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As one of the two discussion leaders, I was invited to prepare a few minutes 
of remarks about what I see as central questions at the interface of cosmology 

and string theory.  (Needless to say, a few minutes is not enough!)

To my thinking, there are three categories of obvious such questions:

What came before BBN  
(inflation, reheating)?

How did the Universe 
originate?

What about 
dark energy?

Each is (at least naively) very sensitive to UV physics; 
there is a “reason” string theory may be relevant.



I will work in reverse chronological order.

What do we know about dark energy?

p = w⇢
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accelerated expansion

Constraints from data ever  
more strongly favor 

w close to -1.

Therefore, I’ll restrict attention to  
a cosmological constant.



The maximally symmetric solution of Einstein’s equations in the presence of 
(positive) cosmological term, is de Sitter space.

Some interesting questions:

— how do you make de Sitter solutions in string theory?  Is there 
mathematical structure in the space of such solutions?

— What is non-perturbative string theory in de Sitter space?  (For a 
satisfactory answer to this kind of question, see the answer with 

flipped sign of the cosmological term.)

I’ll focus on the first, not because I think it is more interesting, but  
because it seems to be a subject of frequent discussion in this 

community.



A prototype example of a simple solution could be Freund-Rubin solutions that give 
AdS space.  E.g. starting from 6d Einstein-Maxwell theory:
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where 1 ≤ i ≤ dim Hp+2(M, IR) ≡ bp+2, the p+2’th Betti
number of the manifold M . In the case p = 0 of Maxwell
theory, one can see that any vector of integers ni is a
possible field configuration, by appealing to the mathe-
matics of vector bundles (these numbers define the first
Chern class of the U(1) bundle). Equally precise state-
ments for p > 0, or for the case in which the homology
includes torsion, are in the process of being formulated
(Moore, 2003).

Now, in Maxwell’s theory and its generalizations, turn-
ing on a field strength results in a potential energy pro-
portional to B2, the square of the magnetic field. Of
course, the presence of nontrivial E or B in our observed
four dimensions would imply spontaneous breaking of
Lorentz symmetry. By contrast, in our case, we can turn
on magnetic fluxes in the extra dimensions without di-
rectly breaking 4d Lorentz invariance. However, there
will still be an energetic cost, now proportional to F 2,
the square of the flux.

Now, the key point is that because the fluxes are
threading cycles in the compact geometry, this energetic
cost will depend on the precise choice of metric on M .
In other words, it will generate a potential on the moduli
space M. If this potential is sufficiently generic, then
minimizing it will fix the metric moduli.

In principle, this potential can be computed by start-
ing from the standard Maxwell lagrangian coupled to a
curved metric. One finds for the potential energy

V =

∫

M
dDy

√
GGijGkl(F2)ik(F2)jl (13)

=

∫

M
F2 ∧ (∗F2)

where G is the metric on M . The second version, in
differential form notation and where ∗ denotes the D-
dimensional Hodge star, applies for any Fp+2 with the
replacement 2 → p + 2; here the metric enters in the
definition of ∗.

Now, if we substitute for G the family of Ricci flat
metrics G(⃗t) introduced in Sec. II.B, and do the integrals,
we will get an explicit expression for V (t), which we can
minimize. This is the definition of the flux potential; we
now have the technical problem of computing it.

At first, it is not clear that this can be done at all;
indeed we cannot even get started as no closed form ex-
pression is known for any Ricci flat metric on a com-
pact Calabi-Yau manifold. In principle the computations
could be done numerically, but working with solutions of
six dimensional nonlinear PDE’s is not very easy either,
and this approach is in its infancy (Douglas et al., 2006a;
Headrick and Wiseman, 2005). Fortunately, by building
on many mathematical and physical works, we now have
an approach which leads to a complete analytical solution
of this problem, as we will discuss in Sec. IV.

1. Freund-Rubin compactification

There are other Kaluza-Klein theories in which the
technical problem of computing Eq. (13) is far simpler,
and was solved well before string theory became a pop-
ular candidate for a unified theory. While these theories
are too simple to be quasi-realistic, they serve as good
illustrations. Let us consider one here, leaving more de-
tailed discussion to Sec. IV.

After it was realized that Nature employs non-abelian
gauge fields, the earliest idea of 5d unification was aug-
mented. Instead, theorists considered 4 + D dimensional
theories, with D of the dimensions compactified on a
space with a non-abelian isometry group. This leads
to a gauge group which contains the isometry group.
One can even find seven dimensional manifolds for which
this is the Standard Model gauge group, although chiral
fermions remain a problem for this idea.

In any case, the problem of explaining how and why the
extra D dimensions were stabilized in whatever configu-
ration was required to obtain 4d physics was first studied
in this context. A collection of historically significant ar-
ticles on Kaluza-Klein theory, with modern commentary,
can be found in Appelquist et al. (1987).

The first serious attempt we know of to explain the
“spontaneous compactification” of extra dimensions ap-
peared in the work Cremmer and Scherk (1976). This
work was extended by Luciani (1978) and reached
more or less modern form with the seminal paper of
Freund and Rubin (1980).

Let us see how the Freund-Rubin mechanism works
by again considering six dimensions, now in Einstein-
Maxwell theory. Compactifying to 4d on an S2, they
found that inclusion of a magnetic flux piercing the
S2 allows one to stabilize the sphere. One can under-
stand this result by a scaling argument; such arguments
are discussed in modern contexts in Giddings (2003);
Kachru et al. (2006); Silverstein (2004b). We start with
a 6d Einstein/Yang-Mills Lagrangian

S =

∫

d6x
√

−G6

(

R6 − |F2|2
)

, (14)

where all dimensions are made up with powers of the
fundamental scale M6. We then consider reduction to 4d
on a sphere of radius R:

ds2 = ηµνdxµdxν + R2gmn(y)dymdyn (15)

where m, n run over the two extra dimensions, and g is
the metric on a two-sphere of unit radius. Let us then
thread the S2 with N units of F2 flux

∫

S2

F2 = N . (16)

In the 4d description, R(x) should be viewed as a field.
Naively reducing, we will find a Lagrangian where R2(x)
multiplies the curvature tensor R4. To disentangle the
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graviton kinetic term from the kinetic term for the modu-
lus R(x), we should perform a Weyl rescaling. After this
rescaling, we find an effective potential with two sources.

First, before Weyl rescaling, the 6d Einstein term
would contribute to the action a term proportional to
the integrated curvature of the S2, i.e. the Euler char-
acter. In particular, positive curvature makes a negative
contribution to the potential. After the rescaling, this
term is no longer constant; instead it scales like −R−4.

In addition, the N units of magnetic flux through the
S2 contribute the positive energy described in Eq. (13).
By flux quantization, F2 ∼ N

R2 , while the integral over
the internal space contributes a factor of R2. Therefore,
the flux potential scales like N2/R6. The dimensions are
made up by powers of the fundamental scale, in terms of
which the flux quantum is defined.

Thus, the total potential as a function of R(x) takes
the form

V (R) ∼ N2

R6
− 1

R4
. (17)

It is not hard to see that this function has minima where
R ∼ N . So with moderately large flux, one can achieve
radii which are large in fundamental units, and curva-
tures which are small, justifying the use of supergravity.

Strictly speaking, the original Freund-Rubin vacua
are not compactifications which yield lower-dimensional
EFT’s. The vacuum energy following from (17) is neg-
ative, and gives rise to a 4d curvature scale compara-
ble to the curvature of the S2. Therefore, 4d effec-
tive field theory is not obviously a valid approximation
scheme in these vacua. It is plausible, however, that by
using more complicated manifolds and tuning parame-
ters to decrease the 4d vacuum energy, one could use
the Freund-Rubin idea to obtain quasi-realistic vacua
(Acharya et al., 2003).

E. A solution of the cosmological constant problem

Einstein’s equations, relating the curvature of space-
time to the stress-energy of matter, admit an additional
term on the right hand side,

gij = 8πGN (Tij + Λgij) .

The additional “cosmological constant” term Λ is a
Lorentz-invariant vacuum energy and is believed to be
generically present in any theory of quantum gravity; it
receives corrections from known quantum effects (some-
what analogous to the Casimir effect) at least of or-
der (100GeV)4. On the other hand, elementary con-
siderations in cosmology show that any value |Λ| >
1(eV)4 or so is in violent contradiction with observa-
tion. More recently, there is observational evidence of
various types (the acceleration of the expansion of the
universe; and detailed properties of the cosmic microwave
background spectrum) which can be well fit by assuming
Λ ∼ 10−10(eV)4 > 0.

This is by now a very long-standing question with
which most readers will have some familiarity; we refer to
(Carroll, 2001; Nobbenhuis, 2004; Padmanabhan, 2003;
Weinberg, 1989) for introductory overviews, and the his-
tory of the problem. A very recent discussion from the
same point of view we take here is in Polchinski (2006),
along with general arguments against many of the other
approaches which have been taken towards the problem.

One approach which cannot be ruled out on general
grounds is to simply assert that the fundamental theory
contains the small observed parameter Λ. More precisely,
the large quantum contributions Λq from all types of vir-
tual particles (known and unknown), are almost precisely
compensated by an adjustable “bare cosmological con-
stant” Λbare ∼ −Λq. However, besides being unesthetic,
this idea cannot be directly realized in string/M theory,
which is formulated without free parameters. Rather, to
address this problem, we must find out how to compute
the vacuum energy, and argue that the energy of the vac-
uum we observe takes this small value.

Taken purely as a problem in microscopic physics, the
prospects for accurately computing such a small vacuum
energy seem very distant; furthermore it seems very un-
likely that any vacuum would exhibit the remarkable can-
cellations between the large known contributions to the
vacuum energy, and unknown contributions, required to
make such an argument. But here is precisely the loop-
hole; what is indeed very unlikely for a single vacuum,
can be a likely property for one out of a large set of
vacua.

Simple toy models in which this is the case were pro-
posed in Abbott (1985); Banks et al. (1991). The general
idea is to postulate a potential with a large number of
roughly equally spaced minima, for example

V (φ) = aφ − b sin φ + Λq,

(with b > 0) whose minima φ = (2n+1/2)π have energies
Λn = Λq + 2πan − b. Thus, if a is very small, then no
matter what value Λq takes, at least one minimum will
realize the small observed Λ. By postulating more terms,
one can even avoid having to postulate a small number
a (Banks et al., 1991). For example, consider

V (φ) = E1 sin(a1φ + b1) + E2 sin(a2φ + b2) + Λq.

The reader may enjoy checking that if the ratio a1/a2 is
irrational, any Λ (within the range Λq ±E1 ±E2) can be
approximated to any desired accuracy.

While in EFT terms these models might be reason-
able, the actual potentials arising from string/M theory
compactification appear not to take this form. Besides
verifying this in explicit expressions, there is a conceptual
problem. This is that these models assume that the field
φ can take extremely large values, of order 1/Λ. How-
ever, taking a modulus φ to be so large, implies that the
Calabi-Yau manifold is decompactifying, or undergoing
some similar limit. In such a limit, the potential can be
computed more directly and does not take the required
form.

compactify 
on two-sphere

thread it with 
N units of flux

resulting 4d  
“radion” potential

Exhibits AdS solutions which have R ~ N; reliable at large N.



Are there analogues of Freund-Rubin that just use the classical energetics exhibited  
by fluxes and branes, and yield de Sitter space?

2.  How do we formulate quantum gravity 
 in dS space? No precise analogue of flat space 

 S-matrix or CFT correlators…

I’ll focus on the first question, and describe how I think about it here.

Basic point:  The question reduces to finding four-dimensional effective 
theories with potential functions that have minima at V>0.   As the theory has 

constrained ingredients with known energetics, one can get intuition for whether  
this is possible.  E.g. critical strings on a compact manifold of size R:

—  Fluxes:

1kAR47fCRoz4tMhKVa82YYZKYdMikGVeu 

�V =

Z p
�ggµ1⌫1 ...gµp⌫pFµ1...µpF⌫1...⌫p ⇠ 1

R6+2p
energetics of 
p-form flux

— D-brane or O-plane wrapping q internal 
dimensions and filling “our” space:

There are other potentially important sources of potentials, e.g.:  

— The leading term in the beta function:  

— in theories with supersymmetry beneath the KK scale 
- my subject henceforth - non-perturbative superpotentials:

�V ⇠ (d� dcrit)⇥ ...

�W ⇠
X

D

e�vol(D) + · · ·

— curvature, if any, at the KK scale very familiar 
Freund-Rubin

�V ⇠ ± 1

R12�q
energetics of brane 
wrapping q-cycle

With just D-branes, O-planes, and RR and NS fluxes, the answer (in the critical 
dimension) seems to be negative from a variety of no-go theorems. 

de Wit, Hari Dass; 
Maldacena, Nunez; 

Hertzberg, SK, 
Taylor, Tegmark; … 

Including also curvature and NS-branes, I believe there is no known 
obstruction to such solutions, and there are proposed examples. c.f. Dong, Horn, 

Silverstein, Torroba 
2010



Another class of solutions has been proposed that uses ingredients familiar to 
the class of vacua used in various studies of (4d N=1 supersymmetric) string 

phenomenology.

Setting:  IIB string theory on 
Calabi-Yau orientifold of D3/D7 

type, with 3-form fluxes

Wclassical =
R
X(F � ⌧H) ^ ⌦ .
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Gukov, Vafa, 
Witten

— D-brane or O-plane wrapping q internal 
dimensions and filling “our” space:

There are other potentially important sources of potentials, e.g.:  

— The leading term in the beta function:  

— in theories with supersymmetry beneath the KK scale 
- my subject henceforth - non-perturbative superpotentials:

�V ⇠ (d� dcrit)⇥ ...

�W ⇠
X

D

e�vol(D) + · · ·

— curvature, if any, at the KK scale very familiar 
Freund-Rubin

�V ⇠ ± 1

R12�q

— Potentials for complex structure moduli (can) arise from fluxes:

— Potentials for Kahler moduli (can) arise from Euclidean branes or similar effects: 

Witten ’96; 
…

…; 
Giddings, SK,  

Polchinski; 
…



It was proposed in various papers that different regimes of parameters in  
(some) such models, can yield de Sitter solutions. 

S.K., Kallosh, 
Linde, Trivedi; 

Balasubramanian, Berglund, 
Conlon, Quevedo

In the first proposal, the small parameter necessary to exhibit a controlled solution 
(analogous to the “large N” of Freund-Rubin) is a small value of the flux superpotential:

W = W0 ⌧ 1 .
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and the low-energy theory is pure N = 1 supersymmet-
ric SU(Nc) gauge theory. This theory undergoes gluino
condensation, which results in a nonperturbative super-
potential

Wgauge = Λ3
Nc

= Ae
2πiρ
Nc (10)

where ΛNc is the dynamical scale of the gauge theory,
and the coefficient A is determined by the energy scale
below which the the SQCD theory is valid (There are also
threshold corrections in general, these contribute sub-
leading effects.) We see that this leads to an exponential
superpotential for ρ similar to the one above (but with a
fractional multiple of ρ in the exponent, since the gaug-
ino condensate looks like a fractional instanton effect in
W ).

So effects 1) and 2) have rather similar consequences
for our analysis; we will simply assume that there is
an exponential superpotential for ρ at large volume. In
our companion paper [14], we investigate some interest-
ing possibilities for cosmology if there are multiple non-
Abelian gauge factors. Using the fourfolds in [27], it is
easy to construct examples (with h1,1(X) = 2) which
could yield gauge groups of total rank up to ∼ 30. The
results of [39] suggest that much larger ranks should be
possible.

One important comment is in order before we proceed.
Besides corrections to the superpotential of the kind dis-
cussed above, there are also corrections to the Kähler
potential (see e.g. [40] for a calculation of some lead-
ing corrections). In our analysis we will ensure that the
volume modulus is stabilized at values which are para-
metrically large compared to the string scale. This makes
our neglect of Kähler corrections self consistent.

C. Supersymmetric AdS Vacua

Here, we show that the corrections to the superpoten-
tial considered above can stabilize the volume modulus,
leading to a susy preserving AdS minimum. We perform
an analysis of the vacuum structure just keeping the tree-
level Kähler potential

K = −3 ln[−i(ρ− ρ)] (11)

and a superpotential

W = W0 + Aeiaρ . (12)

W0 is a tree level contribution which arises from the
fluxes. The exponential term arises from either of the
two sources above, and the coefficient a can be deter-
mined accordingly. In keeping with the fact that the
complex structure moduli and the dilaton have received a
mass (5), we have set them equal to their VEVs and con-
sider only the low-energy theory of the volume modulus.
To avoid the need to worry about additional open-string
moduli, we assume the tadpole condition (1) has been

solved by turning on only flux, i.e. with no additional
D3 branes.

At a supersymmetric vacuum DρW = 0. We simplify
things by setting the axion in the ρ modulus to zero, and
letting ρ = iσ. In addition we take A, a and W0 to be all
real and W0 negative. The minimum then lies at

DW = 0 → W0 = −Ae−a σcr (1 +
2

3
aσcr) (13)

The potential, V = eK
(

GρρDρWDρW − 3|W |2
)

, at
the minimum is negative and equal to

VAdS = (−3eKW 2)AdS = −
a2A2e−2 a σcr

6 σcr
(14)

We see that we have stabilized the volume modulus while
preserving supersymmetry. It is important to note that
the AdS minimum is quite generic. Any corrections to
the Kähler potential will still result in a susy minimum
which solves (13).

A few comments are in order before we proceed. A
controlled calculation requires that σ ≫ 1, this ensures
that the supergravity approximation is valid and the α′

corrections to the Kähler potential are under control. It
also requires that aσ > 1 so that the contribution to
the superpotential from a single (fractional) instanton is
reliable. Generically, if the fluxes break supersymmetry,
W0 ∼ O(1), and these conditions will not be met. How-
ever it is reasonable to expect that by tuning fluxes one
can arrange so that W0 ≪ 1. In these circumstances we
see from (13) that aσ > 1. Taking a < 1, one can then
ensure that σ ≫ 1, as required.

As an illustrative example we consider W0 = −10−4,
A = 1, a = 0.1. This results in a minimum at σcr ∼ 113.
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FIG. 1: Potential (multiplied by 1015) for the case of expo-
nential superpotential with W0 = −10−4, A = 1, a = 0.1.
There is an AdS minimum.

Another possibility to get a minimum at large vol-
ume is to consider a situation where the fluxes preserve
susy, and the superpotential involves multiple exponen-
tial terms, i.e. “racetrack potentials” for the stabilization
of ρ [41]. Such a superpotential could arise from multiple
stacks of seven branes wrapping four cycles which cannot

A theory with such small classical 
superpotential and generic further 

corrections to the low-energy 
effective theory exhibits an AdS 

minimum. 



At this level, we can ask:

Do there exist Calabi-Yau models that have the necessary non-perturbative effects, 
and/or the small classical superpotential, required for this discussion?

Partial answers to these questions existed for many years. 

Most recently, very beautiful work by the Cornell group has developed techniques to 
analyze many toric Calabi-Yau  hyper-surfaces and complete intersections.  They can 

find models with 

(And, with small string coupling.)  As this is classical (tree-level) physics, one can only 
ask if they made a mistake computing period integrals, which can be tested.

These models are also chosen to exhibit the requisite instanton effects (with 
“enough effects" to generate potentials spanning the directions in the Kahler cone).

…; Denef, Douglas, 
Florea, Grassi, SK; 

Lust, Reffert, 
Schulgin, Stieberger; 

…

 Demirtas, Kim, McAllister, 
Moritz, Rios-Tascon|eK/2Wclassical| < 10�100 .
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FIG. 2: Potential (multiplied by 1015) for the case of ex-
ponential superpotential and including a D

σ3 correction with

D = 3 × 10−9 which uplifts the AdS minimum to a dS mini-
mum.

It is important to mention that the value of the volume
modulus shifts only slightly in going from the AdS mini-
mum to the new dS minimum. This means if the volume
was large in the AdS minimum to begin with, it will con-
tinue to be large in the new dS minimum, guaranteeing
that our approximations are valid.

If one wants to use this potential to describe the
present stage of acceleration of the universe, one needs
to fine-tune the value of the potential in dS minimum to
be V0 ∼ 10−120 in units of Planck density. In principle,
one could achieve it, e.g., by fine tuning D. However,
the tuning we can really do by varying the fluxes etc. in
the microscopic string theory is limited, though it may
be possible to tune quite well if there are enough three-
cycles in M .

IV. HOW STABLE IS THE DS VACUUM?

The radial modulus σ = Im ρ has a kinetic term
3

4σ2 (∂σ)2 which follows from the Kähler potential (3).
For cosmological purposes it is convenient to switch to

the canonical variable ϕ =
√

3
2 lnσ =

√

3
2 ln(Im ρ),

which has a kinetic term 1
2 (∂ϕ)2. In what follows we

will use the field ϕ and it should not be confused with
the dilaton, φ.

A. General theory

The dS vacuum state ϕ0 corresponding to the local
minimum of the potential with V0 > 0 is metastable.
Therefore it may decay, and then the universe will roll to-
wards large values of the field ϕ and decompactify. Here
we would like to address two important questions:

1) Do our dS vacua survive for a large number of
Planck times? For instance, if we fine tune to get a small
cosmological constant, is the dS vacuum sufficiently sta-

ble to survive during the 1010 years of the cosmologi-
cal evolution? If the answer is positive, one can use the
dS minimum for the phenomenological description of the
current stage of acceleration (late-time inflation) of the
universe.

2) Is the typical decay time of the dS vacuum longer
or shorter than the recurrence time tr ∼ eS0 , where
S0 = 24π2

V0
is the dS entropy [43]? If the decay time

is longer than tr ∼ eS0 , one may need to address the
issues about the consistency of the stringy description of
dS space raised in [2, 5, 8].

We will argue that the lifetime of the dS vacuum in our
models is not too short and not too long: it is extremely
large in Planck times (in particular, one can easily make
models which live longer than the cosmological timescale
∼ 1010 years), and it is much shorter than the recurrence
time tr ∼ eS0 .

In order to analyse this issue we will remember, fol-
lowing Coleman and De Luccia [44], basic features of the
tunneling theory taking into account gravitational effects.

To describe tunneling from a local minimum at ϕ = ϕ0

one should consider an O(4)-invariant Euclidean space-
time with the metric

ds2 = dτ2 + b2(τ)(dψ2 + sin2 ψ dΩ2
2) . (17)

The scalar field ϕ and the Euclidean scale factor (three-
sphere radius) b(τ) obey the equations of motion

ϕ′′ + 3
b′

b
ϕ′ = V,ϕ, b′′ = −

b

3
(ϕ′2 + V ) , (18)

where primes denote derivatives with respect to τ . (We
use the system of units Mp = 1.)

These equations have several instanton solutions
(ϕ(τ), b(τ)). The simplest of them are the O(5) invari-
ant four-spheres one obtains when the field ϕ sits at one
of the extrema of its potential, and b(τ) = H−1 sin Hτ .
Here H2 = V

3 , and V (ϕ) corresponds to one of the ex-
trema. In our case, there are two trivial solutions of this
type. One of them describes time-independent field cor-
responding to the minimum of the effective potential at
ϕ = ϕ0, with V0 = V (ϕ0). Another one is related to the
maximum of the potential at ϕ = ϕ1, with V1 = V (ϕ1).

Coleman-De Luccia (CDL) instantons are more com-
plicated. They describe the field ϕ(τ) beginning in a
vicinity of the false vacuum ϕ0 at τ = 0, and reaching
some constant value ϕf > ϕ1 at τ = τf , where b(τf ) = 0.
It is tempting to interpret CDL instantons as the tunnel-
ing trajectories interpolating between the different vacua
of the theory. However, one should be careful with this
interpretation because the trajectories ϕ(τ) for CDL in-
stantons do not begin exactly in the metastable minimum
ϕ0 and do not end exactly in the absolute minimum of
the effective potential. We will discuss this issue later.

According to [44], the tunneling probability is given by

P (ϕ) = e−S(ϕ)+S0, (19)

At the level of analyzing effects of small changes 
to such a potential, a range of tunably small 

perturbations to the radion potential can  
change the AdS minimum to a dS minimum.

In high energy theory, “tunably small perturbations to the potential” were  
proposed for years in phenomenology, in the guise of (dynamical) supersymmetry 

breaking (DSB).

One of many possible examples in this 
context involves supersymmetry breaking 

states with anti-D3 branes in a warped,  
deformed conifold geometry. 

Local constructions can be completely 
controlled.  Gluing into a compact 
Calabi-Yau can (and likely will) be 

studied in greater detail.

Klebanov, 
Strassler; 

SK, Pearson, 
Verlinde



What came before BBN: inflation in string theory?

Cosmic inflation is a great idea that may well explain the “bigness” of space 
and the perturbations that eventually collapse to form galaxies.

In my mind, its main a priori merit is the genericity of the ingredients involved: 
one or a few scalar fields, and a positive potential with a region of small slope.

Unlike many aspects of our field, inflation is clearly sensitive to “very UV” physics:

✏ =
1

2
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V
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V 00

V
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O(1) shifts from Planck-suppressed operators

Creminelli,  
Senatore 
Vasy ‘19

Guth; 
Linde; 

Albrecht, 
Steinhardt



Semi-quantitative predictions already verified include:

— Harrison-Zeldovich spectrum of perturbations with slight deviations 
from scale invariance.

— Collapse of super-horizon modes back into the horizon to produce 
the visible density perturbations.  (c.f. acoustic peaks, qualitatively…)

—                  (predicted at a time when this seemed far from likely to be true) ⌦tot ' 1
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There are two classes of string models that I think deserve special mention.   
Further work on the robustness of each would certainly be merited, and I see 

strategies for research on both.

Nice reviews: 
Quevedo ’02; 

Baumann, McAllister 
book;  Silverstein, ‘16

Brane dynamics in a compactification can 
release a “waterfall” of energy coming from, 

e.g., brane annihilation.

In local models of (non-conformal) holography, such as the warped conifold, 
one can precisely parametrize the sets of operators and coefficients needed 

to make inflation occur or not, as well as their effects on inflationary parameters.

By general principles, “gluing” into a bulk  
(= coupling to quantum gravity) can only induce 

such operators, with estimable coefficients.

…;  
Baumann, Dymarsky, S.K., 

Klebanov, McAllister 
’08,’10
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Figure 2. Compactification can induce very general UV perturbations of the warped conifold
solution, but in the infrared only the lowest-dimension perturbations contribute meaningfully to
the D3-brane potential.

where � is the canonically-normalized field related to the D3-brane position and MUV is a
UV mass scale (related to rUV, the ultraviolet location at which the throat is glued into the
compact bulk; see figure 2). In terms of the parametrization of eq. (2.12), our primary task
is to compute the scaling dimensions �i, while leaving the coe�cients of individual terms,
ci, undetermined. This undertaking is a necessary precursor to any calculation that does
obtain the Wilson coe�cients in a concrete model. For comparison, in ref. [16] we argued
that in certain special circumstances, the dominant Planck-suppressed contribution to the
D3-brane potential comes from interactions with nonperturbative e↵ects on a divisor in
the conifold. In the present paper, we are addressing the more general situation in which
multiple compactification e↵ects make important contributions to the potential.

Our interest is in the leading terms in the potential for a D3-brane that is well-separated
from the UV cuto↵ rUV. The dominant terms come from the Kaluza-Klein modes with the
smallest AdS masses, i.e. the modes dual to the most relevant operators in the CFT. Highly
irrelevant perturbations are filtered out by the RG flow; in gravity language, these pertur-
bations are described by higher-order terms in a multipole expansion and are subleading
at long distances from rUV.

The dominant terms at small radial position r are, of course, those with the smallest
�i in eq. (2.12). We choose to work to order r

4 and consistently neglect higher-order terms.
Although we are formally expanding in small r, we also assume that the D3-brane is far
above the infrared location rIR where the duality cascade [13] terminates and the conifold
is deformed. That is, we take rIR ⌧ r ⌧ rUV.

Throughout this paper we restrict our attention to non-normalizable perturbations —
corresponding to deformations of the gauge theory Lagrangian — sourced by e↵ects in the
compact bulk. However, perturbations by normalizable modes of the supergravity fields,
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A second class which, I think, deserves added attention is large field inflation, arising 
from branes (e.g. axion monodromy) or axion fields in string theory.

Here, the main interest is that the models which generate  
observable tensor to scalar ratio r (at least for near term 

experiments) exhibit Planckian or super-Planckian field ranges. 

Lyth ‘97

Examples of models based on axion monodromy 
or other dynamics of axions exist, and refining 

them will become extremely interesting if BICEP  
or its successors detect r.

e.g. McAllister, Silverstein, 
Westphal ’08; …

Thanks for your attention!


