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Disclaimers:
1 The references are not extensive.
2 Will describe only a small subset of developments.
3 Will focus on heterotic orbifolds (and try to

motivate why).
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Some flavors of string phenomenology Introduction

Sorry, no swampland
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Some flavors of string phenomenology Introduction

String pheno as framework for physics beyond the SM

☞ String theory is our arguably best shot at a consistent theory of
quantum gravity

☞ If string theory is to describe our world it needs to complete the SM
in the UV

☞ Parameters of the SM:
3 gauge couplings
1 additional QCD parameter: θQCD
2 Higgs parameters
12 masses
8 + 2 mixing parameters 20 + 2 flavor parameters

➥ The bulk of the (ununderstood) parameters of the standard model
resides in the flavor sector

This talk:
Considerable attention will be given to questions of
masses, mixing parameters and CP–violating phases.
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Some flavors of string phenomenology Introduction

What else do we (believe to) know about BSM physics?

☞ Proton is very longlived: τp ≳ 1034 GeV

☞ Neutrinos are rather light: mν ≲ 0.1 eV
➥ In an effective field theory (EFT) approach we need either a high

cutoff Λ or other suppression mechanisms (like symmetries), or both
☞ Hierarchy vEW ≪ Λ may be partially stabilized by supersymmetry
☞ Getting the SM spectrum and gauge symmetries are only a small,

yet necessary, part of the story
☞ Ultimately a globally consistent stringy completion of the SM may

give us crucial insights on the nature of dark matter (DM), inflation
(or a mechanism that replaces it) etc. but we really have to be sure
that the models we construct are not doomed right from the start
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Some flavors of string phenomenology Introduction

Strategy & outline

☞ Since the organizers pioneered string phenomenology using heterotic
orbifolds, and for other reasons that I am going to explain, I will
mainly focus on heterotic orbifolds.

☞ The discussion will be “modular”, i.e. I will present some ideas in the
bottom–up approach and then discuss to which extent they can be
embedded in explicit and consistent string models:

Origin of CP violation (Theory of finite groups)
Masses and mixing parameters (“Modular flavor symmetries”)
Generation flow (Field theory dualities)
Addressing the shortcomings of the MSSM (R symmetries)

☞ Since all these topics are centered around symmetries, it is
reasonable to consider orbifolds, which may be thought of as
symmetry–enhanced points in moduli space
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Some flavors of string phenomenology Flavor symmetries

Repetition of families

☞ Curious feature of the SM: repetition of families

☞ Possible “reason”: family symmetries
☞ Powerful tool: “Minimal Flavor Violation”

Chivukula & Georgi [1987], Buras, Gambino, Gorbahn, Jäger & Silvestrini [2001], D’Ambrosio, Giudice, Isidori & Strumia [2002]

☞ Popular scheme in bottom–up model building: finite flavor
symmetries
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Some flavors of string phenomenology Flavor symmetries

Why are

finite

symmetries popular/useful?
☞ Family symmetries GF relate different families
↷ inter–family relations

GU
T
GF

☞ Repetition of family can be attributed to symmetry
☞ Anomaly constraints less stringent than for continuous flavor

symmmetries
☞ Imposing symmetries may reduce number of free parameters
☞ Imposing symmetries may even allow one to make nontrivial

predictions
☞ Prominent example: A4 details
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Some flavors of string phenomenology CP violation from finite groups

CP violation in Nature

☞ CP so far only observed in flavor sector

➥ It appears natural to seek connection between flavor physics & CP

☞ Flavor structure may be partially explained by (non–Abelian
discrete) flavor symmetries

huge literature

here:
Non–Abelian discrete (flavor) symmetry G ↔ CP
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Some flavors of string phenomenology CP violation from finite groups

CP vs. outer automorphisms

☞ Most of continuous (i.e. Lie) groups:
real representations: canonical CP does the job

complex representations: CP involves outer automorphism

☞ Standard model gauge group & GUTs
GSM = SU(3)C × SU(2)L ×U(1)Y ⊂ SU(5) ⊂ SO(10) ⊂ E6:
CP involves outer automorphism and it is always possible to have
CP conserved

➥ Naïve expectation: also true for discrete (family) symmetries

this talk:
Chen & Mahanthappa [2009] ;Chen, Fallbacher, Mahanthappa, M.R. & Trautner [2014]

Not at all true

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 13/ 189
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Some flavors of string phenomenology CP violation from finite groups

How (not) to generalize CP
☞ Outer automorphisms of finite groups comprise physically different

transformations details

proper CP transformations
☞ map field operators to their

own Hermitean conjugates

ϕ(x) C P7−−→ ηCP ϕ
∗(Px)

☞ violation of physical CP is
prerequisite for a non–trivial

εi→f =
|Γ (i→ f)|2 −

∣∣Γ (ı→ f
)∣∣2

|Γ (i→ f)|2 +
∣∣Γ (ı→ f

)∣∣2
➥ Connection to observed CP ,

baryogenesis & . . .

CP–like transformations
☞ Map some field operators to

some other operators
☞ Such transformations have

sometimes been called
“generalized CP
transformations” in the
literature

☞ However, imposing CP–like
transformations does not imply
physical CP conservation

➥ NO connection to observed
CP , baryogenesis & . . .
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Some flavors of string phenomenology CP violation from finite groups

Three types of groups
Chen, Fallbacher, Mahanthappa, M.R. & Trautner [2014]

group G with
automorphisms u

there is a
u for which

no FS(n)
u is 0

Type I groups GI:
generic settings based on
GI do not allow for a
physical CP
transformation

no

Type II: u defines
a physical CP
transformation

yes

all FS(1)
u are

+1 for a u

Type II A groups:
there is a CP basis in
which all CG’s are real

yes

Type II B groups:
there is no basis in
which all CG’s are real

no

Upshot:
Type I groups violate
CP!

Question:
(How) Can one get those
groups?

this talk:
Even the very first orbifold
models had type–I flavor
symmetries!
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Some flavors of string phenomenology CP violation from finite groups

Examples

☞ type I : all odd order non–Abelian groups

group Z5 ⋊Z4 T7 ∆(27) Z9 ⋊Z3 ∆(54)
SG (20,3) (21,1) (27,3) (27,4) (54,8)

will be discussed later

☞ type II A : dihedral & all Abelian groups

group S3 Q8 A4 Z3 ⋊Z8 T′ S4 A5
SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

☞ type II B

group Σ(72) ((Z3 ×Z3) ⋊Z4) ⋊Z4
SG (72,41) (144,120)
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

First 3 family models from stringy orbifolds
Ibáñez, Kim, Nilles & Quevedo [1987]

☞ Very first stringy model of particle physics based on Z3 orbifold

☞ Three generations
may live on equivalent
fixed points

family family

family
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

First 3 family models from stringy orbifolds
Ibáñez, Kim, Nilles & Quevedo [1987]

☞ Very first stringy model of particle physics based on Z3 orbifold

☞ Three generations
may live on equivalent
fixed points

☞ Permutation
symmetry of fixed
points/families

Kobayashi, Nilles, Plöger, Raby & M.R. [2007]

➥ ∆(54) flavor/family
symmetry

X Y

Z

localized strings
tansform as 3-
or 3–plets
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

T2/Z3 Orbifold GUT
Biermann, Mütter, Parr, M.R. & Vaudrevange [2019] , see also Guralnik & Ramgoolam [1997]

☞ 6d with gauge symmetry G = SU(3) and two dimensions
compactified on torus with |e1| = |e2| with e1 · e2 = −|e1|2

/2

e1

e2

☞ Associated gauge embedding

P =

ω 0 0
0 ω2 0
0 0 1

 ∈ SU(3) where P 3 = 1

☞ Condition for gauge symmetry

[P,U(k)] = exp
(

2πi k
3

)
1 where k ∈ {0, 1, 2}

☞ Residual symmetries

U(0) =

ei(α+β) 0 0
0 ei(α−β) 0
0 0 e−2iα

 and U(1) =

0 0 1
1 0 0
0 1 0


☞ Altogether: SU(3) Zorb.

3−−−−→
[
U(1)×U(1)

]
⋊Z3

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 19/ 189
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T2/Z3 Orbifold GUT
Biermann, Mütter, Parr, M.R. & Vaudrevange [2019] , see also Guralnik & Ramgoolam [1997]
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

T2/Z3 Orbifold GUT
Biermann, Mütter, Parr, M.R. & Vaudrevange [2019] , see also Guralnik & Ramgoolam [1997]

☞ 6d with gauge symmetry G = SU(3) and two dimensions
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/2
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

T2/Z3 Orbifold GUT
Biermann, Mütter, Parr, M.R. & Vaudrevange [2019] , see also Guralnik & Ramgoolam [1997]

☞ 6d with gauge symmetry G = SU(3) and two dimensions
compactified on torus with |e1| = |e2| with e1 · e2 = −|e1|2

/2

☞ Associated gauge embedding

P =
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0 ω2 0
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

∆(54) from Z3 orbifold planes
Beye, Kobayashi & Kuwakino [2014, 2015]

☞ The SU(3) gauge symmetry arises at the self–dual radius

☞ Away from this special point the U(1) symmetries get broken

SU(3) Zorb.
3−−−−→

[
U(1)×U(1)

]
⋊ S3

R,Rcrit−−−−−−→
[
Z3 ×Z3

]
⋊ S3 = ∆(54)

☞ Detailed understanding of gauge origin of ∆(54) flavor symmetry
☞ Part of a so–called eclectic symmetry (see later)

Nilles, Ramos–Sánchez & Vaudrevange [2021]

Gecl = ∆(54) ∪ T ′ ∪ZR9 ∪ZCP
2

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 20/ 189
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

∆(54) from Z3 orbifold planes
Beye, Kobayashi & Kuwakino [2014, 2015]

☞ The SU(3) gauge symmetry arises at the self–dual radius
☞ Away from this special point the U(1) symmetries get broken

SU(3) Zorb.
3−−−−→

[
U(1)×U(1)

]
⋊ S3

R,Rcrit−−−−−−→
[
Z3 ×Z3

]
⋊ S3 = ∆(54)

☞ Detailed understanding of gauge origin of ∆(54) flavor symmetry
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

∆(54) from a Z3 orbifold plane
☞ Z3 orbifold plane without Wilson lines leads to a ∆(54) flavor

symmetry

X Y

Z

localized strings
tansform as 3-
or 3–plets

☞ Explicit model Carballo-Pérez, Peinado & Ramos-Sánchez [2016]
☞ Quarks and leptons transform as 3–plets (or 3–plets) of ∆(54)
☞ ∆(54) is type I group: ↷ CP violation for free?
☞ Not that simple! If the representation content is very special, one

can impose a CP transformation
☞ At the massless level, only 3- and 1–dimensional representations

occur ↷ a class–inverting outer automorphism exists ↷ a CP
candidate exists

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 21/ 189
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

∆(54) from a Z3 orbifold plane
☞ Z3 orbifold plane without Wilson lines leads to a ∆(54) flavor

symmetry

☞ Explicit model Carballo-Pérez, Peinado & Ramos-Sánchez [2016]

# irrep ∆(54) label
3 (3,2) 1

6
311 Qi

3
(
3,1

)
− 2

3
311 ui

3
(
3,1

)
1
3

311 di

3 (1,2)− 1
2

311 Li
3 (1,1)1 311 ei
3 (1,1)0 312 νi

☞ Quarks and leptons transform as 3–plets (or 3–plets) of ∆(54)
☞ ∆(54) is type I group: ↷ CP violation for free?
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Some flavors of string phenomenology ∆(54) from a Z3 orbifold plane

∆(54) from a Z3 orbifold plane

☞ Z3 orbifold plane without Wilson lines leads to a ∆(54) flavor
symmetry
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Some flavors of string phenomenology CP violation in the Z3 orbifold

CP violation from strings

☞ However, at the massive level ∆(54) 2–plets arise
Nilles, M.R., Trautner & Vaudrevange [2018]

☞ Doublets 21, 23 and 24 correspond to linear combinations of strings
that wind around two different fixed points in opposite directions

☞ Doublet 22
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Some flavors of string phenomenology CP violation in the Z3 orbifold

CP violation from strings

☞ However, at the massive level ∆(54) 2–plets arise
Nilles, M.R., Trautner & Vaudrevange [2018]

☞ Doublets 21, 23 and 24 correspond to linear combinations of strings
that wind around two different fixed points in opposite directions

☞ Doublet 22

X Y

Z
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Some flavors of string phenomenology CP violation in the Z3 orbifold

CP violation from strings
☞ Doublets save the day Nilles, M.R., Trautner & Vaudrevange [2018]

c4c∗3

c1

c∗4 c3

c∗1

We follow invariant approach Bernabeu, Branco & Gronau [1986]

Super powerful tool: GroupMath Fonseca [2021]

☞ Physical ��CP in doublet decay
☞ Phenomenological implications not worked out

bottom–line:
CP violation can come from group theory in UV
complete settings in which the origin of the flavor
group is fully understood

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 24/ 189
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Some flavors of string phenomenology CP violation in the Z3 orbifold

CP violation from strings

☞ Doublets save the day
Nilles, M.R., Trautner & Vaudrevange [2018]

☞ Physical ��CP in doublet decay

χ(21)

φ(31)

ϕ(3̄1)

c1
+ χ(21)

φ(31)

ϕ(31)

c1

c∗3

c∗4

c4

c3
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Some flavors of string phenomenology CP violation in the Z3 orbifold

CP violation with an unbroken CP transformation

☞ Type I groups can be embedded in SU(N)

no CP transformation has CP transformation

➥ Question: at which stage gets CP broken?
☞ Possible options include:

CP gets broken by the VEV that breaks SU(N) to G
the resulting setting always has additional symmetries and does not
violate CP

☞ Surprisingly the answer is none of the above
M.R. & Trautner [2017]

☞ Rather, the SU(3) CP transformation turns into an unbroken outer
automorphism which does not warrant physical CP conservation

details

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 25/ 189

http://inspirehep.net/search?p=Ratz:2016scn
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Some flavors of string phenomenology Metaplectic

Tori

☞ torus=donut

☞ two cycles
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Some flavors of string phenomenology Metaplectic

Tori

identify

identify

0 e1

e2
e′

2

☞ torus can be thought of as a parallelogram (which emerges by
cutting the torus open along the red and blue cycles)

☞ fundamental domain is not unique
☞ we can build linear combinations of the basis vectors(

e2
e1

)
γ7−→

(
e′

2
e′

1

)
=
(
a b
c d

) (
e2
e1

)
=: γ

(
e2
e1

)
☞ volume of fundamental domain stays the same ⇔ det γ = 1 ↷

γ ∈ SL(2,Z) (there is a superfluous sign, so γ ∈ Γ = SL(2,Z)/Z2)
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Some flavors of string phenomenology Metaplectic

SL(2,Z)

☞ two basic transformations

T : e2 7→ e′
2 = e2 + e1 ↷ γ =

(
1 1
0 1

)
=: T

S : e1 7→ e′
1 = e2 and e2 7→ e′

2 = −e1 ↷ γ =
(

0 1
−1 0

)
=: S

☞ S and T generate SL(2,Z) and

S2 = (S T )3 = 1

Modular flavor symmetries:
identify finite groups with generators satisfying

S2 = (S T )3 = 1

and additional relations
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Some flavors of string phenomenology Metaplectic

Modular flavor symmetries
☞ finite subgroups ΓN := Γ/Γ(N) where

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z)/Z2 ;

(
a b
c d

)
=
(

1 0
0 1

)
mod N

}
level

☞ e.g. Γ3 ≃ A4 (symmetry of tetrahedron)
☞ complex coordinates: R2 ≃ C

➥ modular transformations in complex coordinates

τ
S7−−→ −1

τ
and τ

T7−−→ τ + 1
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∈ SL(2,Z)/Z2 ;
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a b
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=
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mod N

}
☞ e.g. Γ3 ≃ A4 (symmetry of tetrahedron)
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☞ complex coordinates: R2 ≃ C

R2 ∋
(
x1
x2

)
identify←−−−−→ x1 + ix2 = z ∈ C

R2 ∋ e1
identify←−−−−→ 1 ∈ C

R2 ∋ e2
identify←−−−−→ τ ∈ C

➥ modular transformations in complex coordinates

τ
S7−−→ −1
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and τ
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Some flavors of string phenomenology Metaplectic

Modular forms

☞ traditional modular forms

f(γτ) = (cτ + d)−kf(τ)

γ =
(
a b
c d

)
∈ SL(2,Z)/Z2

☞ modular forms of level N

fi(γτ) = (cτ + d)−k [ρN (γ)]ij fj(τ)
Feruglio [2017]

Modular flavor symmetries:
What if Yukawa couplings are modular forms?

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 31/ 189
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Modular forms & modular flavor symmetries

☞ traditional modular forms

f(γτ) = (cτ + d)−kf(τ)

☞ modular forms of level N

fi(γτ) = (cτ + d)−k [ρN (γ)]ij fj(τ)

representation matrix of ΓN

Feruglio [2017]
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Some flavors of string phenomenology Metaplectic

An explicit example
Feruglio [2017]

☞ lepton sector of the (supersymmetric) standard model
(Ec1, Ec2, Ec3) L Hd Hu φ

SU(2)L ×U(1)Y 11 2−1/2 2−1/2 21/2 10
Γ3 (1,1′,1′′) 3 1 1 3
k (kE1 , kE2 , kE3) kL kd ku kφ

☞ charged fermion masses are obtained by adjusting three parameters

☞ Weinberg operator: Wν = 1
Λ [(Hu · L) Y (Hu · L)]1

☞ Kähler potential of charged leptons: KL = (−i τ + i τ)−1 (
LL
)

1

☞ neutrino mass in “modular” A4 models

mν = v2
u

Λ

2Y1(τ) −Y3(τ) −Y2(τ)
−Y3(τ) 2Y2(τ) −Y1(τ)
−Y2(τ) −Y1(τ) 2Y3(τ)


☞ 3 free parameters Λ, Re τ and Im τ ↷ 9 predictions: three mass

eigenvalues, three mixing angles and three phases
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Some flavors of string phenomenology Metaplectic

Too good to be true?

☞ 3 free parameters Λ, Re τ and Im τ ↷ 9 predictions: three mass
eigenvalues, three mixing angles and three phases

☞ Why is this a big deal?
we know two ∆m2 and three angles so it is nontrivial that this works.
predictions of the absolute mass scale, the Dirac phase and the
Majorana phases.

☞ Increase in predictivity because multi–component flavons got
replaced by τ , which has only two degrees of freedom

☞ However: Kähler potential not fixed by symmetries
Chen, Ramos-Sánchez & M.R. [2020]

➥ many more parameters
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Problem with kinetic terms
Chen, Ramos-Sánchez & M.R. [2020]

☞ EFT expansion of the Kähler potential

K = α0 (−i τ + i τ)−1 (
LL
)

1 +
7∑
k=1

αk (−i τ + i τ)
(
Y LY L

)
1, k + . . .

canonical (up to overall factor)

☞ Since modular flavor symmetries are nonlinearly realized there is no
control over the Kähler potential

➥ More parameters than predictions in bottom–up approach
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Example of corrections in modular A4 model
Chen, Ramos-Sánchez & M.R. [2020]

☞ E.g. sensitivity to the α3 coefficient

12

13 23

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

3

ij

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 35/ 189

http://inspirehep.net/search?p=Chen:2019ewa


Some flavors of string phenomenology Metaplectic

Modular flavor symmetries from strings

☞ In order to make reliable predictions we need more ingredients

☞ Ultimately we want to embed these models in a more complete
framework anyway

☞ Powerful tool: eclectic flavor symmetries
Nilles, Ramos–Sánchez & Vaudrevange [2021], Baur, Kade, Nilles, Ramos-Sanchez & Vaudrevange [2021]

Nilles, Ramos–Sánchez, & Vaudrevange [2020c], Nilles, Ramos-Sanchez & Vaudrevange [2020a]
Nilles, Ramos-Sánchez & Vaudrevange [2020b]

☞ This talk: focus on a simple enough field theory model that is
“stringy enough”
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Some flavors of string phenomenology Metaplectic

Magnetized tori
Cremades, Ibáñez & Marchesano [2004]

☞ torus with magnetic flux carries chiral zero modes

ψj,M (z, τ, ζ) = N eπ iM (z+ζ) Im(z+ζ)
Im τ ϑ

[
j

M

0

](
M (z + ζ),M τ

)

☞ normalization

N =
(

2M Im τ

A2

)1/4
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Magnetized tori
Cremades, Ibáñez & Marchesano [2004]

☞ torus with magnetic flux carries chiral zero modes

ψj,M (z, τ, ζ) = N eπ iM (z+ζ) Im(z+ζ)
Im τ ϑ

[
j

M

0

](
M (z + ζ),M τ

)
☞ normalization

N =
(

2M Im τ

A2

)1/4

area of torus
A = (2πR)2 Im τ
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Flux

☞ Flux in U(N) gauge theory w/ N = Na +Nb +Nc

Fzz = πi
Im τ

ma

Na
1Na×Na

0 0
0 mb

Nb
1Nb×Nb

0
0 0 mc

Nc
1Nc×Nc



☞ Assumption: sα = mα

Nα
∈ Z

☞ Differences between fluxes: Iαβ = sα − sβ
☞ “Sum rule”

Iab + Ibc + Ica = 0

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 39/ 189
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Some flavors of string phenomenology Metaplectic

Yukawa couplings

☞ Yukawa couplings are given by overlap integrals

Yijk(ζ̃, τ) = g σabc∫
T2

d2z ψi,Iab(z, τ, ζab)ψj,Ica(z, τ, ζca)
(
ψk,Icb(z, τ, ζcb)

)∗

gauge coupling sign
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Yukawa couplings
Cremades, Ibáñez & Marchesano [2004]

☞ Yukawa couplings be expressed as a sum of ϑ–functions

Yijk(ζ̃, τ) = Nabc e
H(̃ζ,τ)

2
∑

m∈ZIbc

δk,i+j+Iab m

· ϑ
[Icai−Iabj+IabIcam

−IabIbcIca

0

](
ζ̃, τ |IabIbcIca|

)

Nabc = g σabc
( 2 Im τ

A2

)1/4
∣∣∣IabIca

Ibc

∣∣∣1/4

☞ Yukawa couplings also describe intersecting brane models
Cremades, Ibáñez & Marchesano [2004]

☞ Also related to couplings on heterotic orbifolds
Abel & Owen [2004]

☞ Obviously no sum for Ibc = 1

☞ There might still be a sum for gcd(Iab, Ica, Ibc) = 1
Almumin, Chen, Knapp-Pérez, Ramos-Sánchez, M.R. & Shukla [2021]
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“collective” Wilson line

ζ̃ := −Iab Ica (ζca − ζab) = dαβγ sα ζα Iβγ

w/ dαβγ =
{

1 if {α, β, γ} is even perm. of {1, 2, 3}
0 otherwise
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Yukawa couplings for general flux parameters
Almumin, Chen, Knapp-Pérez, Ramos-Sánchez, M.R. & Shukla [2021]

☞ Using elementary number theory one can reduce the Yukawa
coupling to a single ϑ–function

Yijk(ζ̃, τ) = Nabc e
H(̃ζ,τ)

2 ∆(d)
i+j,k

· ϑ

[
I′

ca i−I′
ab j+I′

ca (I′
ab)ϕ(|I′

bc
|) (k−i−j)

λ
0

](
ζ̃

d
, λ τ

)

Euler ϕ–function λ = lcm
(
|Iab|, |Ica|, |Ibc|

)

➥ Only lcm
(
|Iab|, |Ica|, |Ibc|

)
independent coupling

☞ This expression allows us to determine the metaplectic flavor
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Some flavors of string phenomenology Metaplectic

Metaplectic transformations
cf. also Liu, Yao, Qu & Ding [2020]

☞ Double cover of SL(2,Z): the so–called metaplectic group
Γ̃ = Mp(2,Z)

☞ Generators S̃ and T̃ of Γ̃ satisfy the presentation

S̃8 = (S̃ T̃ )3 = 1 and S̃2T̃ = T̃ S̃2

☞ Our choice

S̃ = (S,−
√
−τ) and T̃ = (T,+1) , S, T ∈ Γ

☞ Metaplectic group

Γ̃ =
{
γ̃ = (γ, φ(γ, τ)) | γ ∈ Γ, φ(γ, τ) = ±(c τ + d)1/2

}
☞ Multiplication rule

(γ1, φ(γ1, τ)) (γ2, φ(γ2, τ)) = (γ1γ2, φ(γ1, γ2 τ)φ(γ2, τ))

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 43/ 189
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Some flavors of string phenomenology Metaplectic

Metaplectic flavor symmetries from magnetized tori

☞ Yukawa couplings transform nontrivially under modular
transformations

☞ Naive expectation: zero–mode wavefunctions get mapped to a linear
combination of zero–mode wavefunctions

☞ However, not true for odd flux parameters M
Ohki, Uemura & Watanabe [2020], Kikuchi, Kobayashi, Takada, Tatsuishi & Uchida [2020]

☞ Yet this does not indicate an inconsistency. Rather, the true
transformation involves either Scherk–Schwarz phases or equivalently
a shift of the so–called Wilson line parameter ζ

Kikuchi, Kobayashi & Uchida [2021], Almumin, Chen, Knapp-Pérez, Ramos-Sánchez, M.R. & Shukla [2021], Tatsuta [2021]

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 44/ 189
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Some flavors of string phenomenology Metaplectic

Connection to bottom–up model building

☞ Metaplectic flavor symmetries have been studie in bottom–up model
building

Liu, Yao, Qu & Ding [2020], Ding, Feruglio & Liu [2021]

☞ Torus–derived metaplectic flavor symmetries are first and so far only
example in which the bottom–up postulated symmetries have been
derived from some explicit setting

Almumin, Chen, Knapp-Pérez, Ramos-Sánchez, M.R. & Shukla [2021]

☞ Realistic fits of the neutrino masses have been achieved in the
bottom–up approach. . .

☞ . . . but only at the expense of introducing representations and fixing
their modular weights at will

➥ More efforts required to endow phenomenologically promising
bottom–up constructions with a UV completion

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 45/ 189

http://inspirehep.net/search?p=Liu:2020msy,Ding:2020zxw
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Some flavors of string phenomenology Metaplectic

Eclectic flavor symmetries in heterotic orbifolds
Nilles, Ramos–Sánchez & Vaudrevange [2021], Baur, Kade, Nilles, Ramos-Sanchez & Vaudrevange [2021]

☞ Discrete flavor symmetries are identified as the outer automorphisms
of the Narain space group

☞ Roughly speaking

Geclectic = Gtraditional ∪Gmodular

☞ These symmetries include:
traditional flavor symmetries
modular flavor symmetries
R symmetries (including non–Abelian discrete R symmetries)
CP symmetries and CP–like transformations

☞ These symmetries are gauged
cf. Giveon, Porrati & Rabinovici [1994], Beye, Kobayashi & Kuwakino [2014], Biermann, Mütter, Parr, M.R. & Vaudrevange [2019]

☞ So far no explicit realization of successful bottom–up models

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 47/ 189

http://inspirehep.net/search?p=Nilles:2020gvu,Baur:2020jwc
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Quasi–eclectic flavor symmetries
Chen, Knapp-Perez, Ramos-Hamud, Ramos-Sanchez, M.R., & Shukla [2021]

☞ Using some of the ingredients of the eclectic scheme one may make
bottom–up models predictive

☞ Basic ingredient: representations which transform nontrivially under
both Gtraditional and Gmodular

☞ The “diagonal” subgroup of Gtraditional and Gmodular can be
sufficiently predictive

Atraditional
4

canonical
kinetic terms

Γ3

modular forms
×

Γdiagonal
3

modular forms
+

canonical kinetic terms

⟨χ⟩ = χdiag

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 48/ 189
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modular forms
+

canonical kinetic terms

⟨χ⟩ = χdiag
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Some flavors of string phenomenology Generation flow

History

☞ Nelson and Strassler showed in field theory that one can obtain one
chiral SM generation from states that are vector–like under GSM

Strassler [1996], Nelson & Strassler [1997]

☞ There are several stringy models which similarly effects occur
Kachru & Silverstein [1997], Aldazabal et al. [1998], Douglas & Zhou [2004], Anderson et al. [2016],. . .

☞ More recently, Razamat and Tong used the Nelson–Strassler
scenario to give a chiral generation a mass

Razamat & Tong [2021]

this talk:
Stringy realization of Nelson–Strassler and
Razamat–Tong scenarios
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Some flavors of string phenomenology Generation flow

The Nelson–Strassler and Razamat–Tong scenarios
Strassler [1996], Nelson & Strassler [1997], Razamat & Tong [2021]

☞ Supersymmetric model with gauge group SU(2)s and a global (or
weakly gauged) SU(6) ⊂ SU(5)GG ×U(1) symmetry and matter
content

(6,2)⊕ (15,1)→ (5,2)1 ⊕ (1,2)−5 ⊕ (10,1)−2 ⊕ (5,1)4

☞ From the SU(5)GG ⊃ GSM point of view this is one generation
(10 + 5) plus vectorlike (5 + 5)

☞ When SU(2)s undergoes “s–confinement”, the (6,2) form
“baryons” transforming as (6× 6)a = 15→ 10 + 5

Seiberg [1994], Csáki, Schmaltz & Skiba [1997a,b]

☞ Generation flow 1{0: after s–confinement we are left with
vector–like states only

(6,2)⊕ (15,1) s–confinement−−−−−−−−→ 15⊕ 15

☞ Given appropriate trilinear couplings the vector–like states can
acquire mass

Razamat & Tong [2021]
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Some flavors of string phenomenology Generation flow

The 4{3 model

☞ Unconfined spectrum

# irrep label
4 (10,1) T
2

(
5,1

)
F

1
(
5,2

)
F

′

1 (1,2) ϕ

1 (5,1) F
1

(
5,1

)
F

☞ Confined spectrum
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5,1

)
F ,F

1
(
10,1

)
T

1 (5,1) F
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Some flavors of string phenomenology Generation flow

The 2{3 model

☞ Unconfined spectrum

# irrep label
2 (10,1) T
4

(
5,1

)
F

1 (5,2) F ′
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☞ Confined spectrum
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Some flavors of string phenomenology Generation flow

Comment on the representation content and symmetries

☞ Is (6,2)⊕ (15,1) under SU(6)× SU(2)s contrived?

or baroque?
☞ No, exceptional! SU(6)× SU(2)s is a maximal subgroup of E6 and

the matter content fits exactly into a 27–plet
Ramos-Sánchez, M.R., Shirman, Shukla & Waterbury [2021]

E6 → SU(6)× SU(2)s
→ SU(5)× SU(2)s ×U(1)

27→ (6,2)⊕ (15,1)
→ (5,2)1 ⊕ (1,2)−5 ⊕ (10,1)−2 ⊕ (5,1)4

☞ So it is not surprising that anomalies cancel
☞ However, are there reasons why SU(2)s can be more strongly

coupled than SU(6)?

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 54/ 189
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Some flavors of string phenomenology Generation flow

Stringy realization
Ramos-Sánchez, M.R., Shirman, Shukla & Waterbury [2021]

☞ Scan E8 × E8 heterotic orbifolds for models in which SU(2)s and
SU(6) come from different E8 factors

Nilles, Ramos-Sánchez, Vaudrevange & Wingerter [2012]

☞ We find several 4{3 and 2{3 models in the Z2 ×Z4 (1,1)
geometry

☞ These models have vectorlike states which can be decoupled
consistently with supersymmetry

☞ The couplings required to pair up composites with the 4th

generation also exist

bottom–line:
String theory appears to host models exhibiting
generation flow ↷ it is not enough to count the
generations at the tree level

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 55/ 189
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Some flavors of string phenomenology Generation flow

Implications for string model building

☞ Chiral spectrum may change in the low–energy effective theory

☞ Many more models
☞ May also allow one to decouple other unwanted chiral exotics
☞ Better understanding of the QFT dynamics desirable
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Some flavors of string phenomenology R symmetries

R symmetries in heterotic orbifolds

☞ R symmetries can be derived from the so–called H–momentum
selection rule

Hamidi & Vafa [1987], Dixon, Friedan, Martinec & Shenker [1987]
.
.
.

Kobayashi, Raby & Zhang [2005]

☞ The R charges have undergone some revisions
Nilles, Ramos-Sánchez, M.R. & Vaudrevange [2013], Cabo Bizet, Kobayashi, Mayorga Peña, Parameswaran, Schmitz & Zavala [2013]

☞ The R symmetries can be instrumental for the stabilization of
moduli and the generation of hierarchies

details

☞ This talk: focus on implications of ZR4 for MSSM model building
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Some flavors of string phenomenology R symmetries

ZR4 features

☞ ZR4 is the unique symmetry that allows us to forbid the µ term in
the MSSM when one demands SO(10) relations

Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange [2011a]

☞ ZR4 appears anomalous but anomaly is cancelled by the
Green–Schwarz axion, ZR4 is nonlinearly realized

☞ Z2 ⊂ ZR4 is anomaly–free without GS axion and exact, and is in fact
nothing but the well–known R parity or matter parity

☞ ZR4 is broken by the superpotential expectation value, i.e. the
gravitino mass

☞ The fact that this breaking is tied to an anomaly is what one
expects in models of dynamical supersymmetry breaking

Witten [1981] ,. . . ,Shadmi & Shirman [2000] ,. . . ,Intriligator, Seiberg & Shih [2006]
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Some flavors of string phenomenology R symmetries

ZR4 summarized
Babu, Gogoladze & Wang [2003a], Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange [2011a,b]

☞ Gauge invariant superpotential up to order 4

Wgauge invariant = µhdhu + κi ℓihu

+ Y gfe ℓghde
C
f + Y gfd qghdd

C
f + Y gfu qghuuC

f

+ λgfk ℓgℓfeC
k + λ′

gfk ℓgqfdC
k + λ′′

gfk uC
gdC

fdC
k

+ κgf huℓg huℓf + κ
(1)
gfkℓ qgqfqkℓℓ + κ

(2)
gfkℓ uC

guC
fdC

keC
ℓ

☞ Yukawa couplings and Weinberg operator allowed
☞ R–parity violating couplings forbidden by unbroken Z2 subgroup of
ZR4

☞ µ term and proton decay operators proportional to the order
parameter of ZR4 breaking, i.e. m3/2 ≃ ⟨W ⟩ /M2

P

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 61/ 189
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Some flavors of string phenomenology Summary & outlook

Ever–growing importance of modular invariance

Modular
Invariance

String
Theory

Feynman
Integrals Regularization

(Bottom–up)
Flavor
Models

Abel & Dienes [2021]
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Some flavors of string phenomenology Summary & outlook

. . . and other symmetries

☞ Repetition of families may be “explained” by flavor symmetries

☞ CP violation may have its origin in finite groups . . . and this
mechanism has an explicit string theory realization

☞ R symmetries appear to be instrumental to address the
shortcomings of supersymmetric standard models . . . and are part of
some explicit string–derived MSSM models

☞ So–called eclectic symmetries contain all the above, and appear in
explicit string models

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 64/ 189
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Some flavors of string phenomenology Summary & outlook

Lessons for model building

☞ We do not have explicit string theory realizations of
phenomenologically successful models of flavor

☞ On the other hand, the bottom–up models appear to require input
from string theory to become really predictive and allow us to
eventually make unequivocal testable predictions

☞ Our past model scans appear even more incomplete than previously
appreciated due to the possibility of phenomena such as generation
flow

☞ Composites such as those appearing in generation flow scenarios may
come with modular weights of the type used in bottom–up models
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Some flavors of string phenomenology Summary & outlook

Outlook

☞ Nonsupersymmetric model building (e.g. modular flavor symmetries
do not seem to necessarily require supersymmetry)

☞ Other new ideas

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 66/ 189
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Some flavors of string phenomenology Summary & outlook

Possible discussion topic: smooth compactifications

☞ Famous result: one can obtain Calabi–Yau compactifications from
string theory

Candelas, Horowitz, Strominger & Witten [1985]

heterotic
string

supergravity
Calabi–Yau

compactification

?

☞ However, the converse is less obvious
☞ For instance, there seems to be an infinite number of certain line

bundles
Groot Nibbelink, Loukas, Ruehle & Vaudrevange [2015]

provocative question:
Is it clear that all Calabi–Yau models are string
compacifications? If not, how can one tell which of
them are?

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 68/ 189
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bundles
Groot Nibbelink, Loukas, Ruehle & Vaudrevange [2015]

provocative question:
Is it clear that all Calabi–Yau models are string
compacifications? If not, how can one tell which of
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Another discussion topic: intersecting D–brane models

☞ There is a huge literature of semi–realistic D–brane models
see e.g. Ibáñez & Uranga [2012]

☞ Duality with magnetic torus compactifications
Cremades, Ibáñez & Marchesano [2003]

☞ However, a recent analysis of the vacuum structure of magnetized
tori suggests that their true vacua are nonchiral

Buchmüller, Dudas & Tatsuta [2021]

☞ Yet magnetized tori are dual to intersecting D–brane models
c.f. e.g. Cremades, Ibáñez & Marchesano [2004]

provocative question:
Is the absence of chiral vacua just a feature of the
simple model considered by Buchmüller et al., or is it
a more general problem?
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Some flavors of string phenomenology Backup slides

GUT vs. string scale
e.g. Witten [1996]

☞ Supergravity description of heterotic string

L = −
∫

d10x
√
g gs

(
4

(α′)4 R+ 1
(α′)3 trF 2 + . . .

)

gs = e−ϕ

α′ = 1
2πM2

string

➥ Effective 4D action after compactification

L = −
∫

d4x
√
g e−2ϕ V

(
4

(α′)4 R+ 1
(α′)3 trF 2 + . . .

)
➥ 4D Newton’s constant and gauge coupling

GN = e2ϕ (α′)4

64π V and αGUT = e2ϕ (α′)3

16π V
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GUT vs. string scale

➥ 4D Newton’s constant and gauge coupling

GN = e2ϕ (α′)4

64π V and αGUT = e2ϕ (α′)3

16π V

➥ Relation between Newton’s constant and gauge coupling

GN = αGUT α
′

4 = αGUT

8πM2
string

≃ 1
(24Mstring)2

!= 1
M2

P

➥ Well–known problem: using αGUT = g2
GUT/4π ≃ 1/25

Mstring ≃ 9 · 1017 GeV and MGUT ≃ (2− 3) · 1016 GeV

↷
Mstring

MGUT
∼ 30 . . . 40
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Gauge unification: GUT vs. string scale
cf. Dienes [1997]

α−1

MGUT Mstring

1

2

3

?

G−1
N
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Gauge unification: 4D GUT picture
cf. Dienes [1997]

α−1

MGUT Mstring

1

2

3

4D GUT

G−1
N
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Gauge unification: changing hypercharge normalization
cf. Ibáñez [1993]

α−1

MGUT Mstring

1

1

2

3

(kY < 5/3)

(kY = 5/3)

G−1
N
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Gauge unification: string thresholds
cf. Nilles & Stieberger [1997]

α−1

MGUT Mstring

1

1

2

3

G−1
N

∆3 −∆2

∆1 −∆2
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Gauge unification: M–theory or type I string
Witten [1996]

α−1

MGUT = Mstring

1

2

3

G−1
N

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 78/ 189

http://inspirehep.net/search?p=Witten:1996mz


Some flavors of string phenomenology Backup slides

GUT vs. string scale: M–theory
Witten [1996]

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 79/ 189
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Anisotropic compactifications

☞ However, Witten also mentions in a footnote

➥ Anisotropic compactification
➥ Need string (rather than supergravity) description!
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Orbifold GUT limits

☞ Anisotropic compactification may mitigate the discrepancy between
MGUT and Mstring

Witten [1996]
. . .

Hebecker & Trapletti [2005]

☞ For example

αGUT

2 = g2
het

(Rmhet)6 →
g2

het
(Rlarge mhet) (Rsmall mhet)5

. . . works if Rlarge mhet ∼ 50 or R−1
large ∼ 3 · 1016 GeV

☞ Hebecker & Trapletti are a bit sceptical but their bound may be a
bit too conservative (volume of orbifold , volume of torus)

☞ In any case we need a complete string model in order to deal with
the smaller directions

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 81/ 189
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Gauge unification: orbifold GUT picture

α−1

MGUT = 1/Rlarge Mstring

1

2

3

higher–
dimensional

GUT

G−1
N
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What is an orbifold?

bcb bcb

bcbbcb

☞ an orbifold is a space which is smooth/flat everywhere except for
special (orbifold fixed) points

☞ ‘bulk’ gauge symmetry G is broken to (different) subgroups (local
GUTs) at the fixed points

☞ low–energy gauge group : Glow−energy = Gbl ∩Gbr ∩Gtl ∩Gtr
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Strings on orbifolds

heterotic string field theory
untwisted sector =
strings closed on the
torus

extra compo-
nents of gauge
fields

‘twisted’ sectors =
strings which are only
closed on the orbifold

‘brane fields’
(hard to understand in

field–theoretical framework)

bcb bcb

bcbbcb

☞ (‘brane’) Fields living at a fixed point with a certain symmetry
appear as complete multiplet of that symmetry

➥ e.g. if the electron lives at a point with SO(10) symmetry also u and
d quarks live there
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Some comments on orbifold history

☞ Very first stringy model of particle physics based on Z3 orbifold
Ibáñez, Kim, Nilles & Quevedo [1987]

☞ Models with hierarchical Yukawa couplings and a realistic top mass
e.g. Faraggi [1992]

☞ 3–generation standard like models with hypercharge in GUT
normalization

e.g. Dienes & Faraggi [1995]

☞ Promising Pati–Salam models on the Z3 ×Z2 orbifold and orbifold
GUT interpretation

Kobayashi, Raby & Zhang [2004], Förste, Nilles, Vaudrevange & Wingerter [2004], Kobayashi, Raby & Zhang [2005]

☞ MSSM models with qualitatively realistic fermion masses and R
parity

Buchmüller, Hamaguchi, Lebedev & M.R. [2006], Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange & Wingerter [2007a]
Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange & Wingerter [2007b]

Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez & M.R. [2007]

☞ A rather common concern in many models: fractionally charged
vector–like exotics
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Orbifolds & Wilson lines
Ibáñez, Nilles & Quevedo [1987], Hall, Murayama & Nomura [2002a] skip

☞ Local gauge embedding at fixed point f
V If = k V IN +mαW

I
nα

Wn

Z2

V

V

V

V

Wn

☞ Upshot: so–called discrete Wilson lines are differences between local
shifts (and not Wilson lines in the usual sense)

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 88/ 189
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Local vs. non–local GUT breaking
Hall, Murayama & Nomura [2002a], Hebecker [2004]

SU(5)

SU(5)

SU(5)

SU(5)

SU(5)

SU(5)

non–local
breaking
SU(5)
↓

GSM

➊ step: construct T2/Z2 orbifold which breaks SU(6) locally to SU(5)

Z2 : (x5, x6) → (−x5,−x6)

➋ step: mod out a freely acting Z′
2 symmetry which breaks

SU(5)→ SU(3)C × SU(2)L ×U(1)Y

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 89/ 189
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Some flavors of string phenomenology Heterotic orbifolds

Z2 orbifold pillow
☞ Starting point: torus
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Some flavors of string phenomenology Heterotic orbifolds

Orbifold classification in the past and current status

☞ First attempts to classify symmetric heterotic toroidal orbifolds
focused on Lie lattices

Bailin & Love [1999]

☞ A more complete classification of the Z2 ×Z2 orbifold showed that
there were many more possibilities than initially appreciated

Förste, Kobayashi, Ohki & Takahashi [2006], Dillies [2007], Donagi & Wendland [2009]

☞ However, the Z2 ×Z2 classification was not entirely complete, and
there are many more examples in of ZN ×ZM orbifolds yielding
ZN ×ZM orbifolds that have been missed previously

Fischer, M.R., Torrado & Vaudrevange [2013b]

☞ Many new non–Abelian heterotic toroidal orbifolds
Konopka [2013], Fischer, Ramos-Sánchez & Vaudrevange [2013a]

➥ The vast majority of heterotic orbifold geometries is known for less
than 10 years

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 92/ 189
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Some flavors of string phenomenology Heterotic orbifolds

Non–local GUT breaking in heterotic orbifolds

☞ Non–local GUT breaking has been used in orbifold GUTs and in
Calabi–Yau models

Hall, Murayama & Nomura [2002a], Hebecker & Trapletti [2005], Anandakrishnan & Raby [2013] ,. . .
Bouchard & Donagi [2006], Braun, Candelas, Davies & Donagi [2012], Anderson, Gray, Lukas & Palti [2012] ,. . .

☞ More recently it also has been in heterotic orbifolds
Donagi & Faraggi [2004], Blaszczyk, Nibbelink, M.R., Ruehle, Trapletti, et al. [2010]

☞ Complete classification of (symmetric toroidal) heterotic orbifolds
allows us to understand more systematically how to construct
models with a nontrivial fundamental group

Donagi & Wendland [2009], Fischer, M.R., Torrado & Vaudrevange [2013b]
Fischer, Ramos-Sánchez & Vaudrevange [2013a], Beye, Kobayashi & Kuwakino [2013]

☞ 31 geometries with non–trivial fundamental groups (after
orbifolding!) with point groups Z2 ×Z2, Z2 ×Z4 and Z3 ×Z3
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Some flavors of string phenomenology Heterotic orbifolds

Z2 × Z2 orbifold example
Blaszczyk, Nibbelink, M.R., Ruehle, Trapletti, et al. [2010] ; Kappl, Petersen, Raby, M.R., Schieren & Vaudrevange [2011]

SU(5)

SU(5)

SU(5)

SU(5)

SU(5)

SU(5)

non–local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 ×Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:
breaks SU(5) → SU(3)C × SU(2)L × U(1)Y

reduces the number of generations to 3
analogous mechanism in CY MSSMs Bouchard & Donagi [2006]

Braun, He, Ovrut & Pantev [2005]

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 95/ 189
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Some flavors of string phenomenology Heterotic orbifolds

Main features

➊ GUT symmetry breaking non–local
↷ (almost) no ‘logarithmic running above the GUT scale’

Hebecker & Trapletti [2005] ; Anandakrishnan & Raby [2013]

➋ No localized flux in hypercharge direction
➌ 4D gauge group:

SU(3)C × SU(2)L × U(1)Y × [SU(3)× SU(2)2 × U(1)8]

➍ massless spectrum

spectrum = 3× generation + vector–like

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 96/ 189
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↷ complete blow–up without breaking SM gauge symmetry in
principle possible
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➋ No localized flux in hypercharge direction
➌ 4D gauge group:

SU(3)C × SU(2)L × U(1)Y × [SU(3)× SU(2)2 × U(1)8]

➍ massless spectrum
# representation label # representation label
3 (3,2; 1,1,1)1/6 Q 3 (3,1; 1,1,1)− 2

3
U

3 (3,1; 1,1,1)1/3 D 3 (1,2; 1,1,1)− 1
2

L

3 (1,1; 1,1,1)1 E 37 (1,1; 1,1,1)0 s

6 (1,2; 1,1,1)−1/2 h 6 (1,2; 1,1,1)1/2 h

3 (3,1; 1,1,1)1/3 δ 3 (3,1; 1,1,1)−1/3 δ
3 (1,1; 3,1,1)0 x 5 (1,1; 3,1,1)0 x
6 (1,1; 1,1,2)0 y 6 (1,1; 1,2,1)0 z
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Some flavors of string phenomenology Heterotic orbifolds

Spectrum and ZR4
# representation label # representation label
3 (3,2; 1,1,1)1/6 Q 3 (3,1; 1,1,1)−2/3 U
3 (3,1; 1,1,1)1/3 D 3 (1,2; 1,1,1)−1/2 L
3 (1,1; 1,1,1)1 E 37 (1,1; 1,1,1)0 s

6 (1,2; 1,1,1)−1/2 h 6 (1,2; 1,1,1)1/2 h

3 (3,1; 1,1,1)1/3 δ 3 (3,1; 1,1,1)−1/3 δ
5 (1,1; 3,1,1)0 x 5 (1,1; 3,1,1)0 x
6 (1,1; 1,1,2)0 y 6 (1,1; 1,2,1)0 z

ZR4 : discriminate between

matter
with ZR4
charge 1

and Higgs/exotics
with ZR4 charge 0 or 2

☞ Many other good features:
no fractionally charged exotics (i.e. all SM fields come from SU(5) representations)
non–trivial full–rank Yukawa couplings
gauge–top unification
SU(5) relation yτ ≃ yb (but also for light generations)

ZR
4 symmetry

back
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Some flavors of string phenomenology Heterotic orbifolds

The role of SM singlets

☞ Most orbifolds come with a so–called anomalous U(1) and a
Fayet–Iliopoulos (FI) term

Atick, Dixon & Sen [1987] ;. . .

☞ One can verify that the FI term can be cancelled while leaving
supersymmetry and GSM ×ZR4 unbroken by giving some SM singlets
VEVs

☞ The singlet VEVs also induce mass terms and (Yukawa) couplings
between the SM fields

☞ However, in anisotropic compactifications there is a problem of scales

Rlarge > (ξFI)−1/2 ↷ ⟨s⟩ > 1/Rlarge

Open (?) question:
How can one explain Rlarge and obtain a reliable
effective 4D description?

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 98/ 189
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Some flavors of string phenomenology Heterotic orbifolds

Anisotropic compactifications

☞ There are some ideas to explain Rlarge
Buchmüller, Catena & Schmidt-Hoberg [2008]

☞ It appears much more straightforward to explain the small radii
Font, Ibáñez, Lüst & Quevedo [1990], Nilles & Olechowski [1990] ,. . .

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 99/ 189
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Anisotropic compactifications

☞ There are some ideas to explain Rlarge . . . but it is probably fair to
say that more research is needed to obtain a complete picture

Buchmüller, Catena & Schmidt-Hoberg [2008]

☞ It appears much more straightforward to explain the small radii
Font, Ibáñez, Lüst & Quevedo [1990], Nilles & Olechowski [1990] ,. . .
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Some flavors of string phenomenology Heterotic orbifolds

Phsysic of the winding modes

☞ Winding modes have also been used to stabilize compact directions
e.g. Danos, Frey & Brandenberger [2008], Easther, Greene & Jackson [2002]

☞ Winding modes may even be dark matter
Mütter & Vaudrevange [2020]

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 100/ 189
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Some flavors of string phenomenology Heterotic orbifolds

Brief recap

☞ New orbifold geometries allow us to construct explicit string models
with MSSM spectrum and non–local GUT breaking

☞ R symmetries provide us with a solution to the µ problem and avoid
unrealistic proton decay

☞ Models come also with see–saw suppressed neutrino masses
Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez & M.R. [2007]

Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange & Wingerter [2007b]

☞ However, in the absence of an experimental confirmation of
supersymmetry one may want to look more into models without
low–energy supersymmetry

Dienes [1994], Dienes, Moshe & Myers [1995], Dienes [2001]
.
.
.

Cribiori, Parameswaran, Tonioni & Wrase [2021]

☞ Modular invariance seems to play a crucial role. . . also for the
following

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 101/ 189
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Some flavors of string phenomenology R Symmetries for the MSSM

Claim 1: Non–R symmetries cannot forbid µ
Hall, Nomura & Pierce [2002b], Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange [2011a]

☞ Anomaly coefficients for non–R symmetry with SU(5) relations for
matter charges Ibáñez & Ross [1991] ,Banks & Dine [1992] ,. . .

Araki et al. [2008] ,. . .

ASU(3)2−ZN
=

3∑
g=1

[
3
2q

g
10 + 1

2q
g

5

]

ASU(2)2−ZN
=

3∑
g=1

[
3
2q

g
10 + 1

2q
g

5

]
+ 1

2 (qHu
+ qHd

)

sum over matter charges

☞ Anomaly universality: ASU(2)2−ZN
−ASU(3)2−ZN

= 0

↷
1
2 (qHu + qHd

) = 0 mod
{
N for N odd
N/2 for N even

bottom-line:
non–R ZN symmetry cannot forbid µ term
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http://inspirehep.net/search?p=Hall:2002up,Lee:2010gv
http://inspirehep.net/search?p=Ibanez:1991hv
http://inspirehep.net/search?p=Banks:1991xj
http://inspirehep.net/search?p=Araki:2008ek


Some flavors of string phenomenology R Symmetries for the MSSM

Claim 1: Non–R symmetries cannot forbid µ
Hall, Nomura & Pierce [2002b], Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange [2011a]

☞ Anomaly coefficients for non–R symmetry with SU(5) relations for
matter charges Ibáñez & Ross [1991] ,Banks & Dine [1992] ,. . .

Araki et al. [2008] ,. . .

ASU(3)2−ZN
=

3∑
g=1

[
3
2q

g
10 + 1

2q
g

5

]

ASU(2)2−ZN
=

3∑
g=1

[
3
2q

g
10 + 1

2q
g

5

]
+ 1

2 (qHu
+ qHd

)

☞ Anomaly universality: ASU(2)2−ZN
−ASU(3)2−ZN

= 0

↷
1
2 (qHu + qHd

) = 0 mod
{
N for N odd
N/2 for N even

bottom-line:
non–R ZN symmetry cannot forbid µ term

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 103/ 189

http://inspirehep.net/search?p=Hall:2002up,Lee:2010gv
http://inspirehep.net/search?p=Ibanez:1991hv
http://inspirehep.net/search?p=Banks:1991xj
http://inspirehep.net/search?p=Araki:2008ek


Some flavors of string phenomenology R Symmetries for the MSSM

Claim 1: Non–R symmetries cannot forbid µ
Hall, Nomura & Pierce [2002b], Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange [2011a]

☞ Anomaly coefficients for non–R symmetry with SU(5) relations for
matter charges Ibáñez & Ross [1991] ,Banks & Dine [1992] ,. . .

Araki et al. [2008] ,. . .

ASU(3)2−ZN
=

3∑
g=1

[
3
2q

g
10 + 1

2q
g

5

]

ASU(2)2−ZN
=

3∑
g=1

[
3
2q

g
10 + 1

2q
g

5

]
+ 1

2 (qHu
+ qHd

)

☞ Anomaly universality: ASU(2)2−ZN
−ASU(3)2−ZN

= 0

↷
1
2 (qHu + qHd

) = 0 mod
{
N for N odd
N/2 for N even

bottom-line:
non–R ZN symmetry cannot forbid µ term

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 103/ 189

http://inspirehep.net/search?p=Hall:2002up,Lee:2010gv
http://inspirehep.net/search?p=Ibanez:1991hv
http://inspirehep.net/search?p=Banks:1991xj
http://inspirehep.net/search?p=Araki:2008ek


Some flavors of string phenomenology R Symmetries for the MSSM

R symmetries and conventions

☞ Under an R symmetry the superspace coordinate θ has charge
qθ , 0.

☞ Anomaly–free continuous R symmetries are not available in the
MSSM

Chamseddine & Dreiner [1996]

☞ For discrete R symmetries we can choose w.l.o.g. qθ to be a positive
integer

☞ However, qθ > 1 means that only a subsymmetry is really an R
symmetry

➥ We will take mainly qθ = 1 and thus qW = 2 such that∫
d2θW is invariant

☞ Notice that there are also non–Abelian discrete R symmetries in
N = 1 SUSY

Chen, M.R. & Trautner [2013b]

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 104/ 189
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Some flavors of string phenomenology R Symmetries for the MSSM

Claim 2: SO(10) implies unique symmetry

Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange [2011a]

☞ Assumption: quarks and leptons have universal R charge q

☞ u- and d-type Yukawas allowed requires that

2q + qHu = 2 mod N and 2q + qHd
= 2 mod N

↷ qHu
− qHd

= 0 mod N

☞ u-type Yukawa and Weinberg operator allowed requires that

2q + qHu
= 2 mod N and 2q + 2qHu

= 2 mod N

↷ qHu = 0 mod N

➥ first conclusion:

qHu
= qHd

= 0 mod N

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 105/ 189
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Some flavors of string phenomenology R Symmetries for the MSSM

Claim 2: SO(10) implies unique symmetry (cont’d)
☞ Anomaly coefficients for Abelian discrete R symmetry

ASU(3)2−ZR
N

= 6(q − 1) + 3 = 6q − 3

ASU(2)2−ZR
N

= 6q + 1
2 (qHu + qHd

)− 5

☞ Anomaly universality

ASU(2)2−ZR
N
−ASU(3)2−ZR

N
= 0

↷ qHu
+ qHd

= 4 mod
{

2N for N odd
N for N even

☞ but we know already that qHu = qHd
= 0 mod N

bottom-line:
N = 4

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 106/ 189
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however: there is no meaningful ZR2 symmetry
cf. e.g. Dine & Kehayias [2010]
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Some flavors of string phenomenology R Symmetries for the MSSM

Claim 2: SO(10) implies unique symmetry (cont’d)
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Some flavors of string phenomenology R Symmetries for the MSSM

Unique ZR4 symmetry
☞ We know:

it is a ZR
4 symmetry

Higgs fields have charge qHu = qHd = 0 mod 4

➥ Yukawa couplings and Weinberg operator allowed ↷ matter has
charge q = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N

= 6(q − 1) + 3 = 6q − 3 = 1 mod 4/2

ASU(2)2−ZR
N

= 6q + 1
2 (qHu

+ qHd
)− 5 = 1 mod 4/2

AU(1)2
Y

−ZR
N

= 6q + 3
5 ·

1
2 · (qHu + qHd

− 2)

bottom-line:
ZR4 is anomaly free via GS mechanism
GS axion contributes to gravitational anomaly

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 107/ 189
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e.g. qHu
= qHd

= 16
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− 2)

bottom-line:
ZR4 is anomaly free via GS mechanism
GS axion contributes to gravitational anomaly
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Some flavors of string phenomenology R Symmetries for the MSSM

’t Hooft anomaly matching for R symmetries
’t Hooft [1980], Csáki & Murayama [1998]☞ Powerful tool: anomaly matching

☞ At the SU(5) level: one anomaly coefficient

ASU(5)2−ZR
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= Amatter
SU(5)2−ZR

M
+Aextra

SU(5)2−ZR
M

+ 5qθ

☞ Consider the SU(3) and SU(2) subgroups
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M
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SU(2)2−ZR

M
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SU(2)2−ZR
M

+ 2qθ+

☞ Assume now that some mechanism eliminates the extra gauginos
➥ Extra stuff must be non–universal (split multiplets)

bottom–line:
’t Hooft anomaly matching for (discrete) R symmetries implies the
presence of split multiplets below the GUT scale!
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Some flavors of string phenomenology R Symmetries for the MSSM

Claim 3: only 5 symmetries obey SU(5) relations
Lee, Raby, M.R., Ross, Schieren, Schmidt-Hoberg & Vaudrevange [2011b]

☞ Demanding SU(5) rather than SO(10) relations we find that the
order N of possible ZRN symmetries has to divide 24

☞ There are only five viable charge assignments

N q10 q5 qHu
qHd

ρ AR0 (MSSM)
4 1 1 0 0 1 1
6 5 3 4 0 0 1
8 1 5 0 4 1 3
12 5 9 4 0 3 1
24 5 9 16 12 9 7

☞ ZR6 is anomaly–free without Green–Schwarz axion and requires 3
generations

Evans, Ibe, Kehayias & Yanagida [2012]

back
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Large hierarchies in Nature

☞ Observed hierarchy: MP/mW ∼ 1017

Why?Why?
☞ Compelling answer: scale of supersymmetry breakdown set by

dimensional transmutation Witten [1981]

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 111/ 189
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Large hierarchies in Nature

☞ Observed hierarchy: MP/mW ∼ 1017

Why?Why?
☞ Compelling answer: scale of supersymmetry breakdown set by

dimensional transmutation Witten [1981]

Λ ∼MP exp
(
−b/g2)

➥ hierarchically small gravitino mass (‘gaugino condensation’)
Nilles [1982]

mW ∼ m3/2 ∼
Λ3

MP2
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Why?Why?
☞ Compelling answer: scale of supersymmetry breakdown set by

dimensional transmutation Witten [1981]

Λ ∼MP exp
(
−b/g2)

RG invariant scale

O(10)

O(1) coupling

➥ hierarchically small gravitino mass (‘gaugino condensation’)
Nilles [1982]
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Problem with string theory realization

☞ However: embedding into string theory ↷ run–away problem
Dine & Seiberg [1985]

V

ReS
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Moduli fixing and non–perturbative terms
There exist various possibilities to fix the gauge coupling/stabilize the
dilaton:

Race–track
Kähler stabilization
Flux compactification
etc. . . .
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Moduli fixing and non–perturbative terms
There exist various possibilities to fix the gauge coupling/stabilize the
dilaton:

Race–track
Krasnikov [1987] ; . . .

Kähler stabilization
Flux compactification
etc. . . .
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Moduli fixing and non–perturbative terms
There exist various possibilities to fix the gauge coupling/stabilize the
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Moduli fixing and non–perturbative terms
There exist various possibilities to fix the gauge coupling/stabilize the
dilaton:

Race–track
Kähler stabilization
Flux compactification
e.g. Kachru, Kallosh, Linde & Trivedi [2003]
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Constant + exponential scheme

☞ KKLT type proposal: Weff = c+A e−aS

constant non–perturbative

☞ Gravitino mass

m3/2 ∼ |c|
m3/2

!
≃TeV

−−−−−−−→ |c| ∼ 10−15

☞ Philosophy of flux compactifications: many vacua, in some of them
c might be small by accident

☞ Alternative proposal: hierarchically small expectation of the
perturbative superpotential due to approximate U(1)R symmetry

c→ ⟨Wpert⟩ ∼ ⟨ϕ⟩N with N = O(10)
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Constant + exponential scheme

☞ KKLT type proposal: Weff = c+A e−aS

☞ Gravitino mass

m3/2 ∼ |c|
m3/2

!
≃TeV

−−−−−−−→ |c| ∼ 10−15

☞ Philosophy of flux compactifications: many vacua, in some of them
c might be small by accident

☞ Alternative proposal: hierarchically small expectation of the
perturbative superpotential due to approximate U(1)R symmetry

c→ ⟨Wpert⟩ ∼ ⟨ϕ⟩N with N = O(10)

typical VEV < 1 order of U(1)R breaking
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Hierarchically small ⟨W ⟩
Two observations:

1 in the presence of an exact U(1)R symmetry
∂W

∂ϕi
= 0 ↷ ⟨W ⟩ = 0

2 for approximate R symmetries
⟨W ⟩ ∼ ⟨ϕ⟩N
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

⟨W ⟩ = 0 because of U(1)R (I)
aim: show that

∂W

∂ϕi
= 0 ↷ ⟨W ⟩ = 0

Consider a superpotential

W =
∑

cn1···nM
ϕn1

1 · · ·ϕ
nM

M

with an exact R symmetry

W → e2iα W , ϕj → ϕ′
j = ei rj α ϕj

where each monomial in W has total R charge 2
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

⟨W ⟩ = 0 because of U(1)R (II)
Consider a field configuration ⟨ϕi⟩ with

Fi = ∂W

∂ϕi
= 0 at ϕj = ⟨ϕj⟩

Under an infinitesimal U(1)R transformation, the superpotential
transforms nontrivially

W (ϕj)→ W (ϕ′
j) = W (ϕj) +

∑
i

∂W

∂ϕi
∆ϕi

This is only possible if ⟨W ⟩ = 0 !

bottom–line:
∂W

∂ϕi
= 0 ↷ ⟨W ⟩ = 0
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∂ϕi
= 0 at ϕj = ⟨ϕj⟩

Under an infinitesimal U(1)R transformation, the superpotential
transforms nontrivially

W (ϕj)→ W (ϕ′
j) = W (ϕj) +

∑
i

∂W

∂ϕi
∆ϕi

!= e2iα W

This is only possible if ⟨W ⟩ = 0 !

bottom–line:
∂W

∂ϕi
= 0 ↷ ⟨W ⟩ = 0
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Comments

➊ Statement ⟨W ⟩ = 0 holds regardless of whether U(1)R is unbroken
(where it is trivial) or broken

➋ Relation to Nelson–Seiberg theorem Nelson & Seiberg [1994] setting without
supersymmetric

ground state

 requires−−−−−→ U(1)R symmetry

➌ in local SUSY : ∂W

∂ϕi
= 0 and ⟨W ⟩ = 0 imply DiW = 0

(That is, a U(1)R symmetry implies Minkowski solutions.)

➍ in ‘no-scale’ type settings
Weinberg [1989]

solutions of
global SUSY
F term eq.’s

= stationary points
of supergravity
scalar potential
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Approximate R symmetries
☞ Consider now the case of an approximate R symmetry, i.e. explicit

R symmetry breaking terms appear at order N in the fields ϕi

☞ This allows us to avoid certain problems:
for a continuous U(1)R symmetry we would have

a supersymmetric ground state with ⟨W ⟩ = 0 and U(1)R

spontaneously broken

a problematic R Goldstone boson
however, for an approximate U(1)R symmetry one has

Goldstone boson massive and harmless

a nontrivial VEV of W at order N in ϕ VEVs
⟨W ⟩ ∼ ⟨ϕ⟩N

☞ Such approximate U(1)R symmetries can be a consequence of
discrete ZRN symmetries

☞ Confirmed in various field–theoretic examples
back

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 119/ 189
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

Origin of high–power discrete R symmetries

☞ Discrete R symmetries arise as remnants of Lorentz symmetries of
compact space

☞ Orbifolds break SO(6) ≃ SU(4) Lorentz symmetry of compact space
to discrete subgroups

☞ For example: a Z2 orbifold plane leads to ZR4 symmetry
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

An example
Brümmer, Kappl, M.R. & Schmidt-Hoberg [2010]

☞ Studied the previous example (‘heterotic benchmark model IA’) with
23 SM singlets si getting a VEV

☞ R symmetry breaking terms appear at order 9
☞ Da = 0 as well as global Fi = 0 at order 9 explicitly solved
☞ Search for solutions |si| < 1, and find/argue that they exist
☞ All fields acquire positive m2

(no flat directions; not destroyed by supergravity corrections)
☞ Superpotential VEV ⟨W ⟩ ∼ ⟨si⟩9 ≪ 1 (as expected)

bottom–line:
straightforward embedding in heterotic orbifolds

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 122/ 189
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

General picture

☞ The more fields are switched on, the lower N we obtain
examples:

model with 23 fields ↷ N = 9
model with 7 fields ↷ N = 26

☞ Suppressed si in accord with scale set by Fayet–Iliopoulos term (i.e.
⟨si⟩ ∼ 0.3)

☞ One approximate Goldstone mode η

mη ∼ ⟨W ⟩/⟨s⟩2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses ≫ mη

i.e. isolated points in si space with Fi = Da = 0

☞ Minima survive supergravity corrections
back
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Some flavors of string phenomenology Hierarchy between Planck and weak scales

General picture

☞ The more fields are switched on, the lower N we obtain
examples:

model with 23 fields ↷ N = 9
model with 7 fields ↷ N = 26

☞ Suppressed si in accord with scale set by Fayet–Iliopoulos term (i.e.
⟨si⟩ ∼ 0.3)

☞ One approximate Goldstone mode η

mη ∼ ⟨W ⟩/⟨s⟩2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses ≫ mη

i.e. isolated points in si space with Fi = Da = 0

☞ Minima survive supergravity corrections
back

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 123/ 189



Some flavors of string phenomenology Hierarchy between Planck and weak scales

General picture

☞ The more fields are switched on, the lower N we obtain
examples:

model with 23 fields ↷ N = 9
model with 7 fields ↷ N = 26

☞ Suppressed si in accord with scale set by Fayet–Iliopoulos term (i.e.
⟨si⟩ ∼ 0.3)

☞ One approximate Goldstone mode η

mη ∼ ⟨W ⟩/⟨s⟩2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses ≫ mη

i.e. isolated points in si space with Fi = Da = 0

☞ Minima survive supergravity corrections
back

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 123/ 189



Some flavors of string phenomenology Hierarchy between Planck and weak scales

General picture

☞ The more fields are switched on, the lower N we obtain
examples:

model with 23 fields ↷ N = 9
model with 7 fields ↷ N = 26

☞ Suppressed si in accord with scale set by Fayet–Iliopoulos term (i.e.
⟨si⟩ ∼ 0.3)

☞ One approximate Goldstone mode η

mη ∼ ⟨W ⟩/⟨s⟩2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses ≫ mη

i.e. isolated points in si space with Fi = Da = 0

☞ Minima survive supergravity corrections
back

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 123/ 189



Some flavors of string phenomenology Hierarchy between Planck and weak scales

General picture

☞ The more fields are switched on, the lower N we obtain
examples:

model with 23 fields ↷ N = 9
model with 7 fields ↷ N = 26

☞ Suppressed si in accord with scale set by Fayet–Iliopoulos term (i.e.
⟨si⟩ ∼ 0.3)

☞ One approximate Goldstone mode η

mη ∼ ⟨W ⟩/⟨s⟩2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses ≫ mη

i.e. isolated points in si space with Fi = Da = 0

☞ Minima survive supergravity corrections
back

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 123/ 189



A4 modelsA4 models
from thefrom the

bottom–upbottom–up



Some flavors of string phenomenology Example: A4

A popular example: A4
Ma & Rajasekaran [2001], Babu, Ma & Valle [2003b], Hirsch, Romao, Skadhauge, Valle & Villanova del Moral [2004]

Altarelli & Feruglio [2005] ,. . .
☞ Superpotential couplings

Wν = λ1

Λ Λν
{[(LHu)× (LHu)]3 × Φν}1 + λ2

Λ Λν
[(LHu)× (LHu)]1 ξ

left–handed
lepton doublets

transform as A4 triplet
L = (Le, Lµ, Lτ )T

A4 3–plet
(flavon)

u–type
Higgs

Wν = λ1

Λ Λν
{[(LHu)× (LHu)]3 × Φν}1 + λ2

Λ Λν
[(LHu)× (LHu)]1 ξ

We = he
Λ (Φe × L)1 Hd eR + hµ

Λ (Φe × L)1′ Hd µR + hτ
Λ (Φe × L)1′′ Hd τR

A4 = GF

Ge = Z2 Gν = Z3

⟨Φe⟩ ⟨Φν⟩

☞ A4 symmetry broken
by VEVs of flavons

⟨Φν⟩ = (v, v, v)
⟨Φe⟩ = (v′, 0, 0)
⟨ξ⟩ = w

➥ Tri–bi–maximal
mixing (TBM)

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 125/ 189
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A popular example: A4
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Altarelli & Feruglio [2005] ,. . .

☞ Superpotential couplings

Wν = λ1

Λ Λν
{[(LHu)× (LHu)]3 × Φν}1 + λ2

Λ Λν
[(LHu)× (LHu)]1 ξ

We = he
Λ (Φe × L)1 Hd eR + hµ

Λ (Φe × L)1′ Hd µR + hτ
Λ (Φe × L)1′′ Hd τR

A4 = GF

Ge = Z2 Gν = Z3

⟨Φe⟩ ⟨Φν⟩

☞ A4 symmetry broken
by VEVs of flavons

⟨Φν⟩ = (v, v, v)
⟨Φe⟩ = (v′, 0, 0)
⟨ξ⟩ = w
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Some flavors of string phenomenology Example: A4

Structure lepton masses
Altarelli & Feruglio [2005]

☞ After inserting the flavon VEVs

Wν = (LeHu, LµHu, Lτ Hu)

 a+ 2d −d −d
−d 2d a− d
−d a− d 2d

 LeHu

LµHu

Lτ Hu



a = 2λ1 λ2
w

Λ
1

Λν
d = λ1

3
v

Λ
1

Λν

Wν = (LeHu, LµHu, Lτ Hu)

 a+ 2d −d −d
−d 2d a− d
−d a− d 2d

  LeHu

LµHu

Lτ Hu


We = (Le, Lµ, Lτ )

ye 0 0
0 yµ 0
0 0 yτ

 eR
µR
τR

 Hd

☞ After inserting the electroweak VEVs

Wν
Hu→(0,vu)T

−−−−−−−−→ v2
u

2 (νe, νµ, ντ )

 a+ 2d −d −d
−d 2d a− d
−d a− d 2d

 νeνµ
ντ


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Some flavors of string phenomenology Example: A4

Tri–bi–maximal mixing (TBM)
Harrison, Perkins & Scott [2002]

☞ Structure of neutrino masses (in the basis in which the charged
lepton masses are diagonal)

mν ∝

a+ 2d −d −d
−d 2d a− d
−d a− d 2d



☞ Tri–bi–maximal (P)MNS
mixing matrix

UTBM
(P)MNS =


√

2
3

1√
3 0

− 1√
6

1√
3 − 1√

2
− 1√

6
1√

3
1√

2


• Mixing angles:

 θ12 ≃ 35◦

θ13 = 0
θ23 = 45◦

• δ undefined for θ13 = 0

☞ Unrealistic but close to the actual values
back
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Some flavors of string phenomenology ‘Corrections’ to model predictions

‘Corrections’ to model predictions

☞ Many analyses: include high order terms in holomorphic
superpotential

☞ However: possible to construct models where higher order
holomorphic superpotential terms vanish to all orders

☞ Also popular: contribution from right–handed sector (may be
determined by symmetries as well)

? How predictive are such models?
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Some flavors of string phenomenology ‘Corrections’ to model predictions

Kähler corrections
e.g. Leurer, Nir & Seiberg [1994]

☞ Superpotential: holomorphic, e.g.

Wν = 1
2 (LHu)T κν LHu

☞ Kähler potential: non–holomorphic (real analytic)

K = Kcanonical + ∆K

☞ Canonical Kähler potential

Kcanonical ⊃
∑
f

[
(Lf )†

Lf + (Rf )†
Rf

]
☞ Correction

∆K =
∑
f,g

[
L†
f Pfg Lg +R†

f Qfg Rg

]
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e.g. Leurer, Nir & Seiberg [1994]

☞ Superpotential: holomorphic, e.g.

Wν = 1
2 (LHu)T κν LHu

☞ Kähler potential: non–holomorphic (real analytic)

K = Kcanonical + ∆K

☞ Canonical Kähler potential

Kcanonical ⊃
∑
f

[
(Lf )†

Lf + (Rf )†
Rf

]

charged
lepton singlets
R = (eR, µR, τR)

☞ Correction

∆K =
∑
f,g

[
L†
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f Qfg Rg
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Some flavors of string phenomenology ‘Corrections’ to model predictions

Kähler corrections
e.g. Leurer, Nir & Seiberg [1994]

☞ Superpotential: holomorphic, e.g.

Wν = 1
2 (LHu)T κν LHu

☞ Kähler potential: non–holomorphic (real analytic)

K = Kcanonical + ∆K

☞ Canonical Kähler potential

Kcanonical ⊃
∑
f

[
(Lf )†

Lf + (Rf )†
Rf

]
☞ Correction

∆K =
∑
f,g

[
L†
f Pfg Lg +R†

f Qfg Rg

]

Hermitean
matrices

composed of
e.g. flavons
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Some flavors of string phenomenology ‘Corrections’ to model predictions

Back to the A4 example

☞ Kähler potential may contain

∆K linear
Φ ⊃

2∑
i=1

1
Λ κ

(i)
Φ,linear L

† (LΦ)3i
+ h.c.

one of
the triplet

flavons

triplet contractions from
3× 3 = 1 + 1′ + 1′′ + 31 + 32

☞ However, such terms may be forbidden by additional symmetries
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Some flavors of string phenomenology ‘Corrections’ to model predictions

A4 example continued

☞ ‘Quadratic’ Kähler corrections

∆Kquadratic
Φ ⊃ 1

Λ2

6∑
X

κX
Φ,quadratic (LΦ)†

X (LΦ)X + h.c.

one of
the triplet

flavons
triplet contractions from

3× 3 = 1 + 1′ + 1′′ + 31 + 32

☞ Such terms cannot be forbidden by any (conventional) symmetry
➥ Kähler corrections when flavon fields attain their VEVs
☞ Additional parameters κX

Φ reduce the predictivity of the scheme
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Some flavors of string phenomenology ‘Corrections’ to model predictions

Linear independent flavon corrections

☞ From ⟨Φe⟩

PI =

 1 0 0
0 0 0
0 0 0

 , PII =

 0 0 0
0 1 0
0 0 0


PIII =

 0 0 0
0 0 0
0 0 1


☞ From ⟨Φν⟩

PIV =

 0 1 1
1 0 1
1 1 0

 , PV =

 0 i −i
−i 0 i
i −i 0


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Some flavors of string phenomenology ‘Corrections’ to model predictions

Change of θ13 in the A4 model
Chen, Fallbacher, M.R. & Staudt [2012], Chen, Fallbacher, Omura, M.R. & Staudt [2013a]

☞ Consider change induced by PV correction

☞ Kähler metric of the form KL = 1− 2xP with

P = 3
√

3
2

 0 i −i
−i 0 i
i −i 0


☞ The analytic formula evaluated at tri–bi–maximal mixing reads

(me ≪ mµ ≪ mτ )

∆θ13 = κV ·
v2

Λ2 · 3
√

3
2

(
2m1

m1 +m3
+ m2

e

m2
µ −m2

e

+ m2
e

m2
τ −m2

e

)
☞ Complex P matrix ↷��CP is induced: δ ≈ π/2
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Some flavors of string phenomenology ‘Corrections’ to model predictions

Change of θ13

☞ ∆θ13 for Kähler coefficient κV = 1, v/Λ = 0.2
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Some flavors of string phenomenology ‘Corrections’ to model predictions

Impact of “corrections”

☞ The majority of the bottom–up models is vulnerable to such
corrections, i.e. the change of the predicted values is much larger
than the experimental accuracy

☞ A UV completion, such as the one that may be provided by string
theory, can possibly help us to make the models more predictive

☞ There are works which compute some of the relevant terms
e.g. Antoniadis, Gava, Narain & Taylor [1994], Olguín-Trejo & Ramos-Sánchez [2017]
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Some flavors of string phenomenology CP violation from finite groups (details)

The canonical CP transformation

☞ Scalar field operator

ϕ(x) =
∫

d3p
1

2Ep⃗
[
a(p⃗) e−i p·x + b†(p⃗) ei p·x]

annihilates particle

☞ CP exchanges particles & anti–particles

(CP)−1
a(p⃗)CP = ηCP b(−p⃗) & (CP)−1

a†(p⃗) CP = η∗
CP b†(−p⃗)

(CP)−1
b(p⃗) CP = η∗

CP a(−p⃗) & (CP)−1
b†(p⃗) CP = ηCP a†(−p⃗)

☞ CP transformation of (scalar) fields

ϕ(x) CP7−−→ ηCP ϕ
∗(Px)
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The canonical CP transformation

☞ Scalar field operator

ϕ(x) =
∫

d3p
1

2Ep⃗
[
a(p⃗) e−i p·x + b†(p⃗) ei p·x]

☞ CP exchanges particles & anti–particles

(CP)−1
a(p⃗)CP = ηCP b(−p⃗) & (CP)−1

a†(p⃗) CP = η∗
CP b†(−p⃗)

(CP)−1
b(p⃗) CP = η∗

CP a(−p⃗) & (CP)−1
b†(p⃗) CP = ηCP a†(−p⃗)

☞ CP transformation of (scalar) fields

ϕ(x) CP7−−→ ηCP ϕ
∗(Px)

freedom of re–phasing fields
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Some flavors of string phenomenology CP violation from finite groups (details)

Generalized CP transformations

☞ Setting w/ discrete symmetry G

☞ Generalized CP transformation
Holthausen, Lindner & Schmidt [2013]

☞ Invariant contraction/coupling in A4 or T′

[
ϕ12 ⊗ (x3 ⊗ y3)11

]
10
∝ ϕ

(
x1 y1 + ω2 x2 y2 + ω2 x3 y3

)
☞ Canonical CP transformation

➥ Need generalized CP transformation C̃P : ϕ C̃P7−−→ ϕ∗ as usual but x1
x2
x3

 C̃P7−−→

 x∗
1
x∗

3
x∗

2

 &

 y1
y2
y3

 C̃P7−−→

 y∗
1
y∗

3
y∗

2


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vector of
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vector of
creation
operators
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Generalized CP transformations

☞ Setting w/ discrete symmetry G
☞ Generalized CP transformation
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[
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10
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(
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☞ Canonical CP transformation maps A4/T′ invariant contraction to

something non–invariant
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Some flavors of string phenomenology CP violation from finite groups (details)

Constraints on generalized CP transformations

☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)

fields of the theory/model

Holthausen, Lindner & Schmidt [2013]

☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G

☞ Further properties:
u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Constraints on generalized CP transformations

☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)

P (t, x⃗) = (t,−x⃗)

Holthausen, Lindner & Schmidt [2013]

☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G

☞ Further properties:
u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two
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Some flavors of string phenomenology CP violation from finite groups (details)

Constraints on generalized CP transformations
☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)

↑
ϕri1
↓
↑

ϕri2
↓
...


C̃P7−−→



↖ ↗
Uri1

↙ ↘
↖ ↗

Uri2
↙ ↘

. . .





↑
ϕ∗

ri1
↓
↑

ϕ∗
ri2
↓
...


field transforming in representation ri2

☞ C̃P depends on symmetry, not on model E disagreement w/ Holthausen,
Lindner & Schmidt [2013]

Holthausen, Lindner & Schmidt [2013]
☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G
☞ Further properties:

u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Some flavors of string phenomenology CP violation from finite groups (details)

Constraints on generalized CP transformations

☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)
Holthausen, Lindner & Schmidt [2013]

☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G

automorphism u : G→ G

☞ Further properties:
u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Constraints on generalized CP transformations

☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)
Holthausen, Lindner & Schmidt [2013]

☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G

representation matrix

☞ Further properties:
u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Some flavors of string phenomenology CP violation from finite groups (details)

Constraints on generalized CP transformations

☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)

E Holthausen, Lindner & Schmidt [2013]☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G

block–diagonal unitary matrix

☞ Further properties:
u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Some flavors of string phenomenology CP violation from finite groups (details)

Constraints on generalized CP transformations
☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)
Holthausen, Lindner & Schmidt [2013]

☞ Consistency condition
ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G
☞ Further properties:

u has to be class–inverting
the consistency condition

ρri

(
u(g)

)
= Uri ρri(g)∗ U†

ri
∀ g ∈ G and ∀ i

implies
χri(u(g)) = tr [ρri (u(g))] = tr

[
Uri ρri(g)∗ U†

ri

]
= tr [ρri(g)]∗ = χri(g)∗ = χri(g

−1) ∀ i

in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Constraints on generalized CP transformations

☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)
Holthausen, Lindner & Schmidt [2013]

☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G

☞ Further properties:
u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two

we have scanned all groups of orders up to 150 (with a few
exceptions of order 128) & did not find a single example of a
class–inverting automorphism of higher order that is not equiv-
alent to another u of order 2

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Some flavors of string phenomenology CP violation from finite groups (details)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff & Damhus [1985]☞ Bickerstaff–Damhus automorphism (BDA) u

ρri
(u(g)) = Uri

ρri
(g)∗ U†

ri
∀ g ∈ G and ∀ i (⋆)

unitary & symmetric

☞ BDA vs. Clebsch–Gordan (CG) coefficients

∃ BDA u
fulfilling (⋆)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ρri
(u(g)) = ρri

(g)∗ ∀ g ∈ G and ∀ i
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Some flavors of string phenomenology CP violation from finite groups (details)

The twisted Frobenius–Schur indicator

☞ how can one tell whether or not a given automorphism u is a BDA?

Bickerstaff & Damhus [1985], Kawanaka & Matsuyama [1990]

☞ twisted Frobenius–Schur indicator

FSu(ri) = 1
|G|

∑
g∈G

[ρri(g)]αβ [ρri(u(g))]βα

☞ crucial property

FSu(ri) =

 +1 ∀ i, if u is a BDA,
+1 or − 1 ∀ i, if u is class–inverting & involutory,
different from ±1, otherwise.
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The twisted Frobenius–Schur indicator

☞ how can one tell whether or not a given automorphism u is a BDA?
☞ Frobenius–Schur indicator

FS(ri) := 1
|G|

∑
g∈G

χri
(g2) = 1

|G|
∑
g∈G

tr
[
ρri

(g)2]

FS(ri) =

 +1, if ri is a real representation,
0, if ri is a complex representation,
−1, if ri is a pseudo–real representation.

Bickerstaff & Damhus [1985], Kawanaka & Matsuyama [1990]
☞ twisted Frobenius–Schur indicator
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g∈G
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Some flavors of string phenomenology CP violation from finite groups (details)

Extended twisted Frobenius–Schur indicator

☞ extended twisted Frobenius–Schur indicator

FS(n)
u (ri) := (dim ri)n−1

|G|n
∑

g1,...,gn∈G
χri

(g1 u(g1) · · · gn u(gn))

n =
{

ord(u)/2 if ord(u) is even
ord(u) if ord(u) is odd

☞ crucial property

FS(n)
u (ri) =

 ±1 ∀ i, if u is class–inverting,
different from ±1
for at least one ri, otherwise.

back
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Some flavors of string phenomenology CP violation from finite groups (details)

Constraints on generalized CP transformations

☞ Generalized CP transformation

Φ(x) C̃P7−−→ UCP Φ∗(P x)

fields of the theory/model

Holthausen, Lindner & Schmidt [2013]

☞ Consistency condition

ρ
(
u(g)

)
= UCP ρ(g)∗ UCP

† ∀ g ∈ G

☞ Further properties:
u has to be class–inverting
in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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Some flavors of string phenomenology CP violation from finite groups (details)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff & Damhus [1985]☞ Bickerstaff–Damhus automorphism (BDA) u

ρri
(u(g)) = Uri

ρri
(g)∗ U†

ri
∀ g ∈ G and ∀ i (⋆)

unitary & symmetric

☞ BDA vs. Clebsch–Gordan (CG) coefficients

∃ BDA u
fulfilling (⋆)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ρri
(u(g)) = ρri

(g)∗ ∀ g ∈ G and ∀ i
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Some flavors of string phenomenology CP violation from finite groups (details)

The twisted Frobenius–Schur indicator

☞ how can one tell whether or not a given automorphism u is a BDA?

Bickerstaff & Damhus [1985], Kawanaka & Matsuyama [1990]

☞ twisted Frobenius–Schur indicator

FSu(ri) = 1
|G|

∑
g∈G

[ρri(g)]αβ [ρri(u(g))]βα

☞ crucial property

FSu(ri) =

 +1 ∀ i, if u is a BDA,
+1 or − 1 ∀ i, if u is class–inverting & involutory,
different from ±1, otherwise.
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Some flavors of string phenomenology CP violation from finite groups (details)

Extended twisted Frobenius–Schur indicator

☞ extended twisted Frobenius–Schur indicator

FS(n)
u (ri) := (dim ri)n−1

|G|n
∑

g1,...,gn∈G
χri

(g1 u(g1) · · · gn u(gn))

n =
{

ord(u)/2 if ord(u) is even
ord(u) if ord(u) is odd

☞ crucial property

FS(n)
u (ri) =

 ±1 ∀ i, if u is class–inverting,
different from ±1
for at least one ri, otherwise.

back
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CP violationCP violation
with an unbrokenwith an unbroken
CP transformationCP transformation



Some flavors of string phenomenology CP violation with unbroken CP transformation

Example: SU(3)→ T7

☞ Starting point: SU(3) gauge theory with

L = (Dµ ϕ)† (Dµ ϕ)− 1
4 G

a
µν G

µν,a − V (ϕ)

Dµ = ∂µ − ig Aµ field strength

☞ Potential: V (ϕ) = − µ2 ϕ†ϕ+
5∑
i=1

λi I(4)
i(ϕ)

☞ Action invariant under CP transformation

Aaµ(x) SU(3)−CP7−−−−−−−−→ Rab P ν
µ A

b
ν(P x)

ϕi(x) SU(3)−CP7−−−−−−−−→ Uij ϕ
∗
j (P x)
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(
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)
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Some flavors of string phenomenology CP violation with unbroken CP transformation

SU(3)→ T7
see e.g. Luhn [2011], Merle & Zwicky [2012]

☞ ⟨ϕ⟩ breaks SU(3) to T7

SU(3) ⋊Z2
⟨ϕ⟩−−→ T7 ⋊Z2

☞ Physical fields before and after symmetry breaking

name SU(3) ⟨ϕ⟩−−→ name T7

Aµ 8 Zµ 11
Wµ 3

ϕ 15

Reσ0, Im σ0 10
σ1 11
τ1 3
τ2 3
τ3 3

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 150/ 189
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Some flavors of string phenomenology CP violation with unbroken CP transformation

SU(3)− CP vs. Out(T7)

☞ SU(3)− CP breaks to unique Z2 outer automorphism of T7

Out(T7) : 11 ←→ 11 , 11 ←→ 11 , 3 ←→ 3

☞ T7 character table

T7 C1a C3a C3b C7a C7b
e b b2 a a3

10 1 1 1 1 1
11 1 ω ω2 1 1
11 1 ω2 ω 1 1
3 3 0 0 η η∗

3 3 0 0 η∗ η

☞ 11 and 11 do not get swapped!
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ω := e2πi/3
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Some flavors of string phenomenology CP violation with unbroken CP transformation

T7

☞ T7 can be generated by two elements with the presentation〈
a, b

∣∣ a7 = b3 = e , b−1 a b = a4〉

☞ Triplet representation

A =

ρ 0 0
0 ρ2 0
0 0 ρ4

 and B =

0 1 0
0 0 1
1 0 0


☞ Embedding into SU(3)

X(r) = exp
(

iαa t(r)
a

)
☞ Work in SusyNo basis Fonseca [2012]

Michael Ratz, UC Irvine Strings: Geometry and Symmetries for Phenomenology 21 152/ 189
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7
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√
3, 5
)
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Some flavors of string phenomenology CP violation with unbroken CP transformation

T7 scalar states
☞ Branchings:

8 → 11 ⊕ 11 ⊕ 3 ⊕ 3
15 → 10 ⊕ 11 ⊕ 11 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 3

☞ Physical scalar fields (would–be Goldstone bosons subtracted)

ϕ =
(
v + ϕ1,

ϕ2√
2
,
ϕ∗

2√
2
, ϕ4, ϕ5, ϕ6,

ϕ7√
2
,
ϕ8√

2
,
ϕ9√

2
, ϕ10, ϕ11, ϕ12,

ϕ∗
7√
2
,
ϕ∗

8√
2
,
ϕ∗

9√
2

)

☞ T7 representations
☞ No physical CP trafo allowed by T7!

15 → 10 ⊕ 11 ⊕ 11 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 3

Z2 −Out :

15 → 10 ⊕ 11 ⊕ 11 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 3
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☞ Physical scalar fields (would–be Goldstone bosons subtracted)

ϕ =
(
v + ϕ1,

ϕ2√
2
,
ϕ∗

2√
2
, ϕ4, ϕ5, ϕ6,

ϕ7√
2
,
ϕ8√

2
,
ϕ9√

2
, ϕ10, ϕ11, ϕ12,

ϕ∗
7√
2
,
ϕ∗

8√
2
,
ϕ∗

9√
2

)

☞ T7 representations
☞ No physical CP trafo allowed by T7!

15 → 10 ⊕ 11 ⊕ 11 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 3

Z2 −Out :

15 → 10 ⊕ 11 ⊕ 11 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 3
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Some flavors of string phenomenology CP violation with unbroken CP transformation

Scalar masses

☞ VEV

|v| = µ× 3
√

7
2

(
−7
√

15λ1 + 14
√

15λ2 + 20
√

6λ4 + 13
√

15λ5

)−1/2

☞ T7 1–plet representations

Reσ0 = 1√
2

(ϕ1 + ϕ∗
1) Im σ0 = − i√

2
(ϕ1 − ϕ∗

1)

σ1 = ϕ2

☞ Masses

m2
Reσ0

= 2µ2 , m2
Imσ0

= 0
m2
σ1

= − µ2 +
√

15λ5 v
2
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☞ T7 1–plet representations

Reσ0 = 1√
2

(ϕ1 + ϕ∗
1) Im σ0 = − i√

2
(ϕ1 − ϕ∗

1)

σ1 = ϕ2

can be eliminated gauging accidental U(1)

☞ Masses

m2
Reσ0
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Some flavors of string phenomenology CP violation with unbroken CP transformation

Gauge fields

☞ Gauge fields

Zµ = 1√
2

(Aµ7 − iAµ8 )

Wµ
1 = 1√

2
(Aµ4 − iAµ1 )

Wµ
2 = 1√

2
(Aµ5 − iAµ2 )

Wµ
3 = i√

2
(Aµ6 − iAµ3 )

☞ Masses

m2
Z = 7

3 g
2 v2 and m2

W = g2 v2
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Some flavors of string phenomenology CP violation with unbroken CP transformation

Triplet mass eigenstates

☞ Mass eigenstatesτ1
τ2
τ3

 =

V11 V12 V13
V21 V22 V23
V31 V32 V33


︸                      ︷︷                      ︸

= V

T2
T

∗
3
T1



☞ Masses and mixing matrix depend on potential parameters
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Some flavors of string phenomenology CP violation with unbroken CP transformation

T7 outer automorphism vs. CP

☞ Out(T7)

Zµ(x) 7→ − P ν
µ Zν(P x) , σ0(x) 7→ σ0(P x) ,

Wµ(x) 7→ P ν
µ W ∗

ν (P x) , σ1(x) 7→ σ1(P x) , τi(x) 7→ τ∗
i (P x)

☞ Mode expansion

σ1(x) =
∫

d̃p
{

a(p⃗) e−i p x + b†(p⃗) ei p x
}

☞ Outer automorphism of T7

Out(T7) : a(p⃗) 7→ a(−p⃗) and b†(p⃗) 7→ b†(−p⃗)

☞ QFT CP not a symmetry of the action

CP : a(p⃗) 7→ b(−p⃗) and b†(p⃗) 7→ a†(−p⃗)
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Some flavors of string phenomenology CP violation with unbroken CP transformation

CP violation in the T7 phase

☞ Decay asymmetry

εσ1→W W∗ := |M (σ1 →W W ∗)|2 − |M (σ∗
1 →W W ∗)|2

|M (σ1 →W W ∗)|2 + |M (σ∗
1 →W W ∗)|2

☞ CP violation from interference between tree–level and 1–loop

σ1

v

W ∗

W

τ2

τ2

σ1

W ∗

W

v v

v

τ2

τ2

σ1

W ∗

W

v v

v

back
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Some flavors of string phenomenology Metaplectic flavor symmetries (details)

Modular vs. metaplectic flavor symmetries

☞ The zero modes have halfinteger modular weights

Kiı ∝
1

(Im τ)1/2

object ψj,M ϕj,M Ωj,M Yijk W

modular weight k 1/2 −1/2 0 1/2 −1

☞ One has to be careful with signs in modular transformations:
metaplectic symmetries
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Some flavors of string phenomenology Metaplectic flavor symmetries (details)

Modular vs. metaplectic flavor symmetries

☞ The zero modes have halfinteger modular weights

Kiı ∝
1

(Im τ)1/2

object ψj,M ϕj,M Ωj,M Yijk W

modular weight k 1/2 −1/2 0 1/2 −1

internal 4D

Ωj,M = ϕj,M (xµ)⊗ ψj,M (z, τ)

☞ One has to be careful with signs in modular transformations:
metaplectic symmetries
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Some flavors of string phenomenology Metaplectic flavor symmetries (details)

Transformation laws for 4D superfields (for odd M)

ψj,M (z, τ, 0) S7−−→ ei π
4
√
M

(
− τ

|τ |

)1/2 M−1∑
k=0

e2πijk/M ψk,M (z, τ, 0)

= −
(
− τ

|τ |

)1/2 [
ρ(S)ψM

]
jk
ψk,M (z, τ, 0)

ψj,M (z, τ, 0) T7−−→ eiπM Im z
2 Im τ eiπj(j/M+1) ψj,M (z − 1/2, τ, 0)

= eiπM Im z
2 Im τ

[
ρ(T )ψM

]
jk
ψk,M (z − 1/2, τ, 0)

☞ Representation matrices of generators[
ρ(S)ψM

]
jk

= − eiπ/4
√
M

exp
(

2πi j k
M

)
[
ρ(T )ψM

]
jk

= exp
[
iπ j

(
j

M
+ 1
)]

δjk
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Some flavors of string phenomenology Metaplectic flavor symmetries (details)

Transformation laws for Yukawa couplings

Y
α̂

(τ) γ̃7−−→ Y
α̂

(γ̃ τ) = ±(c τ + d)1/2 ρλ(γ̃)
α̂β̂
Y
β̂
(τ)

☞ Representation matrices of generators

ρλ(S̃)
α̂β̂

= −eiπ/4
√
λ

exp
(

2πi α̂ β̂
λ

)

ρλ(T̃ )
α̂β̂

= exp
(

iπ α̂2

λ

)
δ
α̂β̂

bottom–line:
Magnetized tori with λ = lcm(# of flavors) exhibit a
Γ̃2λ modular flavor symmetry
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