A deformed Hermitian Yang-Mills flow

Jixiang Fu

Fudan University

Interaction Between PDEs and Convex Geometry

2021-10-20



This talk is based on the paper:

J. Fu and Dekai Zhang. A deformed Hermitian Yang-Mills flow.
arXiv:2105.13576.



1. Introduction.

Let (M,w) be a compact Kahler manifold of complex dimension

n and x a closed real (1,1)-form on M.

Motivated by mirror symmetry, the deformed Hermitian Yang-
Mills (dHYM) equation on (M, w,x) isS

Re(xu + vV—1w)™ = cot g Im(xu + vV —1w)™ (1)

Here yu = x + +v/—100u for a real smooth function v on M and
0 is the argument of the complex number [y,(x + v/—1w)".

The dHYM equation is called supercritical if 65 € (0,7) and hy-
percritical if 69 € (0,3%).



Let A = (Aq,...,\n) be the eigenvalues of x, with respect to
w. If necessary we denote A by A(xw) and \; by \;(xy) for each
1 <:<n. Let \; =cotf;. Then

(xu + V—-1w)" = H(A +V-1)w"
exp(\/—z 19i) =

[[;—1sin 8
:COi(Z?:_1 0;) o \/_sméz -)
[[;—1 Sin6; [[;—1 Sin6;
So the dHYM equation becomes
n mn
cos(Z 92-> = cot 6g sin(z 92-),

or

0(xu) = 0o, (2)
if we define

n n
0(xu) == Y _ 0; = > arccotl,.
i i=1

=1



In 2014, Jacob-Yau [2017ma] initiated to study the dHYM equa-
tion.

They solved the equation for n = 2, by translating it into the
complex Monge-Ampere equation which was solved by Yau.

[2017ma] A. Jacob, S.-T. Yau. A special Lagrangian type equation for holo-
morphic line bundles. Math. Ann. 369(2017), 869-898.



When n > 3, Collins-Jacob-Yau [2020c¢jm] solved the dHYM e-
quation for the supercritical case by assuming the following two

conditions hold:
(i) THere exists a subsolution u, which means x, satisfies the
inequality

Ap := max max arccot \; 7/} 3
0 = max max, 3 iOaw) < 6o (3)

(ii) xu also satisfies the inequality

Bg := mj\?x O(xu) < . (4)

[2020cjm] T. Collins, A. Jacob, S.-T. Yau. (1,1) forms with specified La-
grangian phase: a priori estimates and algebraic obstructions. Camb. J.

Math. 8 (2020), 407-452.



When n = 3, without condition (4) did Pingali [2019arxiv] then
solve the equation by translating it into a mixed Monge-Ampeére

type equation.

On the other hand, C. Lin [2020arxiv] generalized Collins-Jacob-
Yau's result to the Hermitian case (M, w) with 88w = 8dw? = 0.

Huang-Zhang-Zhang [2020arxiv] also considered the solution on

a compact almost Hermitian manifold for the hypercritical case.



For the parabolic flow method, there are also several results.

Jacob-Yau [2017ma] and Collins-Jacob-Yau [2020c¢jm] proved the

existence and convergence of the line bundle mean curvature flow
ur = 6p — Q(Xu)
uw(0) = u

for the hypercritical case. Here u is a subsolution of the dHYM

(5)

equation such that

0Cxw) € (0,5).

Han-Jin [2020arxiv] considered the stability result of the above

flow.



Takahashi [2020ijm] proved the existence and convergence of the

tangent Lagrangian phase flow
{ Uy = tan(@o — Q(Xu))

uw(0) = u
for the hypercritical case. Here u is a subsolution of the dHYM

(6)

equation such that

0Cxu) 00 € (=3, 5)-



There are two problems raised by Collins-Jacob-Yau [2020c¢jm].

One is whether condition (4) is superfluous.

The other is to find a sufficient and necessary geometric condi-
tion on the existence of a solution to the dHYM equation. There

are some important progresses made by G. Chen [2021im].

[2021im] G. Chen. The J-equation and the supercritical deformed Hermitian-

Yang-Mills equation. Invent. Math. 225 (2021), 529-602.

[2021arxiv] J. Song. Nakai-Moishezon criterions for complex Hessian equa-

tions. arxiv: 2012.07956.
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Recently, motivated by G. Chen [2021im] and J. Song [2021arx-
iv], Chu-Lee-Takahashi [2021arxiv] established the following

Theorem. (Chu-Lee-Takahashi) The deformed Hermitian Yang-
Mills equation on a compact Kahler manifold (M, w) with complex
dimension n is solvable for the supercritical case if and only if

there exists a Kahler metric v on M such that for any 1 <k < n,

/M(F\’e(x + vV—1w)* — cothgIm(x + \/——1w)k> AR >0

and for any proper m-dimensional subvariety Y of M and 1 < k <

m,

/Y<Re(x + vV—1w)* — cothgIm(x + \/——1w)k> A~y™F > 0.

[2021arxiv] J. Chu, M.-C. Lee, R. Takahashi. A Nakai-Moishezon type criteri-

on for supercritical deformed Hermitian-Yang-Mills equation. arxiv:2105.10725.
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Motivated by the concavity of cotf(xy) by G. Chen [2021im], we
consider a dHYM flow:

ur = cot O (xy) — cot b,
{ (7)
u(z,0) = u(x).

The main result of this paper is

Theorem 1. (F.—Zhang) Let (M,w) be a compact Kahler man-
ifold and x a closed real (1,1) form. Assume that there exists a
subsolution u of dHYM equation (2) in the sense of (3) which
also satisfies (4). Then for the supercritical case, there exists a
longtime solution u(x,t) of dHYM flow (7) and it converges to a

smooth solution «*° to the dHYM equation:

Q(Xuoo) = 0p.
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Hence we reprove the Collins-Jacob-Yau's existence theorem [2020¢jm].

Our proof looks like simpler than the one in Collins-Jacob-Yau.

The advantage of our flow is that the imaginary part of the

Calabi-Yau functional is constant along the flow.

However, we do not know whether condition (4) is superfluous.

13



2. Properties.

2.1 The linearized operator. Note

Re + v—1w)"
cot 0(xw) = Oxu )n- (8)
Im(xu + v—1w)
Lemma 2. The linearized operator P of the dHYM flow has the
form:
P(v) = vy — Fﬁvﬁ,
where

F' = csc? 0(xu) (wg_lw + g)w,

(D—l)ﬁ for an invertible Hermitian symmetric matrix D.

14



2.2 The concavity. Let
n
O(N\) ;= ) arccot); for A= (A1,..., ) €R" (9)
i=1

and

- ={AeR" | 0(N) <7} CR"* for e (0,n).

We have the following two useful lemmas.

15



Lemma 3. (Yuan [2006pams], Wang-Yuan [2014ajm]) If () <
7€ (0,7) for A= (Aq,...,A\n) With A1 > X5 > -+ > )y, then the

following inequalities hold.
(i) Ap—1 > cots (> 0);

(i) Ap—1 > |An|; and

(i) M+ (n—1)\, > 0.

Moreover, I+ is convex for any 7 € (0, 7).

[2006pams] Y. Yuan. Global solutions to special Lagrangian equations. Proc.

Amer. Math. Soc. 134(2006), 1355-1358.

[2014ajm] D. Wang, Y. Yuan. Hessian estimates for special Lagrangian equa-
tions with critical and supercritical phases in general dimensions. Amer. J.

Math. 136(2014), 481-4909.
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Lemma 4. (Chen [2021im]) For any 7 € (0,7), the function

cotd(A) on I+ is concave.

proof. When n =1, cotf(\) = A1 is obviously concave. We now
assume n > 2. By the definition of 6(\), we have

2coth
97 coto(A) = -2 CSCQQ()\)<
ON;ON;

)\Z(SZ] cot6() )
(1+29)2 A+ +2r)/
Hence the function cotd(\) on I+ is concave if and only if the

matrix

N\ = (>\Z5Z] — cot 9()\))

nxn

IS posotive definite.

Without loss of generality, we assume A{ > Ao > --- > \y. Since
O(M\) € (0,7), by Lemma 3(1), we have \,_1 > 0. O]
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2.3 Parabolic subsolution. Motivated by B. Guan’'s definition
[2014dm]j] of a subsolution of fully nonlinear equations, Székelyhidi
[2019jdg] gave a weaker version of a subsolution and Collins-
Jacob-Yau [2020¢jm] used it to the dHYM equation which is
equivalent to (3).

[2014dmj] B. Guan. Second-order estimates and regularity for fully nonlinear
elliptic equations on Riemannian manifolds. Duke Math. J. 163(2014), 1491-
1524.

[2018jdg] G. Székelyhidi. Fully non-linear elliptic equations on compact Her-
mitian manifolds. J. Differential Geom. 109(2018), 337-378.
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On the other hand, Phong-To [2017arxiv] modified Székelyhidi's
definition to the parabolic case. We use their definition to the
dHYM flow.

Definition 5. A smooth function uw(xz,t) on M x [0,T) is called
a subsolution of the dHYM flow if there exists a constant 6 > O
such that for any (z,t) € M x [0,T), the subset of R"*+1

Ss(x,t) ::{(,LL,T) e R" xR | u; > —6 for each i,7 > —§,and
cot Q(A(Xg(x,t)> + ,u) —w(x,t) + 7 = cot 90}

IS uniformly bounded.

[2017arxiv] D. H. Phong, D. T6. Fully non-linear parabolic equations on

compact Hermitian manifolds. arXiv: 1711.10697.
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We have the following observation.
Lemma 6. If u is a subsolution of the dHYM equation with

Bg < m, then the function uw(x,t) = u(xz) on M x [0,00) is also a
subsolution of the dHYM flow.
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2.4 The Calabi-Yau Functional. Recall the definition of the

Calabi-Yau functional by Collins-Yau [2021apde]: for any v €
C?(M,R),

CYe@)i= 0 3 [ v+ VT A G+ VT
1=0

Let v(s) € C%1(M x [0,T],R) be a variation of the function v,
i.e., v(0) = wv. The integration by parts gives

oo = [ P xm+voIe) (o)

[2021apde] T. Collins, S.-T. Yau. Moment Maps, Nonlinear PDE and Stability

in Mirror Symmetry, I. Geodesics. Ann. PDE 7, 11(2021).
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Lemma 7. Let u(x,t) be a solution of the dHYM flow. Then

Im(CY@(u(-,t))> — Im(CY@(g)>.

Proof. Denote by u(t) := u(x,t) for simplicity.

%Im(CY@(U(t))) = Im%CY@(U(t))

ou(t) -
= Ju ar MO T V-1w)
. Re(Xu(t> —|— \/ —1w)” N
— /M <Im(Xu(t) + \/——]_w)n — cot OO)Im(XU(t) —|— \/ —]_w)

= /M Re(xu(t) + v —1w)" — cot by /M Im(Xu(t) + vV—1w)"
— /M Re(x + v/—1w)" — cot 6 /MIm(x +vV=1w)"
—0,

where each equality is successively by (10), (7) and (8), Stokes’
theorem, and the definition of 6g. Hence the conclusion holds as
uw(0) = wu. O
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3. Estimates.

We assume that w« is the solution of dHYM flow (7) in M x [0,T),
where T is the maximal existence time. By showing the uniform

a priori estimates, we can prove T = oo.

3.1 The us~estimate.

Lemma 8. For any (x,t) € M x [0,T),

min —_0 < t) < max —0, 11
i utli=0 < ug(x,t) < 12 Ut|t=0 (11)
in particular,

0 < mj\}n Q(Xg(x)) < Q(Xu(m,t)) < Bg < 7. (12)
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Proof. The u; satisfies the equation:

(ut)e = Fﬁ(ut)ij-

By the maximum principle, us attains its maximum and minimum

on the initial time, i.e., inequality (11) holds, i.e.,

mj\}n cot 0(xu) < u(x,t) + cothpy < mj\?x cot O0(xuw),

or

m]\i4n cotO(xu) < cot Q(Xu(a:,t)) < mj\?x cot 0(xuw)-

Thus we obtain

0 < MinB(xw) < 0(xu(a) < Max6(xu) = Bo.
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We have an useful corollary of the above lemma.

Corollary 9. Let \,(z,t) be the minimum eigenvalue of y, with
respect to the metric w at (z,t). Then

minps 60
max |[Ap| < A7 for A :=|cotBg|+ ‘cot( Ny ug))‘.
M x[0,T) n

Proof. By Lemma 8, we have

minys 00x) _ 00xu)

0 <

< arccot A, < Bg < .
n n

Hence we have

minys 6
cot By < \p < cot( M (XQ).

n
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3.2 The CY-estimate. We first prove a Harnack type inequality
along the dHYM flow.

Lemma 10. Let uw be the solution of the dHYM flow on M Xx

[0,T). Then for any Tg < T we have the following Harnack type
inequality:

sup b g(](— inf 1) —u —|—1).
Mx[O,TO]U(x ) M><[0,To]<u(x ) u(x))
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Proof. For any t € [0,Tp], we have 6(x,;)) < Bo <7 by Lemma
8. Then by the convexity of I, g, = {a € ALL(M,R) | 6(a) <

Bp} in Lemma 3, we have

Denote ng := Bg/6 + 57/6 for convenience. Then Bg < ng < .
Hence,

IM(Xsu(t)+(1—s)u T V—1w)"

w'I’L

" 1
;}:[1(1 + 2 s+ (1—5)u)) 2 SINO (X (6 (1—5)u)

(. . ™
sin no, If Q(Xsu(t)—l-(l—S)g) > 6

. . 70
vV 1+ )\% sinarccotA; =1, if Q(Xsu(t)—i—(l—s)g) < 6

> Sinng éCQ. (13)

> <
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By Lemma 7, the imaginary part of the Calabi-Yau functional is

constant along the flow. Hence,
0 :Im(CY@(u(t))) - Im(CYC(g))
=/ 1 “m(CY(su(®) + (1 - s)u))ds
= 3 0 = (o 2+ V1)
= [ @ ([ 1Mttt 1oge T VI) ") (19)
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— /M (u —uw)w" — % M(u —u) (/01 Im (Xsu(t)—l—(l—s)u + ﬂw)nds>

1 " 1 v—T1u\"

=% M—(u — u) (—Cow +/0 Im (Xsu(t)+(1—s)u+ _1“’) dS)
This term is positive by inequality (13)
_Mxi?ofT](u_g) 1 /
yL 0 n "

< o /M (—cow +/O Im(Xsu(t)Jr(l—s)u + _1“’) ds)
_— M><“[qu,To](u a Q) n 1 I 1 nd
- o (=eo fi, "+ [ 1m [ (euto+a-spu + VTw)"ds)

_Mxi?OfT](u_g) e
_ »L0 . n . n
o co < CO/MOJ —|—Im/M(x—|- M) )

gcgllm /M (x + \/——1w)n(— inf  (u— g))

MX[OaTO]
=C|— inf —
( M><IP0,TO] (u u)) ’

where C' = cgIm [y (x + v—1w)™.
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Therefore we have

/M u(x, tH)w" < C( — inf (u(af;,t) — g(a;')) + 1). (15)

M x[0,T0)]

On the other hand, let G(z, z) be Green’s function of the metric
w on M. Then for any (z,t) € M x [0,Tp],

u(x,t) = </M wn)_l /M u(z, t)w" — /zeM Apu(z,t)G(x, z)w".

Since Aypu > —tryx > —Cp and G(z,y) is bounded from below,

there exits a uniform constant C such that

u(x,t) < (/M wn>_1 /M u(z, )" + C. (16)

Combing (15) with (16), we obtain the desired estimate. ]

Now we prove the C© estimate similar as Phong-To [2017arxiv].
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Proposition 11. Along the dHYM flow, there exists a uniform
constant Mg independent of T' such that

[ulco(arxio,ry) < Mo

Proof. Combining (14) with (13) implies for any t € [0,T),

sup (u(x,t) —u(z)) > 0.
reM

Combing the above inequality with the concavity of the equation,
we can apply Lemma 1 in Phong-To [2017arxiv]: there exists a
uniform constant 1 such that
inf u(z,t) —u(x)) > -C for any Th < T.
WRCCDEFIONES S 0
Then combing this estimate with the Harnack type inequality in

Lemma 10, we have

sup o <CC.
M x[0,Tp]
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3.3 The gradient estimate. We can prove the gradient esti-
mate following the argument in the elliptic case by Collins-Yau
[2018arxiv].

Proposition 12. Let u be the solution of dHYM flow (7). There
exists a uniform constant M such that

max  |Vul|, < M7.
M x[0,T)
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3.4 Second order estimates. In the elliptic case, Collins-Jacob-
Yau [2020c¢jm] used an auxiliary function containing the gradient
term which modifies the one in Hou-Ma-Wu [2010mrl]. Our

auxiliary function does not contain the gradient term.
Proposition 14. There exists a uniform constant M» such that

sup  |00ulw < Mo.
M x[0,T)
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4. Proof of the main theorem.

So we can prove the uniform a priori estimates up to the second
order. By the concavity of 8(xu(z,t)), we have the uniform C2¢
estimates and then the higher estimates hold. Thus we have the

longtime existence.

The proof of the convergence is the similar as the one in Phong-
TO [2017arxiv]. We can prove u(x,t) converges exponentially to
a function u®. By the uniform C* estimates of wu(x,t) for all

ke N, u(x,t) converges to u®° in C°° and u*° satisfies

n
0(xu) 1= ) _ arccotd;(xu~) = bp.
i=1
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T hank You!
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