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@ There is a unique minimizer f € WOI’Q(Q).
@ It solves the differential equation

Af—i—)\%,ﬂf =0inQ
f =0in09Q.

o f(z)sin(Ayq - t) describes a vibrating membrane with the boundary
fixed at 012.
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Equality case (Brothers-Ziemer result)
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f defines a norm
€117 = 1l fllp, VOI(H;f)_l/" =& f

A simple case

For f = xk, K convex and p =1

10 fllx = 2|P<5>J_K|n,1

The polar projection body
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The affine PDE

The Equation

AJf+ NP fP2f =0 in Q.

Theorem
@ The solutions are always bounded and belongs to C1%(Q) and to
Che(Q) if 90 is C22.
@ The solution can be taken positive.
O It is log-concave if ) is convex.

@ The differential equation is affine invariant.



Open questions




Open questions

Existence of minimizers for mixed (p, ¢)-quotients?



Affine Rayleigh quotients

(1.1)

Jebaay) "y




Open questions

Existence of minimizers for 1 < g <p

n—1
Enf = Cop @I Fllp™ NIV AL




Open questions

Existence of minimizers for 1 < g <p

n—1
Enf = CrpDIFlp™ IV FIIL™
—1

> Cup(@IF g+ NIVl




Open questions

Existence of minimizers for 1 < g < p

n—1
Enf = Cap(fllp™ IV £/
n-1 n
> Crp(@)fl ™ NIV ALY

Existence of minimizers for p < ¢ < -2

n—p

n—1
Epf = Cop@IFllp™ VA



Open questions

Existence of minimizers for 1 < g < p

n—1
Enf 2 CrpDIFlp™ IV FIIL™
n=1 n
> Crp)I flle ™ NIV AL

Existence of minimizers for p < ¢ < —&

n—p

n—1
Epf > Cop@If 1" VA2



Open questions

Existence of minimizers for 1 < g <p

&fzaw(ﬂvﬁ%mvﬂwm
> Cop@)IIflla NIV £V

Existence of minimizers for p < g < 22

n—p

n—1 ne
Epf = Crp £l IV AL/

|@mp—/‘/ F(t6 + )

tp/ / f(tE + z)Pdt dew(,£)7P
=l fllp w2, 6)7P

dtd:c




Open questions

Existence of minimizers for 1 < g < p

Enf 2 Cap( @) fllp" |||Vf|||1/”
> Crp(@)1 1l IVl

Existence of minimizers for p < ¢ < —£

n—p

n—1 ne
Epf = Crp @£l IV AL/

dtda:

IVef I = / / £t + )

/
> ¢ /5 (/Oo F(te +m>(fdt)p " dow(Q,6)
) F2 (€2, £) 77,




Open questions

Is the affine eigenvalue simple?



Open questions

Is the affine eigenvalue simple?

Ay ru = AulPu

Ap v = Mp[P~2y



Open questions

Is the affine eigenvalue simple?

Ap st = AfulP2u
Ap kv = )\|v|p_2v

u(@) = (tP () + (1 — t)uP (z)) /P



Open questions

Is the affine eigenvalue simple?

Ay ru = AulP~2u
Ay v = AP~
up(w) = (P (z) + (1 — )P ()P
IVl <t Vo@)I[ + (1 = )] Vul@) %



Open questions

Is the affine eigenvalue simple?

Ay = NulP2u
Ap v = AP~y
() = (0* () + (1 = )P (2)) /7
IVl < tIVo(@)lg + (1 = DI Vu(@)lk

with equality if and only if u(z)Vu(x) = v(z)Vu(x)



Open questions

Is the affine eigenvalue simple?

Aptu= Al ?u
A;‘v = )\|v|p_2v

w(z) = (P (z) + (1 — t)uP (z)) /P



Open questions

Is the affine eigenvalue simple?

Aptu= Ay s, = N u
Atw = Ap kv = AP

w(z) = (P (z) + (1 — t)uP (z)) /P



Open questions

Is the affine eigenvalue simple?

A;,‘lu = Ap i, u = AMulP"2u

A;,‘\v = A, kv = AP 20

up(z) = (0P (z) + (1 — tyuP(z))?
[Vl < ¢l VP (@)])2 + (1 — )| VP ()2



Open questions

A tough question

For p =1,q € [1, ;1) the eigenfunction is x ¢ with K C Q minimizing

vol(II° K )~/
V(K)Y/a



Open questions

A tough question

For p =1,q € [1, ;1) the eigenfunction is xx with K C Q minimizing

S(K)
V(K)Ya’



Open questions

A tough question

For p =1,q € [1, ;1) the eigenfunction is xx with K C Q minimizing

V(K)1 , for ¢ = 1 these are the Cheeger sets



Open questions

A tough question

For p=1,q € [1, ;%) the eigenfunction is xx with K C Q minimizing

S(K)

Wa for ¢ = 1 these are the Cheeger sets

o False if €2 is not convex



Open questions

A tough question

For p=1,q € [1, -%7) the eigenfunction is xx with K C Q minimizing

V(K)1 , for ¢ = 1 these are the Cheeger sets

o False if €2 is not convex

o B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic
mean curvature equation, '95



Open questions

A tough question

For p=1,q € [1, -25) the eigenfunction is yx with K C Q minimizing

' n—1

S(K
¥7 for ¢ = 1 these are the Cheeger sets
V(K)l/a

e False if  is not convex

e B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic
mean curvature equation, '95

@ V. Alter, V. Caselles, A. Chambole, Evolution of characteristic
functions of convex sets in the plane by the minimizing total variation
flow, '05



Open questions

A tough question

For p=1,q € [1, -27) the eigenfunction is xx with K C Q minimizing

S(K
( , for ¢ = 1 these are the Cheeger sets
V(K)l/‘l
o False if  is not convex
o B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic
mean curvature equation, '95

o V. Alter, V. Caselles, A. Chambole, Evolution of characteristic
functions of convex sets in the plane by the minimizing total variation
flow, '05

o V. Caselles, A. Chambole, M. Novaga - Uniqueness of the cheeger set
of a convex body, '07



Open questions

A tough question

Forp=1,q €1, —5) the eigenfunction is xx with K C  minimizing

S(K
( for ¢ = 1 these are the Cheeger sets

V(K)l/q

o False if Q is not convex

@ B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic
mean curvature equation, '95

@ V. Alter, V. Caselles, A. Chambole, Evolution of characteristic
functions of convex sets in the plane by the minimizing total variation
flow, '05

o V. Caselles, A. Chambole, M. Novaga - Uniqueness of the cheeger set
of a convex body, '07

o V. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body,
'08



Open questions

Related question: Brunn-Minkowsky for the quotient

V(E+L) | V(E) VD),
S(K+L) = S(K) " S(IL)




Open questions

Related question: Brunn-Minkowsky for the quotient

VIK+L)  V(K)  V(D),
S(K+L) ~ S(K) " S@)°

No.



Open questions

Related question: Brunn-Minkowsky for the quotient
V(IK+L) _ V(K) V(L)

> I ?
S(K+L) ~ S(K) S(L)

No.
M. Fradelizi, A. Giannopoulos, M. Meyer, Some inequalities about mixed
volumes, '03



Open questions

Related question: Brunn-Minkowsky for the quotient
V(K +1L) LoV Vi),
vol(IT°(K + L))=1/m = vol(II°K)~1/™ ~ vol(II° L)~/




Open questions

@ Brunn-Minkowsky type inequality?

A —1 A -1 A -1
)\p,tﬂlJr(lft)Qg 2t)‘zu,ﬂl +(1_t))‘p,ﬂz



Open questions

@ Brunn-Minkowsky type inequality?

A —1 A -1 A -1
)\p,tﬂlJr(lft)Qg 2t)‘zu,ﬂl +(1_t))‘p,ﬂz

o Continuity of )\ég with respect to p and Q7



Open questions

@ Brunn-Minkowsky type inequality?

A —1 A -1 A -1
)\p,tﬂlJr(lft)Qg 2t/\zu,ﬂl +(1_t))‘p,ﬂz

o Continuity of )\ég with respect to p and Q7

@ Affine invariant flow



Open questions

@ Brunn-Minkowsky type inequality?

A —1 A -1 A -1
)\p,tﬂlJr(lft)Qg 2t/\zu,ﬂl +(1_t))‘p,ﬂz

Continuity of )\ég with respect to p and Q7

Affine invariant flow

@ Neumann boundary conditions



Open questions

@ Brunn-Minkowsky type inequality?
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Continuity of )\ég with respect to p and Q7

Affine invariant flow

Neumann boundary conditions

Characterize John position by solvability of a PDE?
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