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The (B)-property for Gaussian measures

Let v denote the standard Gaussian measure in R”,
dy 1 e
dx  (27)2 ’
Let K C R" denote a symmetric convex body (compact convex set
K C R” with non-empty interior such that K = —K).
Question (Banaszczyk, via Latata)
2
Is it true that ~y (\/abK) > vy(aK)vy(bK) for all a,b > 07

Answer (Cordero—Fradelizi-Maurey, '04)
Yes.

The main goal of today's talk is to extend this result to several
non-Gaussian measures.



Log-concavity of measures

Recall that f : R" — [0, 00) is called log-concave if (—log ) is a convex
function.

Theorem (Prékopa, Leindler, Borell)

If f : R" = [0,00) and dp = fdx then u satisfies the Brunn—Minkowski
type inequality

p((1=A)A+AB) > u(A)*u(B)*

for all Borel sets A,B C R" and 0 < A < 1. Here 4 denotes the
Minkowski addition

A+B={a+b: acA beB}.

. . 2 . .
In particular since |x|” /2 is convex + is a log-concave measure.



Log-concavity of measures

. . 2 /s .
In particular since |x|” /2 is convex + is a log-concave measure:
(1= X) A+ AB) = 4(A) (B).

Taking A = aK, B = bK, A = 3 for a convex body K we obtain

0 (a;bK)z > v(aK)v(bK).

The theorem of Cordero—Fradelizi-Maurey says that when K is

symmetric, 3J2rb can be replaced with the smaller v/ ab. In fact they

showed more:

Theorem (Cordero—Fradelizi-Maurey, '04)

For every symmetric convex body K the function

(ti, to, ... b)) =y (eA(fl-ffZ ----- fn)K)

is log-concave on R".

The previous claim follows by restricting to the line ty = t, =--- =



Extensions

It was observed already by C-F-M that the function t — u(e*K) can
sometimes be log-concave when p is not a Gaussian. For example, we say
that K is unconditional if

(x1,%0,..., %) E K = (&x1,tx0,...,%x,) € K,

and similarly for measures. If K is an unconditional convex body and p is
an unconditional log-concave measure then

(tr, o,y tn) =y (eA(tl’tz*"'vf")K) is log-concave.

To avoid repetitions we write:

Definition
» 1 has the (B)-property if for every symmetric convex body K C R”,
t — p(e'K) is log-concave.
» 1 has the strong (B)-property if for every symmetric convex body
K CR" (ti,ta, ... tn) = p (eAlEf0)K) is log-concave.

What measures have the (strong) (B)-property? Maybe all even
log-concave measures?



Known Results

> The standard Gaussian measure has the strong (B)-property (C-F-M)
» Certain Gaussian Mixtures have the strong (B)-property
(Eskenazis—Nayar-Tkocz '18). In particular e=<*"dx and e~<I¥ll7dx
have the strong (B)-property for 0 < p < 1. These are not
log-concave unless p = 1.
The (B)-conjecture is also intimately related to the log-Brunn-Minkowski
conjecture:
> If log-BM holds in dimension n then every even n-dimensional
log-concave measure has the (B)-property (Saroglou '16)
» In particular, every 2-dimensional even log-concave measure has the
(B)-property (using Boréczky-Lutwak-Yang-Zhang)
» Conversely, if the uniform measure on [—1,1]” has the strong
(B)-property for all n, then log-BM holds (Saroglou '15).
So we have very good reasons to believe that all even log-concave
measures have the (B)-property, but very few proven examples.



Some Negative Results

» There exists a convex body K C R2 with 0 € K such that

t — y(e'K) is not log-concave (Nayar-Tkocz '13). So symmetry of
K is important.

» There exists an even log-concave measure 1 on R? which does not
have the strong (B)-property (Nayar-Tkocz '19).

» In fact there exist non-standard Gaussian measures with covariance
matrix arbitrarily close to Id which don't have the strong
(B)-property (Cordero-R., '20).

So we cannot expect all even log-concave measures p to have the strong
(B)-property. It makes sense to impose some symmetry assumptions on
. Today we will assume p is rotation invariant.



Our Main Result

Theorem (Cordero-Erausquin, R. '21+)

Let w : [0,00) — (—00, 0] be an increasing function such that
t — w(e) is convex. Let u be the measure with density % = e WD),
and let K C R" be a symmetric convex body. Then

(tlv t27 DR} tn) = (eA(ﬁ,fz,.,.,tn)K)

is log-concave.
In other words, 1 has the strong (B)-property.



Examples

(Recall: we need t — w (e') to be increasing and convex)
» All rotation invariant log-concave measures have the strong
(B)-property.
» In particular, we can take p to be the uniform measure on the
Euclidean ball Bf. By applying a linear map we conclude that

2
]\/%Kme‘ > |aK N E||bK N €|

for all symmetric convex bodies K, all centered ellipsoids &£, and all
a,b>0.

» One can take w(t) = c- tP for all p > 0 (as w(e') = ceP* is convex).
Hence all measures e~“1*Idx have the strong (B)-property. The
case p = 2 recovers the Gaussian result, and the case p < 1 recovers
the result of Eskenazis—Nayar—Tkocz. Other cases are new.



More Examples

(Recall: we need t — w (e') to be increasing and convex)

> One can create heavy-tailed distributions with the (B)-property.
Taking w(t) = 3 -log (1 + t?) (as w(e) = Blog(1 + €*) is convex)
we conclude the Cauchy-type distribution

1
dpg = —————dx

(1+ |x|2>ﬁ

» By approximation one can create measures with singularities:

dp = ﬁdx also has the strong (B)-property as long as0 < 8 < n

has the strong (B)-property.

(to ensure that y is locally finite).



A corollary

While the roles of 1+ and K seem different in the theorem, there is in fact
some symmetry between them. Instead of assuming p is rotation
invariant, one may assume the same about K:

Corollary

Let y1 be an even log-concave measure on R". Then the function

(t1 to,. o tn) = po (eA(“’”"“’t")BS)

is log-concave.



Proof Sketch

’ (B)-property for rotation invariant measures‘

A

’Improved Brascamp-Lieb inequality‘

’Weighted Poincaré inequality on R”

1D Poincaré inequality‘ Spherical Poincaré inequality




Back to the Gaussian case

How does the proof work in the Gaussian case? We need to show that
(ti, to, ... b)) =y (eA(tl’t%-“’f")K)

is log-concave. Restricting to a line, it is enough to show that

p(t) =~ (e"™BK) is log-concave for diagonal matrices A and B.
Therefore it is enough to show that (log p)” (to) < 0 for all tp € R.
By replacing K with e®***BK  we may assume WLOG that B = 0 and
to = 0. Then the condition (log p)” (0) < 0 becomes

[ e duc - ( [ e de)Z <2 [ |AxR doic

Here ~x is the Gaussian measure conditioned to belong to K, i.e.
vk (A) = %. This is shown by showing that for every even function
f:R"—>R

Var,,, f < %/|Vf|2d~y,<.



A new Brascamp-Lieb Inequality

When ~ is replaced by 1 = e="®)dx one can do the same. The variance
inequality one needs to prove is

Var,, ((VW, Ax)) < /(<V2W Ax, Ax) + (VW, A’x)) du.

What general inequality will imply it?

Theorem
Let w: [0,00) — R be C2-smooth and increasing such that t — w(et) is
convex. Define W(x) = w(|x|), and let v be any measure which is even

and log-concave with respect to e=W)dx. Then for every even function
f:R" — R one has

/ -1
Var, f < /<(V2W+ W|(|)|<|)Id> w,w> dv
X




Remarks

, -1
Var, f g/<<v2vv+ W(|X|)Id) Vf,Vf> dv
X

» Our assumptions on w imply that V2W + Wl(llx )Id is positive
semi-definite.

> In the Gaussian case w(t) = 3t and this inequality becomes
Var, f < 1 [|Vf]>dy as expected.

> Since %/d is positive definite this theorem is an improvement of
the Brascamp-Lieb inequality

Var, f < /<(vzw)*1w,w> dv

» In our case V2W is a rank-one perturbation of /d so the inverse can
be computed explicitly.



Examples

> If 9¢ = e=XI"/P=V() for V convex then

2
Vaer§/<;|X|2—P|Vf2_P—2.(Vf,x))dy

2p |x|P

for all even smooth functions f : R” — R". Using the bounds
0 < (VF,x)* < |VF| x| one deduces

Var, f < max{l,l} -/|x|27p|Vf|2dV
p' 2

> If dv — L h
dx (1+|X|2)B then

Var, f < %/ (1 + \X\2> (|Vf|2 + <Vf,x>2) dv



From Brascamp-Lieb to weighted Poincaré

Assume in general we want to prove
Var, f < /(A*lw,Vf) dp

for du = e="W™)dx and a positive definite A. We assume WLOG that
f fdp =0 and solve Lu := Au— VW -Vu = f. Integrating by parts our
inequality is the same as

/<(A—v2w)~Vu,Vu>du</(I\VZUH}‘A_%V”A%V“‘z) e

If A(x) — V2W(x) = c(x) - I like in our case then it is enough to prove
that

/c-(('),-u)2du§ /|V8,-u|2du.

In our case f and W are even, so u is also even, so every 0;u is odd.



A new Poincaré inequality

The above discussion explains why the entire result follows from the
following:

Theorem
Let w : [0,00) — R be Cl-smooth and increasing, and let u be even and
log-concave with respect to e~ *\XDdx. Then for every odd function

h:R"™ — R one has
!
/W|(|T|)h2du§/|Vh2du.
X

In the Gaussian case w(t) = %t2 this is the standard Gaussian Poincaré
inequality, [ h2dy < [ |Vh|* dy, which is well-known.

The main idea of the proof is to integrate in polar coordinates, x = rf,
and combine two Poincaré inequalities - one in r, and one in 6.



The 1-dimensional argument

In the r variable, we essentially use the following:

Lemma
Let f,w :[0,00) — R be smooth functions such that f(0) = 0. Then

o] W/ o0 5
/ —f2e vdr < / ()" e ™dr.
o r 0

Proof.
Since f(0) = 0 we can write f(r) = rg(r) for a smooth function g.
Integrating by parts one computes that

oo o0 / oo
/ (f')2 e "d — / Y e wdr = / (g’)2 rPe™"dr > 0.
0 o F 0



The spherical argument

On the unit sphere S"~! = {x : |x| = 1} we need the following result:

Proposition

Let v : R"” — R be a convex smooth function and let v be the measure
on S"! with density e=. Then for every smooth g : ™! — R with
Jsn—1 gdv = 0 one has

/ (n—1—(Vv,0)g’dv < / Vsgl* dv,
gn—1 sn—1

where Vg denotes the spherical gradient.

When v = 0 and v is the Haar measure on S"~1 this reduces to the usual
Poincaré inequality on S"1,

1
Var, g < —— |ng|2 dv
n—1 §n—1



The spherical argument

/ (n—1—(Vv,0)g’dv < / |ng|2 dv
Sn—1 §n—1

» This follows from a general Poincaré inequality of
Kolesnikov—Milman on the boundary of weighted Riemannian
manifold.

> Their result extends a result of Colesanti. He showed (among other
things) that the standard Poincaré inequality on S"~! is the
infinitesimal form of the Brunn—Minkowski inequality.

> In the same way our result is an infinitesimal Prékopa—Leindler
inequality: If K; is the convex body with support function
hg, =1+t g, then

p(t) = v (K:)

is log-concave. Our inequality is exactly the statement
(log p)” (0) < 0.



Summarizing the argument

’ 1D Poincaré inequality‘ Spherical Poincaré inequality

’Weighted Poincaré inequality on R”

’Improved Brascamp-Lieb inequality‘

A4

’ (B)-property for rotation invariant measures‘




The role of symmetry

We only showed that (t1, to, ..., t,) = p (eAf20) K) is log-concave
for symmetric bodies K. Where did we use the symmetry?
> K is symmetric = uk is even = u from the Brascamp-Lieb
proof is even = f from the weighted Poincaré is odd.
So the question becomes: Why is it important for the weighted Poincaré
that f is odd? Because we integrate in polar coordinates, so we need to
know that

/ f(r0)e"dg(0) = 0
Sn—l

for all r > 0. This is obvious if f is odd and v is even, but difficult to
guarantee otherwise.

» It is a natural question if the assumption “f is odd"” can be replaced
by a weaker assumption that f is “centered” in some sense. It will
probably not have any geometric implications.



Thank you!






