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Cauchy-Dirichlet problem for the FDE

We shall consider the Cauchy-Dirichlet problem (FDE) = {(1)-(3)} for the
Fast Diffusion Equation,

(1) O: (|u|?%u) = Au in Q X (0,00),
(2) u=20 on 9 x (0, 00),
(3) u(+,0) = uo in €2,

where Q C RY is a bounded domain with smooth boundary 82, under
the hypotheses

H)  w € HY)\{0}, 2<q<2 =

Physical Background: stability of asymptotic profiles of plasma diffusion
(for ¢ = 3 in [Okuda-Dawson '73], [Berryman-Holland '80])
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Linear diffusion (g = 2)
In case g = 2, the solution is represented as a Fourier series,
’U,(ZB, t) — Z a'ne_Anten(m)a Ap — (uﬂa en)Lz(Q)a
n=1

where {(An, e,) }52, denote eigenpairs of
—Ae=Xe in{), e =0 on 01
satisfying (e;, ex)L2(n) = 0. Moreover,
D<A < A< A< .. <A, = F00,
and hence, as long as a; # O,

u(x,t) ~ are Mey(xz) for t > 1.
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~ Proposition 1 (Finite-time extinction with rates)

-

Finite-time extinction

Let u be the energy solution to (FDE). Then Yu, € H;(£2) \ {0},
Jt. = t«(ug) > 0 and Jc;, ca > 0 such that

1/(q—=2 1/(q—2
(4) ¢ (t, — t)+/(q ) < lw(e t) |z < ea(te — t)+/(q )
for all ¢ > 0. Moreover,

luol|La

Vol

(5) < tu(uo) < AgC2luollTa”,

where A\, := Z—:; > 0 and C, is the best constant of the Sobolev-

Poincaré inequality, |w]||rs < Cy||Vw||r2 for w € H;(2).

J

Berryman-Holland '80] [Kwong '88] [Savaré-Vespri '94]...[|A-Kajikiya "13]
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Asymptotic profiles of vanishing solutions

Consider the asymptotic profile of u = u(x, t) as follows:

¢ () = lim (t. ). TP u(x, t).

To this end, set

6) (@) = (t. — )7/ Pu(a, 1), s:=log (t a t).

~—— Then v turns out to be an energy solution to (R) = {(7)-(9)}: —

(7) 05 (Jv]7%v) = Av+ A |v|?v  in Q x (0, 00),

(8) v=20 on 92 X (0, 00),

(9) v(+,0) = vo in 2,

where vy := t.(ug) /TPy, € HE(Q)\ {0} and A, := Z_;; > 0.
- J
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Rescaled equation (R) as a gradient flow

Then (R) is reduced into the Cauchy problem for
d

(10) = (Iv]"20) (5) = —J(v(s)) in HN(R), s> 0,
S

where J’ : H)(Q2) — H () is the Fréchet derivative of the following
energy functional J : H;(2) — R:

1 A
1) J(w):=SlIVwllz: — Cllwlli. for w € Hy(0).

Then J(v(s)) decreases in time and v(s) converges to a critical point
¢ € H; () of J(-), that is,

(12) J'(¢) =0 in H~1(Q).
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Asymptotic profiles for vanishing solutions

~ Theorem 2 (Asymptotic profiles for vanishing solutions) —

For every s,, — o0, there exist a subsequence (n”) of (12) and a function
¢ € H;(2) \ {0} such that

v(Sn) — ¢ strongly in H(2).

Moreover, ¢ solves the following Dirichlet problem (D):

—Ad = A|9|T%¢ N, ¢ =0 ondN.
N Y

Berryman-Holland '80] [Kwong '88] [Savaré-Vespri '94]...[A-Kajikiya "13]

Convergence (along the whole sequence) follows for isolated asymptotic
profiles (e.g., 1D case, ball domains, “convex domains” for g ~ 2, 2*)

and for positive asymptotic profiles (by tojasiewicz-Simon’s inequality).
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Convergence of non-negative solutions for (R)

As for non-negative solutions v > 0 to (R), we can further use

e [DiBenedetto-Kwong-Vespri '91] Ve > 0, de,C > 0;

vq(b‘fm‘j) < Cd(z) forzeQ, s>e,

where d(x) := dist(x, 9). Ve > 0, Vk € N, JC}y > 0;

(13)  cd(z) <

| Dv(x, 8)?7 | < Crd(x)? 7% forx €, s>e, |a =k.
e [Feireisl-Simondon '00] Uniform convergence
(14) v(-,8) — ¢ uniformly in Q.

e [Bonforte-Grillo-Vazquez '12] Relative error convergence

v(s)

15 li
(15) m =

S—r 00

—1 = 0.

LOO
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Rates of convergence to non-degenerate profiles

The aim of this talk is to discuss rate of convergence of v(s) — ¢
as s — oo in view of linearized analysis.

To this end, we always assume that

e ¢ = ¢ is a non-degenerate solution to (D), that is,

Lie:=—Ae—Xg(q—1)|p|?e=0inQ, e=0 ondN

admits no non-trivial solution. That is,
— L does not have zero eigenvalue (0 € o,:(Ly)),
— L is invertible.

o If v = v(ax, s) is non-negative (hence ¢ > 0), then
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Analysis of linearized problems (1/3)

Suppose that v > 0 (and hence, ¢ > 0). Based on [Bonforte-Figalli '21],
set v = ¢ + h and formally expand v~ " = ¢? ' + (¢ — 1)¢p? *h. Then

(g — 1) %0:h = Ah+ Ag(q—1)9p?%h  in Q x (0, 0),
h = 0 on 9 X (0, 00),
h(', O) = h() = Vg — ¢ in C2.

Multiply both sides by A and integrate it over €2 to get

—1d
q (/ h2¢q—2 dw)
2 ds )

A\ . J
V

=: E[h)

+/ IVh|>dz — A\,(q — 1)/ h2¢p? 2 dx = 0.
Q O

N
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Analysis of linearized problems (2/3)

Improved Poincaré Inequality (IP1)

(16) ,uk/ h¢p? 2 dx < / IVh|?dz if thpan{¢J}J s
Q

— E[R]

where (pt;, 10;) denote eigenpairs of the eigenvalue problem,

(17) —AYp = pup? 2 inQ, =0 on N

and 0 < p1 < o2 < -+ < p; — +oo and (¢;) forms a CONS of
L?(2; 9 *da) (normalized as (5, ¥;) r2(q pa—2dx) = 0ij)-

Let pui be the smallest eigenvalue such that 1, > A\ (g — 1).

Then if h(s) L {4;}:=] for s > 1, Improved Poincaré Inequality holds,

(1P1) e — Aq(q — 1)|E[R(s)] < M[h(s)]  for s> 1.
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Analysis of linearized problems (3/3)

Thus

T2 SR + i — Agla — DIER(3)] "< O,

which implies

s Optimal decay rate for the linearized problem ~

Elh(s)] "<" Elhale ', Ao i= = A (a = 1)] > 0,
\_ J

Here we recall that

E[h(s)] = /ﬂ h(-,8)?¢72 dz = /ﬂ 0, 5) — $?¢72 da.

[Bonforte-Figalli '21] introduced “Nonlinear Entropy Method” to justify the

analysis of linearization for (R).
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Nonlinear entropy method [Bonforte-Figalli '21]

Step 1. Derivation of entropy inequality: Test (R) by h = v — ¢.

i,dig[fu(s)m] + 1[h(s)] = R[h(s)],
q’ ds

Ev|d] = /ﬂ v — 97— q' (v — ¢77") ¢] dz < E[h(s)],

RA]| < Hﬁ _ 1H [ ingr2 de.
¢ 0 JQ )

= E[n]

Step 2. Improved Poincaré Inequality for “almost orthogonality”:

| Jq R(8)¥;97% d|
E[h]1/2

Q,[h(s)] := <e (Vj<k—-1) = (IPI)_
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Nonlinear entropy method [Bonforte-Figalli '21]

Step 3. Nonlinear flows improve “almost orthogonality”: claims that

Hence (IP1). yields

d
= Cefolg] + (1 — Ala — 1) — Ce* — C8) C1 E[v]] < 0.
q’ ds R _

N

= [t—Aq(g—1)](2/q) >0 for e <1, s>>1

Step 4. Sharp rate of convergence: Remove € and 0 to get

~ Theorem 3 (Sharp rate for the relative entropy [BF "21]) —
Assume v > 0. There exists ko > 0 such that

/ [v(-,8) — P|Pp?T % dx < Kge™°°  for s > 0.
Q

13/20



Rates of convergence via energy methods

In this talk, we shall reveal rates of convergence based on energy methods.

~ Theorem 4 (Rates of convergence for the energy [A])

For any constant A > O satisfying

2 (o s — Ag(g — 1
0 <AL —Cq—2”¢”Lq(?ﬂ)2) min |— al ) ;
q—1 J 1

where C, is the best constant of the Sobolev-Poincaré inequality, there
exists a constant C' > 0 depending on the choice of A such that

0 < J(w(s)) —J(¢p) < Ce ™ for s> 0.

Furthermore, v(s) strongly converges to ¢ in H_(2) at an exponential

rate as s — +o0.
\_

~

J
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Ingredients of proof

e Energy identity: Test (R) by 9sv(s) to get

Cq |

0. (|v]@=2/20) (5)|[2, + T (0(s)) < 0

with ¢, = 4/(qq’).

e Gradient inequality: For any constant

—111/2
w > ||£, ||$(H—1<n>,H3(ﬂ)>/\/§’

there exists a constant 4 > 0 such that
T (w) — J(9)|"? < w|| T (W) || -1y for w € Hy(RQ),
provided that ||w — ¢|| g1 () < 9.

e Quantitative estimate for ||£;1|| in terms of eigenvalues (1t;)
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Sharp rate of convergence via energy methods

As for non-negative solutions v = v(x, s) > 0, we obtain

~ Theorem 5 (Sharp rate of convergence for the energy [A]) —
Assume v > 0. Then there exists k1 > 0 such that

(18) 0 < J(w(s)) —J(¢) < kie % for s > 0.

Here )¢ is the decay rate of solutions for the linearized problem.
- /

Theorem 3 follows as a corollary, and moreover, we have

~ Corollary 6 (Sharp rate of convergence in Hj(£2) [A]) ——

Assume v > 0. There exists ko > 0 such that

(19) / |IVu(x,s) — Vo(x)|?dr < ke % for s > 0.
Q
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Outline of proof (1/3)

Step 1. “Refined” gradient inequality:

~Lemma 7 (“Refined” gradient inequality) ~
0 < J(v(s)) — J(9)

< 5o 17 @) g -nan + 0 (1005) = 61l ) -

- _/
Step 2. Energy inequality: Note that

q—2
() (5) [ 670 da = a2 )72 g,

Q
Then for any A < \g, one can take s, > O such that

0 < J(v(s)) —J(¢p) < —;%J(v(s)) for s > s,.

Thus we shall obtain the “almost sharp” rate of convergence for J(v(s)). 17/20



Outline of proof (2/3)

Step 3. Exponential convergence of Sobolev norm:

~ Lemma 8 (Exponential convergence in H;(2)) N
Assume that J(v(s)) — J(¢) < e~ ** for some A > 0. Then

E[h(s)] = [lv(s) — @ll12(ap0-2a0) S €

lo(s) — BlI% < e
\_ J

Step 4. “Sharp” rate of convergence: We have obtained
H(s) := J(v(s)) — J()
—1 d
<= (0 +ee)) @0 P LI,

ZI/k
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Outline of proof (3/3)

By Lemma 8, (assuming g > 3 for simplicity) we observe

o (llv(s) — #li%;) A

S llv(s) — @y S e 27

e(s) :=

lo(s) — ¢l
Moreover, thanks to Lemma 8 with [Theorem 4.1, BF '21], we can prove
0(s) := v(s) — 1 <e ™ for s>1
¢ Lo

for some b > 0. Thus
dH
d—(s) + X H(s) < Ce “*H(s) for s> s,
S
for some c, C, s, > 0. Then it follows that

H(s) < H(s,)e%/ce =) for s > s,.
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Remarks for nonnegative solutions

As for the results obtained for v > 0, we remark that:

e These results seem slightly stronger than Theorem 3 for relative entropy;
on the other hand, with aid of the recent reqularity result by [Jin-Xiong,
to appear]|, they may also be derived from Theorem 3.

e However, the proof of [A] seems simpler than that of [BF '21]; in

particular, we can avoid “Step 3”, which may be the most involved part
of the proof.
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Thank you for your attention !

Goro Akagi
Tohoku University, JP

goro.akagi@tohoku.ac. jp



Sketch of proof

Let us recall that

~ Ansatz

e v = v(x,s) > 0: non-negative solution to (R)

e ¢ = ¢(x) > 0: non-degenerate positive solution to (D)

v(s)
¢

e i(s) := — 1

— 0 as s — +oo
Loo

-




Sketch of proof

Weighted eigenvalue problem

—Ae; = pjp? %e; inQ, ¢ =0 on IN.
e 0 < 1 < pp < v+ < py — 400,
o (e;) forms a CONS of H(S2) such that (e;, ;) gz = Jsj,
o 1 = Ag €1 = @/||P]
e (—Ae;) forms a CONS of H— ().
Then the linearized operator £, = —A — X\, (g — 1)o7 fulfills
e Loe; =vj¢pT %e;inQ, e; =0ond ,
o v, = 11j — A,(g — 1) (in particular, v, =1 — q < 0),

o let k € N 1 < Aj(g—1) < py (i€, v <0 < ).



Step 1. “Refined” gradient inequality

~Lemma 9 (“Refined” gradient inequality)
0 < J(v(s)) — J()

< o 1) aayg-aany + 0 ([1005) = 8l

o

By Taylor’'s theorem, we have

T(0(5)) = T(@) = 5 (L(0(s) = D), 0(s) — Dy

o (Ilv(s) — ¢ll3y)
T (0(s)) = L4(v(s) = ¢) + 0 (|[v(s) = Dlla)



Step 1. “Refined” gradient inequality

Hence
J(v(s)) — J (o)
_ % (I (0(9))s £57 (T () + 0 (Ilv(5) — D3 )
We substitute
J' (v(s)) = f:a'j(s)(_Aej)°
Then we find that o

T (v(s)) = J (@)
= 5> o) o (llv(s) — Bli3y)



Step 1. “Refined” gradient inequality

Moreover,

T(w(s) = I(9) = 5 3 oy (s

1 & 2 5
- 5; () + 0 (Ilv(s) — il )

IA

1 o @)
o7 2 ()" o (Ilo(s) — lI2; )

1
< o >0, ”J,(U(S))”L2(Q p2—ada) T O (HU(S) qb”%fé)

< (— +2(5) ) 106D ar-aan-

Thus we have proved Lemma 9.



Step 2. “Almost sharp” rate of convergence

~ Lemma 10 (“Almost sharp” rate of convergence)

Forany A < \g = %, there exist sy, k) > 0 such that

-

0 < J(v(s)) — J(p) < kre 750 for s > s,.

Noting that

B5(v171)(s) = XL |y (5)|*T 8, (v?)(s),
we find that
17 (0() 2 o) = / 8,(v7)(s)|* 627 da

_ 4(q—1)*
q2

(’u(s)
¢

q—2
> da.




Step 2. “Almost sharp” rate of convergence

Combine this with the last lemma to see that
J(v(s)) — J (@)

1
< (— + e(s)

2V

(1+6(s)"”

D, (v

) 4(61q— 1)°

2y,

Thus for any A < \g, one can take s, > O such that

1d
J(v(s)) — J(¢p) < —XgJ(v(s)) for s > s,,
which implies

J(v(s)) — J(¢) < [J(v(sx)) — J ()] e 7% for s > s,.

[]



Step 3. Convergence of Sobolev norm with rate

~ Lemma 11 (Convergence in H(£2) with rates) ~
Assume that J(v(s)) — J(¢) < e s for some A > 0. Then

E[R(s)] = [[v(s) — ¢||L2(Q . p9—2dex) S e,

lo(s) — BlIZy < e
\§ J

As a by-product of the argument so far, we obtain

10s (V1) () || L2(002-2dz) < C [J(’U(S)) — J(qb)]l/2

whence follows from Lemma 10 that

quq_l B vq_l(S)HLZ(Q;qﬁz—qdw) = /8 H(‘?S (vq_l) (O')HLz(ﬂsqbz—de) do

< ClI(v(s)) — J(¢)]/? S eze.



Step 3. Convergence of Sobolev norm with rate

On the other hand, we observe that
[ 1065) = g7 de
Q
< [ Jols)rt = ¢r g2 rde S e
Q
Furthermore, a simple calculation yields
J(v(s)) — J (o)
1 2 )‘q 2, q—2
= -|IV(v(s) = P12y — 5(@—1) [ [v—9|["¢?7 " dw
2 (€2) 2 O

+ o0 (||v(s) — ¢||izg(n)) ‘

Thus the desired conclusion follows from Lemma 10 and the above.



Step 4. “Sharp” rate of convergence

Now, we are ready to prove Theorem 5. For simplicity, assume g > 3 and
then recall that

H{(s) = J(v(s)) — I ()
< (q —L e<s>) (14 6()"* T (w(s)).

2Vk

By Lemma 11, we observe

o (llv(s) — #li%;) A

e(s) = S llv(s) — @llmg S e 27
lo(s) — @l12,
Moreover, thanks to Lemma 11 with [Theorem 4.1, BF '21], we can prove
d(s) = v(s) —1 <e? for s>1
¢ Lo

for some b > 0.



Step 4. “Sharp” rate of convergence

~Lemma 12 ([Theorem 4.1, Bonforte-Figalli "21]) ~
There exist positive constants C, L, s, such that
L(s—so0) ﬁ
o) 4| < sup ( / v(0) — B¢ dw)
¢ I,o° S — So O'E[S(),S] O
+ C(s — sg)elt=20)  for s > 59 > s..
N _/

Proof. Let s > 0 and set sy = s — e~ “?, where a is a positive number to
be determined later. Then

Le—aS L
v(2) < C- ( / v(0) — Bl 2daz)
Qb Lo (Q) e~ 9° 0'6[3 e aS,s]
_I_ Ce—aSeLe as

—1




Step 4. “Sharp” rate of convergence

Thus Lemma 11 vyields

v(s)

S CeLease—ﬁ(s—l) 4 Ce—aseL.

L= ()

d(s) = —1

Hence it suffices to choose 0 < a < A/(4N).



Step 4. “Sharp” rate of convergence

Therefore we have

dH
d—(s) + X H(s) < Ce “*H(s) for s> s,
S

for some s, > 0. Then there exists C' > 0 such that
H(s) < CH(s,)e 0E=%0)  for 5> s,.

Consequently, we obtain
(20) 0 < J(v(s)) — J(¢p) < ke ™ for s >0

for some k1 > 0. This completes the proof of Theorem 5.

Proof of Corollaries. Combine (20) with Lemma 11 (see Step 3).




