Cichoń's Maximum

Martin Goldstern, TU Wien

(joint work with Jakob Kellner, Diego Mejía, Saharon Shelah)

Oaxaca, August 2019

Cichoń's Diagram

- $lackbox{} \mathfrak{b}_{R_1} = \operatorname{\mathsf{add}}(\mathcal{N}), \, \mathfrak{d}_{R_1} = \operatorname{\mathsf{cof}}(\mathcal{N}).$
- ▶ xR_2y iff x is a code for a null set N_x , and $y \notin N_x$. Then $\mathfrak{b}_{R_2} = \text{cov}(\mathcal{N})$ and $\mathfrak{d}_{R_2} = \text{non}(\mathcal{N})$. Well, more or less.
- ▶ R_3 is the relation \leq^* . Clearly $\mathfrak{b}_{R_3} = \mathfrak{b}$ and $\mathfrak{d}_{R_3} = \mathfrak{d}$.
- ▶ xR_4y iff y is a code for a meager set M_y , and $x \in M_y$. Then $\mathfrak{b}_{R_4} = \mathsf{non}(\mathcal{N})$ and $\mathfrak{d}_{R_4} = \mathsf{cov}(\mathcal{N})$.

All entries on the left side will be "unbounding numbers" \mathfrak{b}_R for some relation R, and on the right side "dominating numbers" for the same relation \mathfrak{d}_R .

(Exercise: Define R_0 and R_1 .)

Additivity and Cofinality

For any set S and relation $R \subseteq S \times S$ we define

 $ightharpoonup b_R$ = the minimal size of an "unbounded" set:

$$\mathfrak{b}_R := \min\{|X| : X \subseteq S, \forall s \in S \ \exists x \in X : \neg(xRs)\}$$

 $ightharpoonup \mathfrak{d}_R = ext{the minimal size of a "dominating" set:}$

$$\mathfrak{d}_R := \min\{|Y| : Y \subseteq S, \forall s \in S \ \exists y \in Y : \neg(sRY)\}$$

(In all cases we consider, this numbers will be well-defined, and usually between \aleph_1 and 2^{\aleph_0} .)

If R is a partial order, and moreover directed without a last element, then \mathfrak{b}_R may be called the unbounding number, the directedness, the completeness or the additivity of R; the cardinal \mathfrak{d}_R is the dominating number or cofinality of R.

If R is moreover linear, then $\mathfrak{b}_R = \mathfrak{d}_R$. (trivial but useful)

An example: Small \mathfrak{b} , large \mathfrak{d}

After adding Cohen reals (c_{α} : $\alpha < \tau$) (τ regular) we have

$$\forall g \; \exists \alpha < \tau : c_{\alpha} \not\leq^* g$$

hence the Cohen reals are unbounded. They "witness" $\mathfrak{b} \leq \tau$. But in fact

$$\forall g \ \forall^{\infty} \alpha < \tau : c_{\alpha} \nleq^{*} g$$

(i.e., the set $\{\alpha < \tau : c_{\alpha} \leq^* g\}$ is bounded in τ .)

The Cohen reals are a "strong witness" for $\mathfrak{b} \leq \tau$ and $\mathfrak{d} \geq \tau$.

Definition (The LCU spectrum (linear cofinal unbounded))

$$\tau \in \mathsf{LCU}_R(P)$$
 iff $\exists (c_\alpha : \alpha < \tau) \ \forall g : \forall^\infty i \ \neg (c_\alpha Rg)$.

Note: This implies $\mathfrak{b}_R \leq \tau$ and $\mathfrak{d}_R \geq \tau$.

An example: Large \mathfrak{b} , small \mathfrak{d}

Let $S \subseteq \delta$, $(w_{\alpha} : \alpha \in S)$ be cofinal in $[\delta]^{<\lambda}$, with $w_{\alpha} \subseteq \alpha$. Consider an iteration $(P_{\alpha}, Q_{\alpha} : \alpha < \delta)$, where for all $\alpha \in S$

 Q_{lpha} adds a real g_{lpha} dominating the universe $V^{P_{w_{lpha}}}$

The

set S is naturally ordered by $\alpha \sqsubseteq \beta \Leftrightarrow w_{\alpha} \subseteq w_{\beta}$. Then (S, \sqsubseteq) is $<\lambda$ -directed; let $\mu := cof(S, \sqsubseteq)$.

Then P_{δ} forces $\mathfrak{b} \geq \lambda$ and $\mathfrak{d} \leq \mu$.

Definition (Cone of bounds)

 $\mathsf{COB}_R(P,S)$ or $\mathsf{COB}(P;\lambda,\mu)$ or $\mathsf{COB}_R(P,S;\lambda,\mu)$ means: S is a partial order with additivity λ , cofinality μ , and there are names $(c_s:s\in S)$ such that for all names x there is $s_0\in S$:

 $P \Vdash \forall s \geq s_0 : xRc_s$.

Note: This implies $P \Vdash \mathfrak{b}_R \geq \lambda$, $\mathfrak{d}_R \leq \mu$.

Four relations to describe cardinals in Cichoń's Diagram

- $lackbox{} \mathfrak{b}_{R_1} = \operatorname{add}(\mathcal{N}), \, \mathfrak{d}_{R_1} = \operatorname{cof}(\mathcal{N}).$
- ▶ xR_2y iff x is a code for a null set N_x , and $y \notin N_x$. Then $\mathfrak{b}_{R_2} = \text{cov}(\mathcal{N})$ and $\mathfrak{d}_{R_2} = \text{non}(\mathcal{N})$. Well, more or less.
- ▶ R_3 is the relation \leq^* . Clearly $\mathfrak{b}_{R_3} = \mathfrak{b}$ and $\mathfrak{d}_{R_3} = \mathfrak{d}$.
- ▶ xR_4y iff y is a code for a meager set M_y , and $x \in M_y$. Then $\mathfrak{b}_{R_4} = \mathsf{non}(\mathcal{N})$ and $\mathfrak{d}_{R_4} = \mathsf{cov}(\mathcal{N})$.

Will find an iteration P_9 such that $\forall i \in \{0, 1, 2, 3, 4\}$:

- ightharpoonup COB_i $(P_9, S_i; \tau_i, \tau_{9-i})$ for some S_i . (so $\mathfrak{b}_R \ge \tau_i, \mathfrak{d}_R \le \tau_{9-i}$)

What we want

Writing \mathfrak{b}_i for \mathfrak{b}_{R_i} , \mathfrak{d}_i for \mathfrak{d}_{R_i} ,

We want to construct a forcing notion *P* such that:

- $\mathbf{r}_i, \tau_{9-i} \in \mathsf{LCU}_i(P_\delta) \text{ (so } \mathfrak{b}_i \leq \tau_i, \ \mathfrak{d}_i \geq \tau_{9-i}\text{)}$
- ▶ COB_i($P, S_i; \tau_i, \tau_{9-i}$) for some S_i . (so $\mathfrak{b}_i \ge \tau_i, \mathfrak{d}_i \le \tau_{9-i}$)

What we have

We have: Left side with strong witnesses.

Assume GCH and $\aleph_1 < \tau_1 < \tau_2 < \tau_3 < \tau_4 < \tau_5$. Then there is a forcing notion P_5 such that P_5 forces not only this diagram:

but moreover has strong witnesses:

- ▶ LCU $_{R_i}(P_5) \supseteq [\tau_i, \tau_5] \cap \text{regular}.$
- \triangleright COB $R_i(P_5, S; \tau_i, \tau_5)$

Boolean ultrapowers

- Let B be an atomless cBA (complete Boolean algebra), κ^+ -cc, $< \kappa$ -distributive.
- ▶ A BUP-name is a pair (A, x), where A is a maximal antichain, $x : A \rightarrow V$ a function. (Write x instead of (A, x).) In other words: x is a nice forcing name for an element of V.
- ▶ Define Boolean values [x = y], $[x \in y]$, $[\varphi(x)]$ naturally. b
- For any $<\kappa$ -complete ultrafilter U, define $x \sim_U y \Leftrightarrow [x = y] \in U$.
- Let M_− the set of equivalence classes, ∈_− the natural relation.
- \blacktriangleright (M_-, \in_-) is well-founded; collapse it to (M, \in) .
- ▶ Łoś: $(M, \in) \models \varphi$ iff $\llbracket \varphi \rrbracket \in U$.

Boolean ultrapowers, continued

- A BUP-name is a pair (A, x), where A is a maximal antichain, x: A → V a function. (Write x instead of (A, x).)
 In other words: x is a forcing name for an element of V.
- ▶ Let U be a $<\kappa$ -complete ultrafilter U; define $x \sim_U y \Leftrightarrow [x = y] \in U$.
- (M_-, \in_-) (equiv. classes) is WF; collapse it to (M, \in) .
- ▶ Łoś: $(M, \in) \models \varphi$ iff $\llbracket \varphi \rrbracket \in U$.
- ▶ $j: V \to M$, using standard names: $j(x) := \check{x}/\sim$.
- ▶ Let $A = \{a_{\alpha} : \alpha < \kappa\}$ be a maximal antichain, disjoint from U.
 - Letting $x(a_{\alpha}) := \alpha$: $\forall \beta < \kappa : j(\beta) = \beta < x < j(\kappa)$. $cp(j) = \kappa$.
- Every element of M can be seen as the "U-average" of κ many elements of V.
 - Hence: If (S, <) is $<\kappa$ -directed, then i "S is cofinal in i(S).

Stretching with ultrapowers

 $j:V \to M$ with critical point κ . Using an appropriate Boolean algebra, we can make $j(\kappa)$ have arbitrary large cofinality. (Hint: partial functions from τ to κ , of size $<\kappa$.) Moreover, M will be σ -closed; so statements about reals (and even about names for reals, by ccc) will be absolute between M and V. If $M \models j(P) \Vdash \varphi(x)$, then also $V \models j(P) \Vdash \varphi(x)$.

- ▶ If $\lambda \in LCU(P)$ has cofinality $\neq \kappa$, then also $\lambda \in LCU(j(P))$.
- ▶ If $\kappa \in LCU(P)$, then $j(\kappa) \in LCU(j(P))$.
- ▶ If COB($P, S; \lambda, \mu$), and $\lambda < \kappa$, then COB($j(P), j(S); \lambda, j(\mu)$).
- ▶ If COB($P, S; \lambda, \mu$), and $\lambda > \kappa$, then COB(j(P), j " $S; \lambda, \mu$).

Embeddings $P_5 \xrightarrow{j_6} P_6 \xrightarrow{j_7} P_7 \xrightarrow{j_8} P_8 \xrightarrow{j_9} P_9$

Let j_6 be a BUP, $\tau_3 < \kappa_6 = cp(j_6) < \tau_4$, $cf(j(\kappa)) = \tau_6$.

- From $\tau_4, \tau_5 \in LCU_4(P)$ we conclude $\tau_4, \tau_5 \in LCU(j(P))$. So $j(P) \Vdash \mathfrak{b}_4 \leq \tau_4, \mathfrak{d}_4 \geq \tau_5$.
- ► From COB₄(P; τ_4 , τ_5) we conclude COB₄(j(P); τ_4 , τ_5). (We use $\kappa_6 < \tau_4$ here.) So $j(P) \Vdash \mathfrak{b}_4 \geq \tau_4$, $\mathfrak{d}_4 \leq \tau_5$.
- From τ_3 , κ , $\tau_4 \in LCU_3(P_5)$ we conclude τ_3 , τ_4 , $\tau_6 \in LCU_3(j(P))$. So $j(P) \Vdash \mathfrak{b}_3 \leq \tau_4$, $\mathfrak{d}_3 \geq \tau_6$.
- From COB₃(P; τ_3 , τ_5) we conclude COB₃(j(P); τ_3 , τ_6). Side computation: $|j(\tau_5)| = |j(\kappa)| = \tau_6$. So $j(P) \Vdash \mathfrak{b}_3 \geq \tau_3$, $\mathfrak{d}_3 \leq \tau_6$. (We use $\kappa_6 > \tau_3$ here.)
- ightharpoonup Similarly for R_2 , R_1 .

Next step: Apply j_7 to $j_6(P_5)$, with critical point κ_7 between τ_2 and τ_3 . Then j_8 and finally j_9 with critical point $\kappa_9 < \tau_1$.

Recall: we want to go from the first diagram to the second one:

A first step:

The LCU table: $P_5 \xrightarrow{j_6} P_6 \xrightarrow{j_7} P_7 \xrightarrow{j_8} P_8 \xrightarrow{j_9} P_9$

$$\begin{split} &\kappa_9 < \tau_1 < \kappa_8 < \tau_2 < \kappa_7 < \tau_3 < \kappa_6 < \tau_4 < \tau_5 < \dots < \tau_9. \\ &j(\kappa_i) = \tau_i \text{ for } i = 6,7,8,9. \\ &\text{Recall: } \lambda \in \mathsf{LCU}_R(P) \text{ iff } \lambda \in \mathsf{LCU}_R(j(P)), \text{ as long as } cf(\lambda) \neq \kappa. \\ &\text{But } \kappa \in \mathsf{LCU}(P) \text{ implies } j(\kappa) \in \mathsf{LCU}(j(P)). \end{split}$$

	R_1	R_2	R_3	R_4
P_5	$[au_1, au_5]$	$[au_2, au_5]$	$[au_3, au_5]$	$[au_4, au_5]$
P_5	$ au_1, \kappa_8, au_5$	$ \begin{array}{c c} \tau_2, \kappa_7, \tau_5 \\ \tau_2, \kappa_7, \tau_5 \end{array} $	$ au_3, \kappa_6, au_5$	$ au_4, au_5$
P_6	$ au_1, \kappa_8, au_5$	$ au_2, \kappa_7, au_5$	$ au_3, au_6$	$ au_4, au_5$
P_7			$ au_3, au_6,$	$ au_4, au_5$
P_8	$ au_1, au_8$	$ au_2, au_7$	$ au_3, au_6$	$ au_4, au_5$

The COB table: $P_5 \xrightarrow{j_6} P_6 \xrightarrow{j_7} P_7 \xrightarrow{j_8} P_8 \xrightarrow{j_9} P_9$

$$\kappa_9 < \tau_1 < \kappa_8 < \tau_2 < \kappa_7 < \tau_3 < \kappa_6 < \tau_4 < \tau_5 < \dots < \tau_9.$$
 $j(\kappa_i) = \tau_i \text{ for } i = 6, 7, 8, 9.$

Recall: $COB_R(P; \lambda, \mu)$ implies $COB_R(j(P); \lambda, \mu)$ whenever $\kappa < \lambda$.

But for $\kappa > \lambda$ we get only $COB_R(j(P); \lambda, |j(\mu)|)$.

In the following table, an entry λ/μ in two P_I and column R_i means that P_I forces ${\rm COB}_{R_i}(P;\lambda,\mu)$ (i.e., there is an S witnessing COB with additivity λ and cofinality μ .

	R_1	R_2	R_3	R_4
P_5	τ_1/τ_5	τ_2/τ_5	τ_3/τ_5	τ_4/ au_5
P_6	τ_1/τ_5	$ au_2/, au_5$	τ_3/τ_6	$ au_4/ au_5$
P_7	τ_1/τ_5	τ_2/τ_7	τ_3/τ_6	$ au_4/ au_5$
		τ_2/τ_7		

Recall LCU and COB

The plan

We start with a forcing notion P giving "inflated" values to Cichoń's diagram; all different on the left side, and a single (larger) value on the right side.

Then we cleverly construct a model N. The forcing notion $P \cap N$ will force "quite arbitrary" values (smaller than the inflated values) on both sides.

- We use $\{\tau_{\text{left}}, \tau_{\text{right}}\} \in \mathsf{LCU}_R(P \cap N)$ to show $\mathfrak{b}_R \leq \tau_{\text{left}}$ and $\mathfrak{d}_R \geq \tau_{\text{right}}$.
- We use COB($P, S; \tau_{\text{left}}, \tau_{\text{right}}$) to show $\mathfrak{b}_R \geq \tau_{\text{left}}$ and $\mathfrak{d}_R \leq \tau_{\text{right}}$.

To achieve this aim, we have to compute/estimate how the values of LCU and COB change when we replace P by $P \cap N$.

Additivity and Cofinality

 $add(S) = \mathfrak{b}_S = additivity of a (directed) partial order = smallest size of an unbounded (linearly ordered)$

 $(S) = \mathfrak{d}_S = \text{cofinality} = \text{smallest size of a dominating set.}$

Definition

A θ -model is an elementary submodel of "the universe" of cardinality θ , containing $\theta \cup \{\theta\}$ as a subset, and $<\theta$ -closed. (Also containining "everything mentioned so far".)

A (λ,θ) -model N is the union of an increasing sequence $(N_\alpha:\alpha<\lambda)$ of θ -models, each containing the sequence of all previous ones.

We will typically have $\lambda \ll \theta$; thus, a (λ, θ) -model is usually only $<\lambda$ -closed.

