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Notation

▶ k: a number field

▶ A: the ring of its adeles

▶ G : a connected (split) reductive group defined over k.

e.g. GLn, GSO(Vn), GU(Vn), GSp2n, S̃p2n, E7.

▶ H: a closed subgroup of G

▶ π = ⊗vπv : an automorphic representation representation of
G (A)

▶ F := kv : a local field of characteristic 0

Example. (Gan-Gross-Prasad model)
G = SO(n + 1)× SO(n) and H = SO(n)△
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Problems
Period integral: Let φπ be an automorphic form of G (A). Define
the period integral over H

PH(φ) :=
∫ ⋆

H(k)\H(A)
φπ(g)χ(g) dg .

Global Problem: Establish an identity (or non-vanishing
equivalence) of the period integral.
For instance,
▶ PH(φ) is zero unless its global Arthur parameter is of certain

type.
▶ PH(φ) is not zero iff m(πv , χ

∨
v ) ̸= 0 for all v and

L(12 , π, ρX ) ̸= 0.

Local multiplicity: Define the local multiplicity of π to be

m(πv , χv ) := dimHomH(F )(πv , χv ).

Local Problem: Give the multiplicity formulas for local Arthur
packets.



4/22

Spherical subgroups

Definition
H is called a spherical subgroup of G if the action of H on the flag
variety of G has an open orbit.

Example

▶ Symmetric subgroups: H = Gσ for some involution σ of G .
e.g., (GLn,On), (GL2n,GLn ×GLn).

▶ Whittaker models

▶ (G ,H) = (SOn+1 × SOn,SO
△
n ): Gan-Gross-Prasad models

Remark

1. Gan–Gross–Prasad conjectures

2. Prasad Conjecture: (G (E ),G (F )) where E is a quadratic
extension of F .

3. Ben-Zvi–Sakellaridis–Venkatesh: duality between
hyperspherical Hamiltonian varities
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Strongly tempered spherical subgroups

Assumptions:

1. H is strongly tempered;
▶ If H is reductive, all the matrix coefficients of tempered

representations of G are integrable on H/ZG ,H where
ZG ,H = ZG ∩ H;

▶ If (G ,H) is of Whittaker-induction type, the reductive part
(G◦,H◦) is strongly tempered.

2. No Type N spherical root (cf. (GLn,On)).

Additional assumption:
H(F )\G (F )/B(F ) has a unique rational open orbit.

Such family of spherical subgroups are expected to enjoy the same
properties with the Gan–Gross–Prasad models, i.e., the analogy of
local and global Gan–Gross–Prasad Conjectures holds.
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Strongly tempered spherical subgroups

G (quasi-split) (H, triv ⊗ ψ) ρX : LG → GL(V )
1 GL4 ×GL2 GL2 ×GL2 (∧2 ⊗ std2)⊕ std4 ⊕ std∨

4

2 GU4 ×GU2 (GU2 ×GU2)
◦ (∧2 ⊗ std2)⊕ std4 ⊕ std∨

4

3 GSp6 ×GSp4 (GSp4 ×GSp2)
◦ Spin7 ⊗ Spin5

4 GU6 GU2 ⋉ U[32] ∧3
5 GL6 GL2 ⋉ U[32] ∧3
6 GSp10 GL2 ⋉ U[52] Spin11
7 GSp6 ×GL2 GL2 ⋉ U[32] Spin7 ⊗ std2
8 GSO8 ×GL2 GL2 ⋉ U[42] HSpin8 ⊗ std2
9 GSO12 GL2 ⋉ U[62] HSpin12
10 E7 PGL2 ⋉ U ω7

Remark

1. Classification: Bravi–Pezzini, Gan–Wang

2. Addition Assumption fails for the simply connceted groups.
e.g., (SL2,GL1).
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Example: Ginzburg–Rallis model

Let G = GL6 and consider the unipotent subgroup associated to
[3, 3]:

O = [32]→
(

0 I2 0
0 0 I2
0 0 0

)
, U[32] =

{
n =

(
I2 A B
0 I2 C
0 0 I2

)
: A,B,C ∈ M2×2

}
and the non-degenerated character ψO(n) = ψ(tr(A+ C )).

The Levi subgroup M of U[32] is {diag(a1, a2, a3) : ai ∈ GL2}.
The stabilizer MO of M acting on ψO is {diag(a, a, a)} ∼= GL2.

Then B(F )\GL6(F )/GL△
2 ⋉U[32] has finitely many double cosets.

▶ Ginzburg–Rallis model: (GL6,GL△
2 ⋉ U[32], ψO). Refer to

Wan’s wroks.

▶ The associated period integral of automorphic forms is related
to L(12 , π,∧

3).
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Global conjecture: Ichino-Ikeda type formula

Conjecture (Wan-Z (2021))

Let G and H be in the above table, π be an irreducible cuspidal
automorphic representation of generic A-parameter. Then

|
∫
ZG ,H(A)H(k)\H(A)

ϕ(h)ξ−1(h) dh|2

=
1

|Sϕ|
·

CH/ZG ,H

∆H/ZG ,H
(1)
· lim
s→1

∆G (s)

L(1, π,Ad)
· L(1

2
, π, ρX ) · Πv∈S I

♯
Hv
(ϕv ).

Remark.

1. Refined Gan-Gross-Prasad Conjecture: Ichino-Ikeda, N. Harris,
Y. Liu, H. Xue, ect.

2. Lapid-Mao
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Pure inner forms: Im(H1(F ,H/ZG ,H)→ H1(F ,G/ZG ,H))

G H GD

1 GL4 ×GL2 GL2 ×GL2 GL2(D)×GL1(D)
3 GSp6 ×GSp4 (GSp4 ×GSp2)

◦ GSp3(D)×GSp2(D)
4 GU6 GU2 ⋉ U[32] GU4,2

5 GL6 GL2 ⋉ U[32] GL3(D)
6 GSp10 GL2 ⋉ U[52] GSp5(D)
7 GSp6 ×GL2 GL2 ⋉ U[32] GSp3(D)×GL1(D)
8 GSO8 ×GL2 GL2 ⋉ U[42] GSO4(D)×GL1(D)
9 GSO12 GL2 ⋉ U[62] GSO6(D)
10 E7,ad PGL2 ⋉ U E7,4

Pure inner forms of (GU4 ×GU2, (GU2 ×GU2)
◦):

(GU2,2 × GU2,0, (GU2,0 × GU0,2)
◦), (GU3,1 × GU1,1, (GU1,1 × GU2,0)

◦),

(GU3,1 × GU2,0, (GU2,0 × GU1,1)
◦), (GU4,0 × GU2,0, (GU2,0 × GU2,0)

◦).
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Local Langlands correspondence

▶ ϕ : W ′
F → LG/ZG ,H is a tempered Langlands parameter of

G/ZG ,H

▶ Sϕ := Zϕ/Z
◦
ϕ the component group of Zϕ = Cent ̂G/ZG ,H

(ϕ)

▶ Πϕ = ∪α∈H1(F ,G/ZG ,H)Πϕ(Gα): the Vogan L-packet, a finite
set of tempered representations of Gα

LLC: In our case, there is a canonical bijection between

Πϕ ←→ Irr(Sϕ).

And we have a decomposition of the set of irreducible
representations of Gα:

∪α∈H1(F ,G/ZG ,H)Irrtemp(Gα) = ∪ϕΠ[ϕ], π ←→ (ϕ, χ).
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Multiplicity One Theorem

Addition Assumption: H(F )\G (F )/B(F ) has a unique rational
open orbit.

Theorem (Wan, Wan-Zhang)

Assume that the local Langlands correspondences hold.
For all models in Table except Models 5–10 for F = R, if ϕ is a
tempered L-parameter, then∑

π∈Πϕ(G)

dim(χπ)m(π) +
∑

πD∈Πϕ(GD)

dim(χD)m(πD) = 1

Conjecture (Wan-Zhang)

With the notation above, the unique (H, 1⊗ ξ)-distinguished
element in the Vogan packet Π[ϕ] is the one associated to the
character ωϕ,ρX .
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Local conjecture: multiplicity formula for generic L-packets

Definition (cf. Ben-Zevi–Sakallaridis–Venkatesh)

A symplectic representation ρ of LG is called anomaly free if

▶ it has a decomposition

ρ|LT = Λ⊕ Λ∨,

where T is a maximal split torus of G ;

▶ there exist a character χ of LT and a character θ of LG such
that det(Λ) = χ2 · θ|LT .

For an extended endoscopic triple (G ′, s, Lη), denote ρs,Lη,− to be

the symplectic representation of LG ′ on Vs,−, where Vs,− is the
eigenspace of ρ(s) with eigenvalue −1,
Definition
A symplectic representation ρ of LG is called anomaly free under
endoscopy if for any (G ′, s, Lη) of G , the symplectic
representation ρs,Lη,− of LG ′ is anomaly free.
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Distinguished character
Assumption: X = G/H is strongly tempered and without Type N
spherical root.
Conjecturally, the representation ρX of LGX is symplectic and
anomaly free under endoscopy.

Let ϕ′ : W ′
F → LGX be tempered.

For s ∈ CentĜX
(ϕ′), there exists (G ′, s, Lη) of G such that

ϕ′ = Lη ◦ ϕ0 for some L-parameter ϕ0 of G ′.

Then we take

ωϕ′,ρX (s) = θ ◦ ϕ0(−1)ϵ(
1

2
, ρX ,s,Lη,− ◦ ϕ0) ∈ {±1}.

Conjecture

ωϕ′,ρX is independent of the choice of (G ′, s, Lη) and the lifting,
and is a character of Sϕ′ .
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Epsilon Dichotomy Conjecture

▶ Let ϕ : W ′
F → LG be tempered.

▶ For a lifting ϕ′ : W ′
F → LGX of ϕ, denote by ϕ̃′ : Sϕ′ → Sϕ the

induced map.

▶ Iϕ is the set of all liftings ϕ′ such that ωϕ′,s is trivial on ker ϕ̃′.

Conjecture (Wan-Zhang)

For π ∈ Irrtemp(G ) with central character trivial on ZG ∩ H, one
has

dimHomH(π, triv ⊗ ψ) =
∑
i∈Iϕ

〈
Ind

Sϕ

ϕ̃′(Sϕ′ )
ωϕ′,ρX , χπ

〉
.

Remark
The above conjecture can be easily extended to the generic
L-parameters.
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Example: (SL2(Q5),GL1(Q×5 ))

LGX = SL2(C)

/{±I2}
��

W ′
F

ϕ′
66

ϕ // LG = PGL2(C)

∃ϕ′ ⇐⇒ ωπ(−I2) = id .

▶ |Sϕ| ∈ {1, 2, 4}
▶ ρX = C2⊕C2: 2 copies of standard representations of SL2(C)
▶ ρX ,s,Lη,− = ρX (where s = ±I2) or trivial, then θ = 1

▶ ωϕ′,ρX (s) = 1 for all s, then Ind
Sϕ

ϕ̃′(Sϕ′ )
1 = C[Sϕ]

▶ |Iϕ| = |F×/(F×)2|/|Sϕ|
Then we have

dimHomGL1(π,C) = |Iϕ| × ⟨C[Sϕ], χπ⟩ = |Iϕ|.
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Endoscopy Type

Theorem (Wan-Zhang)

Assume the local Langlands correspondences holds.
If F is non-Archimedean and ϕ is of endoscopy type, then Epsilon
Dichotomy Conjecture holds.

Remark.

▶ Conjectures also hold for the generic L-parameters.

Non-unique models:

dimHomH(π, triv ⊗ ψ) =
∑
i∈Iϕ

〈
Ind

Sϕ

ϕ̃′(Sϕ′ )
ωϕ′,ρX , χπ

〉
.

Questions:

1. Explicate Sϕ and Sϕ′ ;

2. Enumerate all the possibilities of ϕ̃′(Sϕ);

3. How to formulate the multiplicity formulas for the
non-tempered Arthur packets (analogy of local GGP)?
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BSV dual: Dual of Whittaker induction
Assumption: H = PGL2 ⋉ U

G Ĝ ρX ΦX

PGL6 SL6 ∧3 {2,3}
GSO8 ×GL2/GL1 S(GSpin8 ×GL2) HSpin8 ⊗ std2 {1,1,3}

PGSO12 Spin12 HSpin12 {3,5}
E7,ad E7,sc ω7 {5,9}

PGSp10 Spin11 Spin11 {3,5}
GSp6 ×GL2/GL1 S(GSpin7 ×GL2) Spin7 ⊗ std2 {1,1,3}
▶ S(GSpinn ×GL2) = {(g , h) : λ(g) det(h) = 1}

Period integrals on Ĝ (A):∫ ⋆

Ĝ(k)ZĜ (A)\Ĝ(A)
φπ(g)ΘX (g) dg

for an irreducible discrete automorphic representation π of Ĝ (A)
with trivial central character.
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Non-tempered Global Arthur parameters

G H = H0 × U Ĝ
PGL6 PGL2 ⋉ U[32] SL6

GSO8 ×GL2/GL1 PGL2 ⋉ U[42] S(GSpin8 ×GL2)
PGSO12 PGL2 ⋉ U[62] Spin12

E7 PGL2 ⋉ U E7,sc

GSp10 PGL2 ⋉ U[52] Spin11
GSp6 ×GL2/GL1 PGL2 ⋉ U[32] Spin7 ⊗ std2

Define the embedding

ιX : H0(C)× SL2(C)→ G (C)

such that

▶ the Lie algebra of ιX (SL2(C) is the sl2-triples of the nilpotent
orbits (b2);

▶ H0(C) commutes with ιX (SL2(C).
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Global Conjecture

Conjecture (BSV, Mao–Wan–Zhang)

1. The period integral is nonzero is nonzero only if the Arthur
parameter of π factors through ιX : H0(C)× SL2(C)→ G (C).

2. If π is a lifting of a global Arthur packet Π of SL2(A), then∣∣∣∣∣
∫
Ĝ(k)ZĜ (A)\Ĝ(A)

φπ(g)ΘX (g)dg

∣∣∣∣∣
2

≈
∏

i∈ΦX
L(i ,Π,Ad)

L(1,Π,Ad)
.

Remark
▶ The above integral depends on the automorphic realization of
π in the L2-space.

▶ The above conjecture also implies that the local–global
principles holds.



20/22

Relative trace formula

▶ Relative trace formula for Ĝ (A):

I (f ) =

∫
N(k)\N(A)

∫
Ĝ(k)ZĜ (A)\Ĝ(A)

Kf (g , n)ΘX (g)ξN(n) dg dn.

▶ Kuznetsov trace formula for SL2(A)

J(f ′) =

∫
N′(k)\N′(A)

∫
N′(k)\N′(A)

Kf ′(n1, n2)ψ(n1)
−1ψ(n2) dn1 dn2.

Theorem (Mao–Rallis (97), Mao–Wan–Zhang)

Over the p-adic places, Fundamental Lemma and Smooth Transfer
hold for the above relative trace formulas.
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Local Multiplicity formula?

G H = H0 × U Ĝ
PGL6 PGL2 ⋉ U[32] SL6

GSp10 PGL2 ⋉ U[52] Spin11
GSO8 ×GL2/GL1 PGL2 ⋉ U[42] S(GSpin8 ×GL2)

PGSO12 PGL2 ⋉ U[62] Spin12
E7 PGL2 ⋉ U E7,sc

GSp6 ×GL2/GL1 PGL2 ⋉ U[32] Spin7 ⊗ std2

Let ϕ be an Arthur parameter of Ĝ (A) and Π(ϕ) be its global
Arthur packets. Assume that ϕ factor through ιX , “equivalently”,

ϕ is of (Π, b) type.

Questions:

1. How to parametrize the residual representations in Π(ϕ)?

2. How to explicate the local Arthur packet Π(ϕv ) over each
place?

3. How to eastablish the local multiplicity formulas for the
non-tempered local Arthur packets?
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Thank You!


