# Flat bands of surface states via index theory of Toeplitz operators with Besov symbols 

## Tom Stoiber

Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

$$
\text { June 6, } 2019
$$

## Edge states on the honeycomb lattice

Hamiltonian with nearest-neighbor couplings on the Honeycomb lattice:

$$
h=\left(\begin{array}{ll}
h_{A A} & h_{A B} \\
h_{B A} & h_{B B}
\end{array}\right)=\left(\begin{array}{cc}
0 & a \\
a^{*} & 0
\end{array}\right)
$$

with the off-diagonal part a sum of three shift operators on $\ell^{2}\left(\mathbb{Z}^{2}\right)$


Surface band structure: Flat band at zero-energy for zigzag-, but not for armchair edges (see e.g. Nakada et al. (1996), Delplace et al. (2011)).

## Edge states on the honeycomb lattice

Topological Zak-phase argument:

- Fourier transform for directions parallel to boundary: Slices $H_{k_{\|}}$ with fixed momentum are 1D chiral systems
- Bulk Winding number for fixed $k_{\|}$


$$
\operatorname{Wind}\left(k_{\|}\right)=2 \pi i \int \mathrm{~d} k_{\perp} \frac{\operatorname{det} a_{k}}{\left|\operatorname{det} a_{k}\right|} \in \mathbb{Z}
$$

- Bulk-Boundary Correspondence: At least $\mid$ Wind $\left(k_{\|}\right) \mid$zero-energy bound states at edge
- Wind $\left(k_{\|}\right)$constant between gap-closing points:

Either Flat band or no topological eigenstates

## Edge states on the honeycomb lattice

Can show flat band for many edges, but

- Dimensional reduction only possible for periodic systems (no bulk disorder)
■ boundary conditions must not break translational symmetry (no rough edges, only certain angles possible)
- chiral symmetry must be preserved by the boundary

We address the first two points for chiral semimetals.

## Setting: Bulk

Bulk Hamiltonian $h$ on $\mathbb{C}^{N} \otimes \ell^{2}\left(\mathbb{Z}^{d}\right)$ element of the von Neumann-algebra $\mathcal{M}$ of the disordered non-commutative torus.

- $h$ finite sum

$$
h=\sum_{x \in \mathbb{Z}^{d}} \phi_{x} S^{x}
$$

$v_{x}$ ergodic random variables (hopping amplitudes)
$S^{x}$ (magnetic) shifts

- $h$ chirally symmetric

$$
J h J=-h, \quad J=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

i.e. $h$ and its phase $\operatorname{sgn}(h)=h|h|^{-1}$ are of the form

$$
h=\left(\begin{array}{ll}
0 & a^{*} \\
a & 0
\end{array}\right) \quad \operatorname{sgn}(h)=\left(\begin{array}{cc}
0 & u^{*} \\
u & 0
\end{array}\right)
$$

- 0 not an eigenvalue: $u$ unitary.


## Setting: Boundary

Let $\xi \in \mathbb{S}^{d-1}$ be the normal vector of the boundary hyperplane
■ Half-space Hamiltonian $\hat{h}$ : restrict $h$ to the half-space of points $x \in \mathbb{Z}^{d}$ with $\xi \cdot x>0$, chiral, semi-infinite system, Dirichlet boundary conditions

- 0 can be infinitely degenerate eigenvalue, Eigenvectors localized at boundary
$\rightarrow$ This is the titular flat band!
- Eigenspace decomposes $\operatorname{Proj}_{\operatorname{Ker}(\hat{h})}=\hat{\pi}_{+} \oplus \hat{\pi}_{-}$in the grading of $J$


## Non-commutative analysis

■ Winding number from Zak phase argument:

$$
\operatorname{Wind}_{\xi}(u):=i \tau\left(u^{*} \nabla_{\xi} u\right)=\left[\int \mathrm{d} k_{\|} \operatorname{Wind}\left(k_{\|}\right)\right]
$$

- $\tau$ the trace per unit volume

$$
\tau(a)=\lim _{L \rightarrow \infty} \frac{1}{(2 L)^{d}} \sum_{\|x\|_{\infty}<L} \operatorname{Tr}_{N}\langle x| a|x\rangle=\int_{\mathbb{T}^{d}} \operatorname{Tr}\left(a_{k}\right) \mathrm{d}^{d} k
$$

- $\nabla_{\xi}$ the derivation in the direction $\xi$

$$
\nabla_{\xi}\left(\sum_{x \in \mathbb{Z}^{d}} \phi_{x} S^{x}\right):=-i \sum_{x \in \mathbb{Z}^{d}}(\xi \cdot x) \phi_{x} S^{x}=\left(\xi \cdot \nabla_{k}\right) a_{k}
$$

- trace per unit surface area

$$
\hat{\tau}(a)=\lim _{L \rightarrow \infty} \frac{1}{(2 L)^{d-1}} \sum_{\|x\|_{\infty}<L} \operatorname{Tr}_{N}\langle x| a|x\rangle=\int_{\mathbb{T}^{d-1}} \operatorname{Tr}_{\ell^{2}(\mathbb{N})}\left(a_{k_{\|}}\right) \mathrm{d}^{d-1} k_{\|}
$$

## Main result

## Theorem

For the set-up as above, if the integrated density of states of $h$ vanishes at $E=0$ in the sense that

$$
\tau\left(\chi_{[-E, E]}(h)\right) \leq C E^{1+s}
$$

for some $C, s>0$. Then

$$
\hat{\tau}\left(\hat{\pi}_{+}-\hat{\pi}_{-}\right)=\imath \tau\left(u^{*} \nabla_{\xi} u\right)=\imath \sum_{j=1, . ., d} \xi_{j} \tau\left(u^{*} \nabla_{e_{j}} u\right),
$$

■ Same as for weak topological insulators, but no gap required! Example: $h$ periodic and linear dispersion at zero energy, e.g. chiral semimetal with Dirac points or nodal lines at the Fermi energy.
■ works for arbitrary boundary hyperplane and also rough edges

## Weak Chern numbers

Weak Chern numbers for $n \leq d$ independent directions $\zeta_{1}, \ldots, \zeta_{n} \in S^{d-1}$
■ if $n$ even for projections $p \in \mathcal{M}$

$$
\mathrm{Ch}_{n}(p)=\sum_{\sigma \in \operatorname{Perm}(1, \ldots, n)} \operatorname{sgn}(\sigma) \tau\left(p \nabla_{\zeta_{\sigma(1)}} p \ldots \nabla_{\zeta_{\sigma(n)}} p\right) .
$$

- if $n$ odd for unitaries $u \in \mathcal{M}$

$$
\mathrm{Ch}_{n}(u)=\sum_{\sigma \in \operatorname{Perm}(1, \ldots, n)} \operatorname{sgn}(\sigma) \tau\left(u \nabla_{\zeta_{\sigma(1)}} u^{*} \ldots \nabla_{\zeta_{\sigma(n)}} u\right) .
$$

Well-defined if $u$ respectively $p$ in the non-commutative Sobolev-space $W_{n}^{1}(\mathcal{M})$, i.e. right-hand-side is $\tau$-trace-class.
When do these expressions admit semifinite index formulas?

## Non-commutative $L^{P}$-spaces

For a von Neumann-Algebra $\mathcal{N}$ with semifinite trace $\hat{\tau}$ define

- $L^{p}$-spaces $L^{p}(\mathcal{N}, \hat{\tau})$ as the completion of $\operatorname{Dom}(\hat{\tau})$ under

$$
\|x\|_{p}=\left(\hat{\tau}\left(|x|^{p}\right)\right)^{1 / p}
$$

■ $\hat{\tau}$-compact operators $\mathcal{K}$ as $C^{*}$-completion of $\operatorname{Dom}(\hat{\tau})$.
$T \in \mathcal{N}$ is called $\hat{\tau}$-Fredholm if it is invertible modulo $\mathcal{K}$ and therefore has a semifinite index

$$
\hat{\tau}-\operatorname{Ind}(T)=\hat{\tau}(\operatorname{Ker} T)-\hat{\tau}\left(\operatorname{Ker} T^{*}\right) \in \mathbb{R}
$$

Invariant under continuous deformations and $\hat{\tau}$-compact perturbations.

## Standard approach

- Define Dirac operator

$$
D=\sum_{j=1}^{n} \gamma_{j} \otimes D_{j}
$$

where
$\gamma_{1}, \ldots, \gamma_{n}$ generators of a complex Clifford algebra
$D_{j}=\zeta_{j} \cdot X$ with $X$ position operator on $\ell^{2}\left(\mathbb{Z}^{d}\right)$.
■ Let $\mathcal{N}$ be von Neumann-algebra generated by $\mathcal{M}$ and bounded Borel functions of $D_{1}, \ldots, D_{n}$
■ $P_{+}=\chi_{\mathbb{R}^{+}}(D), \quad P_{-}=1-P_{+}, \quad \operatorname{sgn}(D)=P_{+}-P_{-} \in \mathcal{N}$
■ $\mathcal{N} \simeq \mathcal{M} \rtimes \mathbb{T}^{k} \rtimes \mathbb{R}^{n-k} \rightarrow \tau$ induces semifinite trace $\hat{\tau}$ on $\mathcal{N}$.
■ When do we have $[\operatorname{sgn}(D), a] \in L^{n+1}(\mathcal{N}, \hat{\tau})$ in terms of $a \in \mathcal{M}$ ?

## Besov spaces

- Fourier multipliers $\hat{f}: \widehat{\mathbb{R}}^{d} \rightarrow \mathbb{C}$ act on $\mathcal{M}$

$$
\hat{f} *\left(\sum_{x \in \mathbb{Z}^{d}} \phi_{x} S^{x}\right)=\sum_{x \in \mathbb{Z}^{d}} \hat{f}(x) \phi_{x} S^{x}
$$

- Choose partition of $\left(\widehat{W_{k}}\right)_{k \in \mathbb{N}}$ of $\mathbb{R}^{d}$ such that

$$
\operatorname{supp} \widehat{W_{k}} \subset B_{2^{k+1}}(0) \backslash B_{2^{k-1}}(0), k>0
$$

- For $s>0, p, q \geq 1$ define Besov space $B_{p q}^{s}(\mathcal{M})$ as subspace of $L^{p}(\mathcal{M}, \tau)$ with

$$
\|a\|_{B_{p q}^{s}}:=\left(\sum_{k \in \mathbb{N}}\left(2^{s k}\left\|\widehat{W_{k}} * a\right\|_{p}\right)^{q}\right)^{1 / q}=\left\|2^{s}\right\| \widehat{W} \cdot * a\left\|_{p}\right\|_{\ell^{q}}<\infty .
$$

## Besov spaces: Basic properties

■ Fourier multipliers are well-behaved with $L^{p}$-norms:

$$
\|\hat{f} * a\|_{p} \leq\|f\|_{L^{1}}\|a\|_{p}
$$

- $a=\sum_{k \in \mathbb{N}} \widehat{W_{k}} * a$ converges in $L^{p}$-norm for any $a \in L^{p}(\mathcal{M})$, for $a \in B_{p q}^{s}(\mathcal{M})$ absolute convergence
- $B_{p q}^{s}(\mathcal{M})$ embeds into weighted sequence space $\ell_{q}^{s}\left(L^{p}(\mathcal{M})\right)$
$\rightarrow$ compatible with interpolation.
- $s$ measures smoothness, $B_{p p}^{s}(\mathcal{M}) \sim$ fractional Sobolev spaces
- If $a \in B_{p q}^{s}(\mathcal{M})$ then $\left\|\widehat{W_{k}} * a\right\|_{p} \leq C 2^{-s k}$


## Non-commutative Peller criterion

Peller (1980): Schatten-von Neumann-class of a Hankel operator $\leftrightarrow$ Besov-regularity of its symbol.
Here: $[\operatorname{sgn}(D), a] \sim P_{-} a P_{+} \sim$ noncommutative Hankel operator.

## Theorem

For $p>n$ and $a \in B_{p, p}^{\frac{n}{p}}(\mathcal{M})$ we have

$$
[\operatorname{sgn}(D), a] \in L^{p}(\mathcal{N}, \hat{\tau})
$$

If $n=1$, then the result also holds for $p=n=1$.
Proof: Interpolation of analytic families with endpoint estimates for the $L^{2}$ and $L^{\infty}$-cases and weighted versions of the commutator.

In short: $\mathcal{M} \cap B_{n+1, n+1}^{\frac{n}{n+1}} \sim$ semifinite $(n+1)$-summable Fredholm module

## Index theorem

## Theorem

If $p$ or $u \in W_{n}^{1}(\mathcal{M}) \cap B_{n+1, n+1}^{\frac{n}{n+1}}(\mathcal{M})$ is a projection respectively unitary for $n$ even/odd then

$$
\hat{\tau}-\operatorname{Ind}(p \operatorname{sgn}(D) p)=\Gamma_{n} \hat{\tau}\left([\operatorname{sgn}(D), p]^{n+1}\right)=\widetilde{\Gamma}_{n} \mathrm{Ch}_{n}(p)
$$

respectively

$$
\hat{\tau}-\operatorname{Ind}\left(P_{+} u P_{+}\right)=\Gamma_{n} \hat{\tau}\left(J\left([\operatorname{sgn}(D), u]\left[\operatorname{sgn}(D), u^{*}\right]\right)^{(n+1) / 2}\right)=\widetilde{\Gamma}_{n} \operatorname{Ch}_{n}(u)
$$

Also sufficient condition: $a \in W_{n+\epsilon}^{1}(\mathcal{M})$ for some $\epsilon>0$ No rapid decay of matrix elements necessary.

## Bulk-boundary correspondence

■ Special case $D=\xi \cdot X$ and $P_{+}=\chi_{\mathbb{R}^{+}}(D)$ half-space projection to points with $x \cdot \xi>0$.
■ $\mathcal{N} \simeq \mathcal{M} \rtimes_{\alpha} \mathbb{R}$ or $\mathcal{N} \simeq \mathcal{M} \rtimes_{\alpha} \mathbb{T}$ represented on $\ell\left(\mathbb{Z}^{d}\right)$, $\hat{\tau}$ becomes trace per unit surface area

- $h$ chiral Hamiltonian and $\hat{h}=P_{+} h P_{+}$with polar decompositions

$$
\operatorname{sgn}(h)=\left(\begin{array}{cc}
0 & u^{*} \\
u & 0
\end{array}\right), \quad \operatorname{sgn}(\hat{h})=\left(\begin{array}{cc}
0 & \hat{u}^{*} \\
\hat{u} & 0
\end{array}\right)
$$

■ Idea: If $u \in B_{2,2}^{1 / 2}$ and $\hat{u}-P_{+} u P_{+} \hat{\tau}$-compact then

$$
\hat{\tau}(J \operatorname{Ker}(\hat{h}))=\hat{\tau}-\operatorname{Ind}(\hat{u})=\hat{\tau}-\operatorname{Ind}\left(P_{+} u P_{+}\right)=i \sum_{j=1, ., . d} \xi_{j} \tau\left(u^{*} \nabla_{e_{j}} u\right)
$$

■ Sufficient conditions for both?

## Proposition

If the integrated density of states of $h$ vanishes polynomially in $E=0$

$$
\tau\left(\chi_{[-E, E]}(h)\right) \leq C E^{1+s} .
$$

Then $u \in B_{2,2}^{1 / 2}$ and $\hat{u}-P_{+} u P_{+}$is in $L^{1+\tilde{s}}(\mathcal{N}, \hat{\tau})$ for $\tilde{s}<s$.
Proof idea: DOS condition implies

$$
\frac{1}{h}:=\lim _{z \rightarrow 0} \frac{1}{h+z} \in L^{1+\tilde{s}}(\mathcal{M}) \text {, and }\left\|\frac{1}{h}-\frac{1}{h+z}\right\|_{1+\tilde{s}} \leq C|\operatorname{Im} z|^{s /(1+\tilde{s})} .
$$

Using $\operatorname{sgn}(h)=s-\lim _{\epsilon \rightarrow 0} \tanh \left(\epsilon^{-1} h\right)$ this can compensate the discontinuity of sgn.
Decay of $\widehat{W_{k}} * \operatorname{sgn}(h)$ then carries over from smoothness of $h$. Second statement: Use resolvent identities
$\operatorname{sgn}(\hat{h})-P_{+} \operatorname{sgn}(h) P_{+}=\operatorname{s}_{\epsilon \rightarrow 0} \lim _{\epsilon \rightarrow 0} \int_{\mathcal{C}_{\epsilon}} \frac{\mathrm{d} z}{2 \pi \iota} \tanh \left(\frac{z}{\epsilon}\right) \frac{P_{+}}{P_{+} z-\hat{h}} h\left(1-P_{+}\right) \frac{1}{z-h} P_{+}$

## Summary

■ Extended semifinite index theorems for weak Chern numbers to Besov spaces and thus lower regularity

- Easy proof of bulk-boundary correspondence for 1d weak Chern numbers in chiral pseudo-gapped systems with rough edges

Open problems/future work:
■ Persistence of pseudogap for disordered chiral systems (non-rigorous: Fradkin(1986) and others)
$\rightarrow$ stability of chiral topological semimetals?
■ Higher-dimensional odd/even weak Chern numbers, e.g. 3D-WSM ~ 1-parameter family of 2D QHE or QSHE-systems Stability and persistence of Fermi-arc surface states?

