(x, y) = βh (h = 1,2,3) 0 < βh < 1

P(H = h ∣ x, y; γ)

=
I(h = 1) + I(h = 2)exp(γ(1)

0 + γ(1)
1 y) + I(h = 3)exp(γ(2)

0 + γ(2)
1 y)

1 + exp(γ(1)
0 + γ(1)

1 y) + exp(γ(2)
0 + γ(2)

1 y)
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Estimates for The Canadian Workplace and Employee Survey

46

• Estimates of HT and Eff are very similar


• However, the standard error of Eff is much smaller than HT

estimated SE

estimate

11



Conclusion and Future Works
• In survey sampling, weights are known, 

 but the information had NOT been fully utilized 

• Our proposed estimator…

• attains the semiparametric efficiency bound if the working models are 

correctly specified

• is robust for misspecification of working models. 

• Extension to nonparametric models of the working model
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