Non-compact manifolds with positive scalar curvature

Recent Advances in Comparison Geometry Feb. 25–Mar.1, 2024, BIRS-IASM(Hangzhou)

Outline of talk

- **Main goal**: Let M^n be an open manifold, $\kappa \ge 0$, under what kind of conditions do we have $\inf_M R_g \le \kappa$, g is any **complete** Riemannian metric on M^n .
- 1. I will discuss certain non-compact manifolds admitting no complete positive scalar curvature (PSC) metrics ($\Longrightarrow \inf_{M} R_g \leq 0$) or no complete and uniformly positive scalar curvature (UPSC) metrics ($\Longleftrightarrow \inf_{M} R_g \leq 0$);
- 2. I will discuss various Llarull type theorems on certain complete and non-compact manifolds (\iff inf $R_g \le \kappa$, for some $\kappa > 0$, need some geometric normalizations on g);
- The talk is based on my joint works with T.Hao, Y.Sun, R.Wu, J.Wang and J.Zhu

Some basic facts of scalar curvature

• Scalar curvature

1.
$$R = \sum_{i,j} g^{ij} R_{ij};$$

2. Let
$$B_r(p)$$
 be a small geodesic ball with radius r and centre p , then $Vol(B_r(p)) = \omega_n r^n (1 - \frac{R(p)}{6(n+2)} r^2 + \cdots)$

If R > 0, then the volume of a small geodesic ball is smaller than that of ball with the same radius in \mathbf{R}^n .

3. All compact differentiable manifolds with dimension at least 3 admits a smooth metric of negative scalar curvature.

4. Not all manifolds admit PSC metrics. What kind of manifolds admit/cannot admit PSC metrics?

Manifolds admitting no PSC metrics

- Some typical results on global effects of scalar curvature.
- 1. Theorem (Schoen-Yau, 1980): \mathbb{T}^n , $3 \le n \le 10$, admits no PSC metric
- 2. Theorem (Gromov-Lawson, 1983): All compact Cartan-Hadamard(CH) manifolds admit no PSC metric

A manifold *M* is said to be CH manifold if it admits non-positive sectional curvature.

3. **Theorem(Llarull, 1998):** Let (\mathbb{S}^n, g_0) be the standard unit sphere, if $g \ge g_0$, and $R_g \ge R_{g_0} = n(n-1)$, then $g = g_0$.

- Observations behind those typical examples:
- Nonexistence of PSC metrics depends heavily on the topology of the underlying manifolds;
- 2. A compact manifold admitting no PSC metrics usually has "complicated" topology; for instance, higher genus in 2-dim case;
- 3. One cannot enlarge the metric in all directions and increasing the scalar curvature simultaneously. More specifically:
- **Observation (Gromov, 2023):** Let (M^n, g) be a compact Riemannian manifold, (N^n, g_0) be a compact manifold with constant sectional curvature $\kappa, f: M^n \to N^n$ be 1-Lipschitz and non-zero degree map, then $\inf_M R_g \leq C_n \cdot \inf_M (\tilde{N}, \tilde{g}_0)^{-2}$, here (\tilde{N}, \tilde{g}_0) is the universal covering space of (N^n, g_0) .
- Example 1: Let (\mathbb{S}^n, g_0) be the standard unit sphere, if $g \ge g_0 \Longrightarrow id : (\mathbf{S}^n, g) \to (\mathbf{S}^n, g_0)$ is 1–Lipschitz $\Longrightarrow \inf_M R_g \le R_{g_0} = n(n-1)$.

• **Example 2**: If (N^n, g_0) is a compact CH manifold, M^n is any compact manifold with $f: M^n \to N^n$ be a non-zero degree map, then M^n admits no PSC metrics.

• Suppose g is a PSC metric on M^n , then we may choose $\lambda > 0$ with $f: (M^n, \lambda^2 g) \to (N^n, g_0)$ is 1-Lipschtiz, $inj(\tilde{N}, \tilde{g}_0) = \infty$, we see that $\inf_M R_g \leq C_n \cdot inj(\tilde{N}, \tilde{g}_0)^{-2} = 0$, contradiction.

• SYS(Schoen-Yau-Schick) manifold: Let M^n be a compact manifold, $\beta_1, \dots, \beta_{n-2} \in H^1(M, Z)$, if $[M] \cap (\beta_1 \cup \dots \cup \beta_{n-2}) \in H_2(M, Z)$ is not contained in the image of Hurewicz map $Hu: \pi_2(M) \to H_2(M, Z)$.

• Example: \mathbb{T}^n , $\Sigma^2 \times \mathbb{T}^{n-2}$ with $g(\Sigma) \ge 1$ are SYS manifolds.

$$[\Sigma^2 \times \mathbf{T}^{n-2}] \cap (d\theta_1 \smile \cdots \smile d\theta_{n-2}) = [\Sigma^2]$$

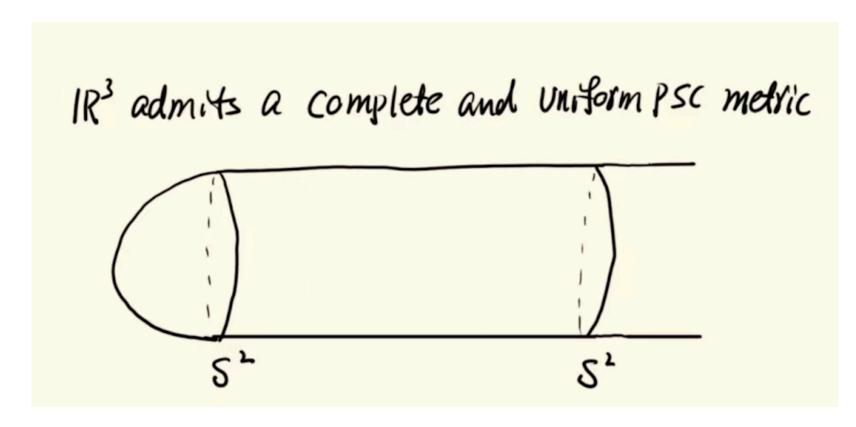
• **Theorem**(Schoen-Yau1980; Schick1998): Let M^n be a compact SYS manifold, $3 \le n \le 10$, then M^n admits no PSC metrics.

- How about non-compact cases?
- Some examples:
- 1. $\mathbb{T}^{n-1} \times \mathbb{R}$ admits no complete PSC metrics $\Longrightarrow \inf_{\mathbb{T}^{n-1} \times \mathbb{R}} R_g \leq 0$.
- 2. $\mathbb{T}^{n-2} \times \mathbb{R}^2$ admits complete PSC metrics but no complete and uniformly PSC metrics $\iff \inf_{\mathbb{T}^{n-2} \times \mathbb{R}^2} R_g \leq 0$.

paraboloid (
$$\mathbb{R}^2$$
, g), $g = dx_1^2 + dx_2^2 + 4a^2(x_1dx_1 + x_2dx_2)^2$, with $R_g > 0$

3. $\mathbb{T}^{n-3} \times \mathbb{R}^3$ admits complete and uniformly PSC (UPSC) metrics.

- All above manifolds are CH manifolds.
- Noncompact CH manifolds may carry complete UPSC metrics



• Some known results:

- **Theorem** (Gromov & Lawson 1983): Let $\mathbb{T}^k \subset \mathbb{T}^n$ be linear subtorus of \mathbb{T}^n , $0 \le k < n$, then $\mathbb{T}^n \setminus \mathbb{T}^k$ admits no complete PSC metrics.
- They proved more general result : any Λ^2 enlargeable manifold admits no complete PSC metrics.
- **Theorem**(Lesourd, Unger & Yau 2020; Chodosh & Li 2020): For $3 \le n \le 10$, and any open manifold M^n , then $\mathbb{T}^n \# M^n$ admits no complete PSC metrics.
- **Theorem**(S.Chen 2022): For $3 \le n \le 10$, any compact SYS manifold N^n and any open manifold M^n , then $N^n \# M^n$ admits no complete PSC metrics.
- **Theorem**(Chen, Chu & Zhu 2023): For $n \in \{3,4,5\}$, any compact aspherical manifold N^n and any open manifold M^n , then $N^n \# M^n$ admits no complete PSC metrics.

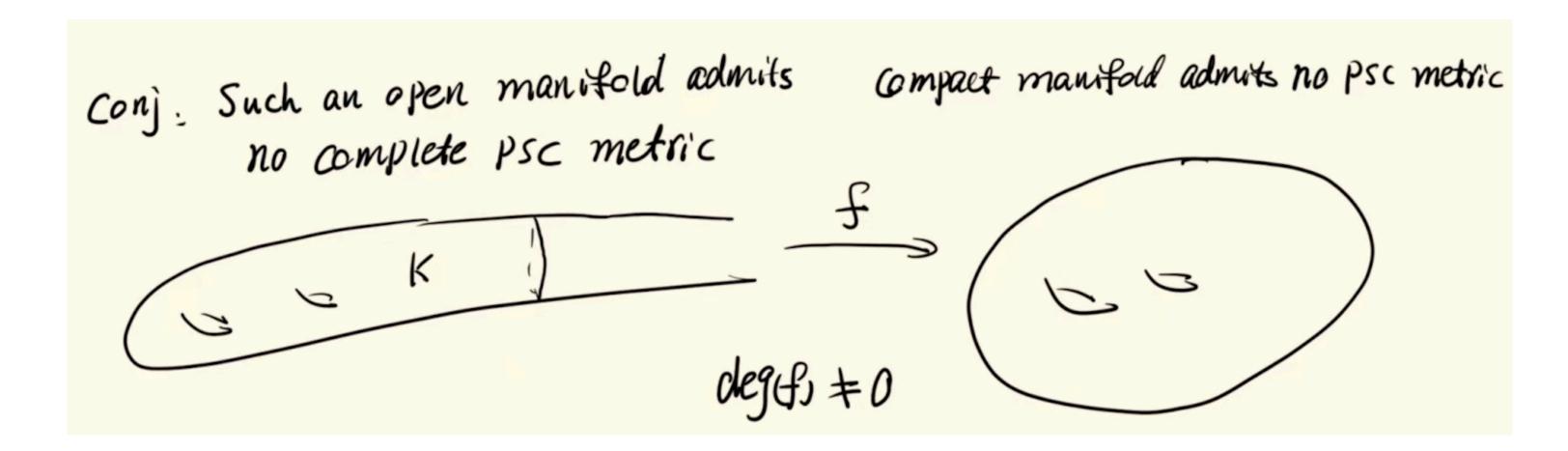
• In 2023, in his Four lectures on scalar curvature, M. Gromov proposed the following conjecture:

Non-compact Domination Conjecture 11_{\odot} . If a compact orientable n-manifold (or pseudomanifold) X_0 can't be dominated (with maps of degree 1) by compact manifolds with Sc > 0, then it can't be dominated by complete manifolds with Sc > 0.

- Let X be a compact manifold, we say X dominates X_0 if there is $f: X \to X_0$ with $deg(f) \neq 0$.
- Let X be an open manifold, we say X dominates X_0 if there is $f: X \to X_0$ and $K \subset X$ with $f|_{X \setminus K} = const.$, $deg(f) \neq 0$.

• Remark on domination:

- 1. For compact manifolds X, X_0, X dominates X_0 , I.e., $f: X \to X_0$ with $deg(f) \neq 0 \Longrightarrow$ the topology of X looks like that of X_0 in certain sense.
- 2. For an open manifold X dominates compact X_0 , I.e., $f: X \to X_0$ and $K \subset X$ with $f|_{X\setminus K} = const.$, $deg(f) \neq 0$. \Longrightarrow the topology of K looks like that of X_0 in certain sense.



• It seems natural to believe the answer to the following special case of Gromov's conjecture should be affirmative.

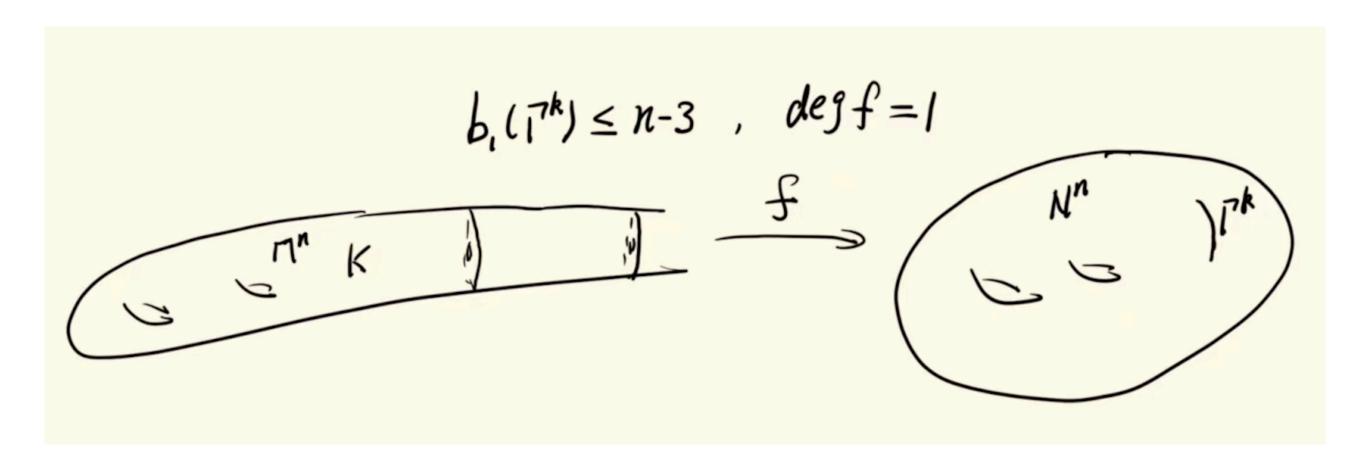
• A special case of Gromov's conjecture:

Let X_0 be a compact SYS manifold, X is an open manifold, $K \subset X$, $f|_{X\setminus K} = const$. $f: X \to X_0$ with deg(f) = 1, then X admits no complete PSC metrics.

Remark

- 1. The above conjecture implies LUY, CL, S. Chen 's theorems. As there always exists $f: X_0 \# N \to X_0$ with deg(f) = 1 for any N.
- 2. Let $\beta_1, \dots, \beta_{n-2} \in H^1(X_0, Z)$ be as in the definition of SYS manifold, WLOG, we may always assume those $\beta_1, \dots, \beta_{n-2}$ is linear dependent around $p \in X_0$.

- **Theorem 1**(Shi, Wang, Wu & Zhu, 2024): Let N^n be a compact SYS manifold, $3 \le n \le 10$, $\Gamma^k \subset N^n$ be a compact submanifold of N^n , M^n be an open manifold, let $f: M^n \to N^n$ be a continuous map and $f: M^n \to N^n \setminus \Gamma^k$ is proper or $f: M^n \setminus K \to \Gamma^k$ for some compact domain K of M^n , and deg(f) = 1, if
- 1. $b_1(\Gamma) \le n-3$, then M^n admits no completely PSC metric ($\Longrightarrow \inf_M R_g \le 0$)
- 2. Γ^k is spherical, $codim(\Gamma) \geq 3$, then M^n admits no completely uniformly PSC metric (\iff $\inf R_g \leq 0$).



• Remark:

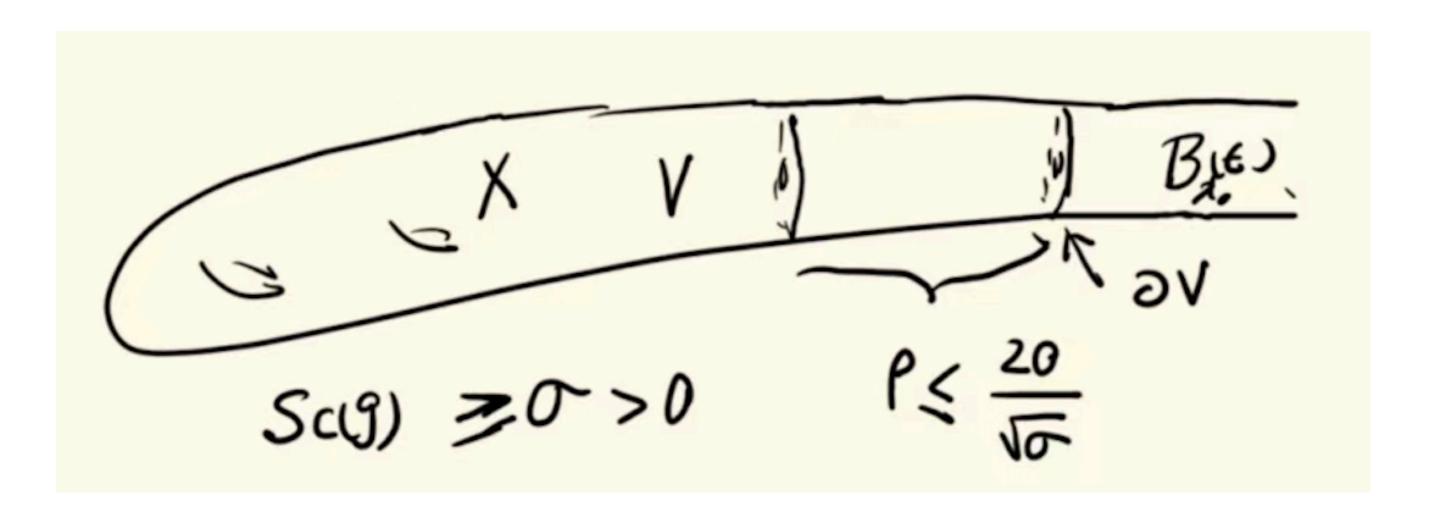
- 1. The same conclusion is still true if $\beta_1, \dots, \beta_{n-2} \in H^1(N, \mathbb{Z})$ is linear dependent on Γ^k . Take Γ^k be a point of N^n , the above theorem give an affirmative answer to the special case of Gromov's conjecture.
- 2. Indeed, we can define a notion so called open SYS manifold, and we can show those open SYS manifolds carry no complete PSC metrics with dimension $3 \le n \le 10$.
- 3. M^n in Theorem 1 and $N \times \mathbf{R}$ are an open SYS manifolds If N is a closed SYS manifold
- 4. The main arguments is to use minimal surface techniques together with careful topological analysis

• In 2018 and his GAFA paper, Gromov proposed the following conjecture

Conjecture **D'**. Let X be closed n-manifold, such that X minus a point admits no complete metric with Sc > 0.

Let V be obtained by removing a small open n-ball from X, i.e. $V = X \setminus B_{x_0}(\varepsilon)$, and let g be a metric on V with $Sc(g) \ge \sigma > 0$. If the ρ -neighbourhood with respect to g of the boundary sphere $S^{n-1} = \partial V = \partial B_{x_0}(\varepsilon)$ is homeomorphic to $S^{n-1} \times [0,1]$, then

$$\rho \leq \frac{20}{\sqrt{\sigma}}$$

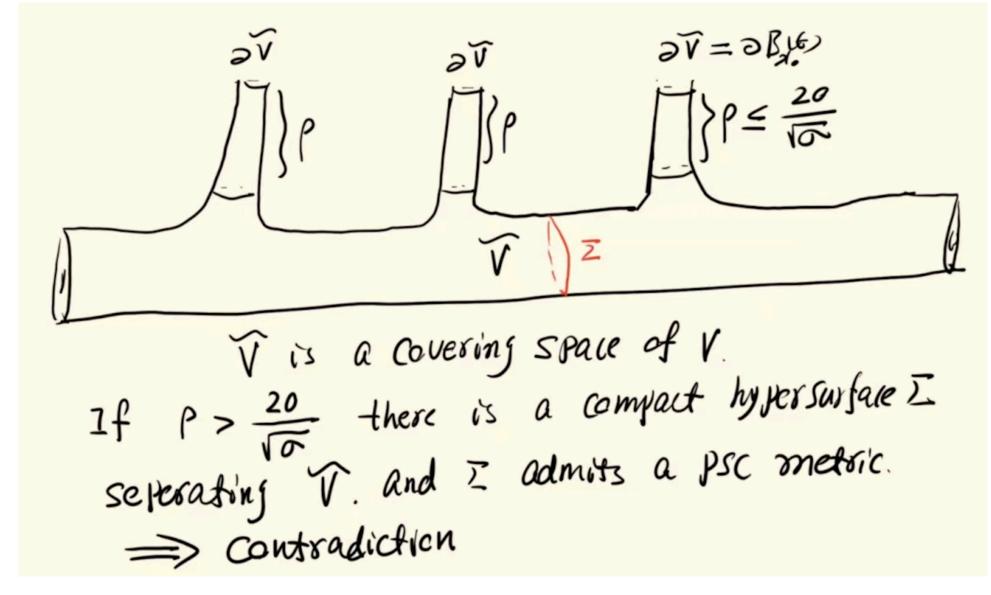


(If X is a SYS-manifold, then metrics g with $Sc(g) \ge \sigma$ on V do satisfy this inequality as it follows by Schoen–Yau's kind of argument adapted to manifolds with

- boundaries as in section 11.6.
- Key observation: Let $\beta \in H^1(X,Z)$ be as in the definition of SYS manifold, then $\beta|_{\partial B_{x_0}(\epsilon)}=0$ as $b_1(\partial B_{x_0}(\epsilon))=0$.
- Given a function μ on a Riemannian manifold (M^n,g) , a $\mu-$ bubble is a boundary of a minimizer (and a critical point) of the functional

$$\Omega \mapsto vol_{n-1}(\partial\Omega) - \int_{\Omega} \mu dv_g$$

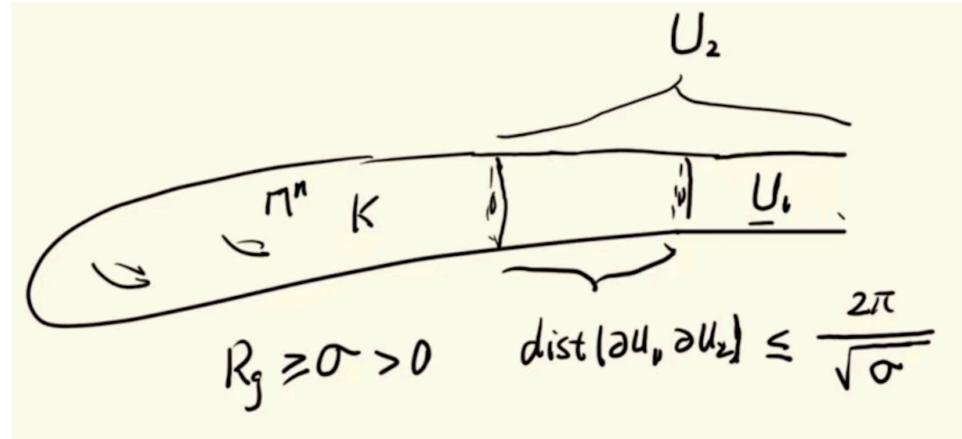
defined for suitable subsets $\Omega \subset M$;



• **Theorem** (Shi, Wang, Wu & Zhu, 2024): Let (M^n, g) be a compact SYS manifold with $3 \le n \le 10$, $\Gamma \subset M$, $Codim(\Gamma) \ge 3$, if Γ is spherical, I.e. $\pi_2(\Gamma) \to H_2(\Gamma, Z)$ is surjective, and $R_g \ge \sigma > 0$, then for any two tubular neighborhood U_1, U_2 of Γ , $dist(\partial U_1, \partial U_2) \le \frac{2\pi}{\sqrt{\sigma}}$, especially $M \setminus \Gamma$ does not admit a complete uniformly

positive scalar curvature(UPSC)metric.

 $\iff \inf_{M \setminus \Gamma} R_g \le 0$ for any complete g



- Remark: 1. if $\Gamma = \{p\}$ then it is automatically spherical;
- 2. One difficulty: $\beta_i |_{\Gamma}$ may not equal to zero, more careful analysis is needed.

• Summary:

- 1. We can define open SYS manifold, those manifolds admit no complete PSC metrics $\Longrightarrow \inf_{M} R_g \leq 0$;
- 2. Let M^n a closed SYS manifold then $M \times \mathbf{R}$ and $M^n \setminus \Gamma^k$ are an open SYS manifolds provided $b_1(\Gamma^k) \le n-3$;
- 3. Let M^n a closed SYS manifold, $\Gamma^k \subset M^n$ is spherical and $n-k \geq 3$, then $\inf_{M \setminus \Gamma} R_g \leq 0$,

Llarull type theorems on complete Riemannian

- **Aim**: Under some geometric normalization on $g \Longrightarrow \inf_{M} R_g \le \kappa$, for some $\kappa > 0$.
- **Observation**: For certain compact manifolds with PSC metrics, one cannot increase the scalar curvature and enlarge the manifold in all directions simultaneously.
- Example: let (\mathbb{S}^2, g_0) be the standard unit sphere, if $g \ge g_0$, and $R_g \ge 2 = R_{g_0}$, then $g = g_0$.
- Proof: Gauss-Bonnet Theorem $\Longrightarrow \int_{\mathbb{S}^2} R_g d\mu_g = \int_{\mathbb{S}^2} R_{g_0} d\mu_{g_0} = 8\pi$ $\Longrightarrow g = g_0.$

• Model space: (\mathbb{S}^n, g_0)

• **Theorem**(Llarull, 1998): Let (\mathbb{S}^n, g_0) be the standard unit sphere, if $g \ge g_0$, and $R_g \ge R_{g_0}$, then $g = g_0 \Longrightarrow \inf_{\mathbb{S}^n} R_g \le n(n-1)$ for all $g \ge g_0$

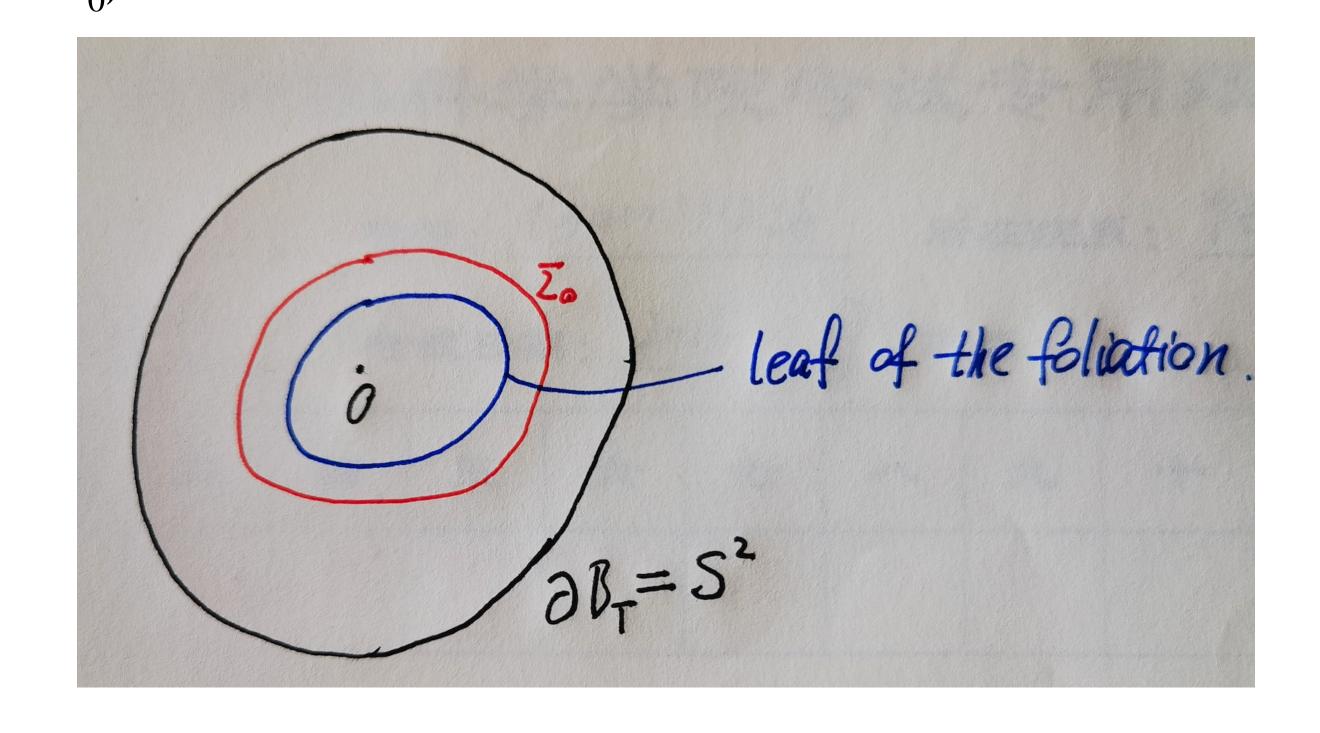
- **Remark**: 1. $id: (\mathbb{S}^n, g) \mapsto (\mathbb{S}^n, g_0)$ is 1—Lipschitz with degree 1 served to be a geometric normalization;
 - 2. (\mathbb{S}^n, g_0) can be replaced by any strictly convex hypersurfaces in \mathbb{R}^n ;
 - 3. Llarull's Theorem was proved by Dirac operator.
 - 4. 1-Lipschitz condition can be relaxed to area—non increasing.
 - 5. (\mathbb{S}^n, g_0) is δ —gap length extremal for $\delta \geq 0$

- By μ -bubble arguments we are able to show:
- **Theorem1**.(H. Hu, P.Liu, Y.Shi 2022)Let $(\mathbf{S}^3 \setminus \{O, O'\}, \hat{g})$ be the standard 3-sphere with a pair of antipodal points removed, and let $h \ge 1$ be a smooth function on $(\mathbf{S}^3 \setminus \{O, O'\}, \hat{g})$ Suppose that g is another Riemannian metric on $\mathbf{S}^3 \setminus \{O, O'\}$ satisfying $g \ge h^4 \hat{g}$ and $R_g \ge h^{-2} R_{\hat{g}}$. Then $h \equiv 1$, and $g = \hat{g}$.

Remark:

- 1. The Theorem should be true if $g \ge h^2 \hat{g}$ and $R_g \ge h^{-2} R_{\hat{g}}$, $h \ge 1$;
- 2. A special case: Llarull Theorem in 3-dim case is true.
- 3. The assumption $h \ge 1$ is important for Theorem 2 to hold. Without this assumption, one may let $g = \cos^2 t (dt^2 + g_{\mathbf{S}^2}) \ne \hat{g}$ on $\mathbf{S}^3 \setminus \{O, O'\} \cong \mathbf{S}^2 \times (-\pi/2, \pi/2)$ and take $h = (\cos t)^{1/2}$ (or $h = \cos t$) and it is easy to check that $g \ge h^4 \hat{g}$ ($g \ge h^2 \hat{g}$) and $R_g \ge h^{-2} R_{\hat{g}}$.
- 4. We do not know whether the result is true or not if $\{O, O'\}$ are not antipodal.

- We use μ —bubble to prove Theorem 1.
- **Observation**: $(S^3 \setminus \{O, O'\}, \hat{g})$ can be regarded as foliations of $2 \cot \rho$ -bubbles, we want to construct the similar foliation on $(S^3 \setminus \{O, O'\}, g)$ by μ -bubble arguments.
- ① To show the existence of an initial μ -bubble in $\mathbf{B}_{\mu} \subset \mathbf{S}^{3} \setminus \{O, O'\}$ for certain μ by perturbation arguments;
- ② To show this μ -bubble has a connected component Σ_0 whose projection onto equator \mathbf{S}^2 has nonzero degree;
- ③ To construct foliation start from the initial μ —bubble Σ_0 , and to show the induced metric on each leaf of foliation agree with that from \hat{g} ;
- 4 To show the sectional curvature of the domain swept by the foliation is 1;
- ⑤ To show the whole manifold can be swept by the foliation.



• Advantage of 3-dim case: μ —bubble is 2-dim, Gauss-Bonnet formula plays crucial roles.

• Model spaces: $\mathbb{S}^k \times N^{n-k}$ with N^{n-k} being enlargeable, for instance, $N^{n-k} = \mathbb{T}^{n-k}$, \mathbb{R}^{n-k} ...

• **Problem 1**: Let (M^n, g) be compact orientable Riemannian manifold with $R_g \ge k(k-1)$, we assume that there is a non-zero degree and 1-Lipschitz map $f: M^n \mapsto \mathbb{S}^k \times \mathbb{T}^{n-k}$, is (M^n, g) locally isometric to $\mathbb{S}^k \times \mathbb{T}^{n-k}$?

• **Problem 2**: Let (M^n, g) be complete orientable Riemannian manifold with $R_g \ge k(k-1)$, we assume that there is a non-zero degree and 1-Lipschitz map $f: M^n \mapsto \mathbb{S}^k \times \mathbb{R}^{n-k}$, is (M^n, g) is locally isometric to $\mathbb{S}^k \times \mathbb{R}^{n-k}$?

- **Remark:** 1. There would be no such f provided $R_g > k(k-1)$, once answers to above problems are affirmative;
 - 2. There are three types of model space:

$$f: M^n \mapsto \mathbf{S}^n \text{ with } R \ge n(n-1);$$

$$f: M^n \mapsto \mathbf{S}^{n-1} \times \mathbf{R} \text{ with } R \ge (n-2)(n-1);$$

$$f: M^n \mapsto \mathbf{S}^k \times \mathbf{R}^{n-k} \text{ with } n-k \ge 2 \text{ and } R \ge k(k-1)$$

- **Theorem** (W.Zhang, 2020): let (M^n, g) be noncompact and complete spin manifold, $f: M^n \mapsto \mathbf{S}^n$ with $f|_{M\setminus K} = const$. and $deg(f) \neq 0$, area non-increasing and $R_g \geq n(n-1)$ on Supp(df) if n is even $(R_g > n(n-1) \text{ on } Supp(df) \text{ if } n \text{ is odd)}$, then $\inf_M R_g < 0$.
- Corollary: let (M^n, g) be noncompact and complete SPIN manifold with $R_g > n(n-1)$, then there is no $f: M^n \mapsto \mathbf{S}^n$ with $f|_{M\setminus K} = const$. and $deg(f) \neq 0$. area non-increasing.

• Problem: Is it possible to show the same result without spin assumption?

CONJECTURE **D**. Let g_0 stands for the standard Riemannian metric on the unit sphere S^n with the sectional curvature 1.

If a Rlemannian metric g on S^n minus a point satisfies

$$g \ge g_0$$
 and $Sc(g) \ge Sc(g_0) = n(n-1)$,

then $g_0 = g$.

(If g is complete, this follows, by the relative index theorem for the Dirac operator, see [Lla98] and (8) in section 10)

M. Gromov. Metric inequalities with scalar curvature. Geom. Funct. Anal., 28(3):645–726, 2018. P. 722

• **Difficulty**: For higher dim case, the manifold may not be spin, hence Dirac operator cannot be used directly; Gauss-Bonnet formula cannot be used on its μ —bubble either.

- Recently, T. Has, Y.Shi & Y.Sun proved the following results
- **Theorem 1**(HSS, 2023): Let (M^n, g) be n-dimensional compact orientable Riemannian manifold with $R_g \geq 6$, $4 \leq n \leq 7$, we assume that there is an non-zero degree and 1 -Lipschitz map $f: M^n \mapsto \mathbb{S}^3 \times \mathbb{T}^{n-3}$, then (M^n, g) is locally isometric to $\mathbb{S}^3 \times \mathbb{T}^{n-3}$. Moreover, for any $x \in \mathbb{T}^{n-3}$, $P \circ f(\cdot, x) : \mathbb{S}^3 \mapsto \mathbb{S}^3$ is isometric, here P denotes the standard projection of $P: \mathbb{S}^3 \times \mathbb{T}^{n-3} \mapsto \mathbb{S}^3$.
- Under the assumptions in Theorem1, we $\inf_{M} R_g \leq 6$

Problem 1.3. Let (M^n, g) be an noncompact orientable and complete Riemannian manifolds with scalar curvature $R_g \geq 6$, $f: M^n \mapsto \mathbb{S}^3 \times \mathbb{R}^{n-3}$ be a proper and 1-Lipschitz map with non-zero degree. Is (M^n, g) (locally) isometric to $\mathbb{S}^3 \times \mathbb{R}^{n-3}$?

- Noncompact situations are much more complicated than those of compact cases.
- Observation: Llarull type theorems are not true on \mathbb{R}^n for $n \geq 2$.

• Example: Let Σ^n , $n \ge 2$, be a paraboloid of revolution in \mathbb{R}^{n+1} which is also a graph of $\mathbb{R}^n \subset \mathbb{R}^{n+1}$, $P: \Sigma^n \mapsto \mathbb{R}^n$ denotes the restriction of the standard projection in \mathbb{R}^{n+1} to \mathbb{R}^n is 1-Lipschitz and $R_{\Sigma} > n(n+1)$.

• Example: Let Σ^n , $n \geq 2$, be a paraboloid of revolution in \mathbb{R}^{n+1} which is also a graph of $\mathbb{R}^n \subset \mathbb{R}^{n+1}$, $P:\Sigma^n \mapsto \mathbb{R}^n$ denotes the restriction of the standard projection. Let $(M^{n+m},g)=\mathbb{S}^m \times \Sigma^n$, $m\geq 2$, note that its scalar curvature $R_g > m(m+1)$. Then $f:=(id,P):M^{n+m}\mapsto \mathbb{S}^m \times \mathbb{R}^n$ is a proper and 1-Lipschitz map with non-zero degree.

• **Observation**: there is no proper and 1-Lipschitz map $f: (\mathbf{R}^n, g) \mapsto (\mathbf{R}^n, g_{euc})$ with non-zero degree, here $R_g \geq \delta > 0$.

• By the similar arguments and together with Theorem 1, we get:

• **Theorem 2** (HSS, 2023): For any $\delta > 0$, let (M^n, g) , $5 \le n \le 7$, be an noncompact orientable and complete Riemannian manifolds with scalar curvature $R_g \ge 6 + \delta$. Then there is no proper and 1-Lipschitz map $f: M^n \mapsto \mathbb{S}^3 \times \mathbb{R}^{n-3}$ with non-zero degree.

. Under the assumptions in Theorem2, we have $\inf_M R_g \leq 6 + \delta$, for any $\delta > 0$

• Observation: any compact perturbation of \mathbb{R}^n , $3 \le n \le 7$, with $R \ge 0$ is trivial.

- By the similar arguments and together with Theorem 1, we get:
- **Theorem 3** (HSS, 2023): Let (M^n, g) , $4 \le n \le 7$, be an noncompact orientable and complete Riemannian manifolds with scalar curvature $R_g \ge 6$, $f: M^n \mapsto \mathbb{S}^3 \times \mathbb{R}^{n-3}$ be a proper and 1-Lipschitz map with non-zero degree. Then (M^n, g) is isometric to $\mathbb{S}^3 \times \mathbb{R}^{n-3}$ provided f is isometric outside a compact domain of M^n .

 \iff one cannot do compact perturbations on $\mathbb{S}^3 \times \mathbb{R}^{n-3}$ with $R_g \ge 6$, $f: M^n \mapsto \mathbb{S}^3 \times \mathbb{R}^{n-3}$ being a proper and 1-Lipschitz map and $\deg(f) \ne 0$

- Situations are complete different if we take $\mathbb{S}^3 \times \mathbf{R}$ as the model space.
- **Theorem 4** (HSS, 2023)Let (M^4,g) be an noncompact orientable and complete Riemannian manifolds with scalar curvature $R_g \geq 6$, $f: M^4 \mapsto \mathbb{S}^3 \times \mathbb{R}$ be a proper and 1 -Lipschitz map with non-zero degree. Then (M^4,g) is isometric to $\mathbb{S}^3 \times \mathbb{R}$ provided (M^4,g) is geometric bounded, i.e. $\sup_M \|Rm\| < \infty$ and its injective radius $inj(M^n,g) > 0$.
- **Theorem** 5 (HSS, 2023) Let (M^4, g) be an noncompact orientable and complete Riemannian manifolds with scalar curvature $R_g > 6$, then there is no proper and 1 -Lipschitz map $f: M^4 \mapsto \mathbb{S}^3 \times \mathbb{R}$ with non-zero degree.
- Under the assumptions in Theorem 5, we have $\inf_{M} R_g \leq 6$

A metric g_0 on Y is ε -gap length extremal if no $g \ge g_0$ on Y satisfies

$$Sc(g) - Sc(g_0) > \varepsilon$$
.

Then g_0 is called gap length extremal if it is ε -gap length extremal for all $\varepsilon > 0$ (0-gap extremal=extremal).

• P. 152, M.Gromov: A Dozen Problems, Questions and Conjectures About Positive Scalar Curvature;

A Dozen Problems, Questions and Conjectures About Positive Scalar Curvature

D₃. Question. Does gap extremality is always stable under $Y \sim Y \times \mathbb{R}^m$? (Beware of dim(Y) = 4.)

153

D₃. Question. Does gap extremality is always stable under $Y \sim Y \times \mathbb{R}^m$? (Beware of dim(Y) = 4.)

• Conclusion: For any $\delta > 0$, $1 \le m \le 4$, the δ -gap length extremity of (\mathbf{S}^3, g_0) is stable under above sense.

Thank you for attention