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Topological insulators: definition stated

I Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy µ

Eµ

I Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open
Ordinary insulator: Can be deformed to the limit of
well-separated atoms (or void)

I Classification by suitable indices (e.g. homotopy equivalence)

I Termination of bulk of a topological insulator implies edge states: Bulk
index vs. edge index

I Refinement: The Hamiltonians enjoy a symmetry which is preserved
under deformations.
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The role of disorder
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum: Anderson localization)

Spectral Gap

Mobility Gap

µ: Fermi energy (Pauli principle)

I For a periodic (crystalline) medium:
I Method of choice: Bloch theory and vector bundles (Thouless et

al.)
I Gap is spectral

I For a disordered medium:
I Method of choice: Non-commutative geometry (Bellissard; Avron

et al.)
I Fermi energy may lie in a spectral gap or (better, and more

generally) in a mobility gap.



Spectral vs. Mobility gap, technically speaking

I Hamiltonian H on `2(Zd )

I Fermi energy µ in gap
I Pµ = I(−∞,µ)(H): Fermi projection with matrix elements Pµ(x , x ′),

(x , x ′ ∈ Zd )
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Spectral vs. Mobility gap, technically speaking

I Mobility Gap: Localization holds at Fermi energy

Eµ

sup
x ′∈Zd

e−ε|x
′|
∑
x∈Zd

eν|x−x ′||Pµ(x , x ′)| <∞

(some ν > 0, all ε > 0). The energy E = µ is not an eigenvalue
(though in the spectrum).

I Proven in (virtually) all cases where localization is known.
I Trivially false for extended states at E = µ.
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2πσH = ch(P)

is the Chern number (index) of the vector bundle over T and fiber
range P(k)



Periodic vs. non-periodic case

I Periodic case. (Thouless et al., Avron)

σH = − i
(2π)2

∫
T

d2k tr(P(k)[∂1P(k), ∂2P(k)])

where T: Brillouin zone (torus); P(k) Fermi projection on the
space of states of quasi-momentum k = (k1, k2); ∂i = ∂/∂ki

I Non-periodic case. (Bellissard et al., Avron et al.)

σH = i tr Pµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
where Λi = Λ(xi), (i = 1,2) are switch functions

1
Λ(x)

x



Periodic vs. non-periodic case

I Periodic case. (Thouless et al., Avron)

σH = − i
(2π)2

∫
T

d2k tr(P(k)[∂1P(k), ∂2P(k)])

I Non-periodic case. (Bellissard et al., Avron et al.)

σH = i tr Pµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
I Alternative treatment of disorder (Thouless): Large, but finite

system (square); (k1, k2) (ϕ1, ϕ2) phase slips in boundary
conditions



Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics



Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics



An experiment: Amo et al.

Figure: Zigzag chain of coupled micropillars and lasing modes (polaritons)



An experiment: Amo et al.

Figure: Lasing modes: bulk and edge
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

ψ+
n−1 ψ+

n ψ+
n+1

ψ−n+1ψ−n
An Bn

Hilbert space: sites arranged in dimers

H = `2(Z,CN)⊗ C2 3 ψ =

(
ψ+

n
ψ−n

)
n∈Z

Hamiltonian

H =

(
0 S∗

S 0

)
with S, S∗ acting on `2(Z,CN) as

(Sψ+)n = Anψ
+
n−1 + Bnψ

+
n , (S∗ψ−)n = A∗n+1ψ

−
n+1 + B∗nψ

−
n

(An random i.i.d. ∈ GL(N) almost surely, Bn too)
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Chiral symmetry

Π =

(
1 0
0 −1

)
{H,Π} ≡ HΠ + ΠH = 0

hence
Hψ = λψ =⇒ H(Πψ) = −λ(Πψ)

Energy λ = 0 is special:
I Eigenspace of λ = 0 invariant under Π

I x
HH �� HH �� HH �� HH ��

.............j .............�
ψ+

n−1 ψ+
n ψ+

n+1

ψ−
n+1ψ−

n
An Bn

Eigenvalue equation Hψ = λψ is Sψ+ = λψ−, S∗ψ− = λψ+, i.e.

Anψ
+
n−1 + Bnψ

+
n = λψ−n , A∗n+1ψ

−
n+1 + B∗nψ

−
n = λψ+

n

is one 2nd order difference equation, but two 1st order for λ = 0
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Bulk index

Let
Σ = sgn H

Definition. The Bulk index is

N =
1
2

tr(ΠΣ[Λ,Σ])

with Λ = Λ(n) a switch function (cf. Prodan et al.)

1
Λ(x)

x



Edge Hamiltonian and index

ψ+
a−1 ψ+

a

ψ−a+1 = 0ψ−a

Edge Hamiltonian Ha defined by restriction to n ≤ a (Dirichlet
boundary condition ψ−a+1 = 0). Chiral symmetry preserved.

Eigenspace of λ = 0 still invariant under Π.

N±a := dim{ψ | Haψ = 0,Πψ = ±ψ}

Definition. The Edge index is

Na = N+
a −N−a

and can be shown to be independent of a. Call it N ].
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N = N ]
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I Spectral gap case (0 /∈ σess(H) ⊃ σess(Ha))

Ha =
(
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N ]
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N ] = −Wind(k 7→ det S(k))



Bulk-edge duality: Remarks
Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remarks.
I Spectral gap case (0 /∈ σess(H) ⊃ σess(Ha))

Ha =
(

0 S∗a
Sa 0

)
Π =

( 1 0
0 −1

)
N ]

a := dim ker Sa − dim ker S∗a = ind Sa (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, Sa is
not Fredholm.

I Supersymmetry: Is realized as (Ha,Π) = (supercharge,grading).
Then N ]

a is Witten index.

I Periodic case

S =

∫ ⊕
S1

S(k)

Toeplitz index theorem:

N ] = −Wind(k 7→ det S(k))



Bulk-edge duality: Remarks
Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remarks.
I Spectral gap case (0 /∈ σess(H) ⊃ σess(Ha))

Ha =
(

0 S∗a
Sa 0

)
Π =

( 1 0
0 −1

)
N ]

a := dim ker Sa − dim ker S∗a = ind Sa (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, Sa is
not Fredholm.

I Supersymmetry: Is realized as (Ha,Π) = (supercharge,grading).
Then N ]

a is Witten index.
I Periodic case

S =

∫ ⊕
S1

S(k)

Toeplitz index theorem:

N ] = −Wind(k 7→ det S(k))



Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remark.



Bulk-edge duality: Lyaponov exponents
Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remark. Consider the dynamical system Anψ
+
n−1 + Bnψ

+
n = 0 with

Lyaponov exponents
γ1 ≥ . . . ≥ γN

The assumption is satisfied if γi 6= 0; then N ] = ]{i | γi > 0}.

Phase
boundaries correspond to γi = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
I at energy λ 6= 0 (simple spectrum)
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Some numerics

Left/right column: two parameterized chiral models (N = 1)
upper/lower row: index and Lyapunov exponent (from Prodan et al.)
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Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a
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Proof

Lemma. The common value of Na is

N ] = lim
a→+∞

tr(ΠΛP0,a)

Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a

tr(ΠΛ) = N
(∑

n≤a

Λ(n)
)

trC2 Π = 0

0 a

though ‖ΠΛ‖1 = ‖Λ‖1 →∞, (a→ +∞)
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Proof

Lemma. The common value of Na is

N ] = lim
a→+∞

tr(ΠΛP0,a)

Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a

tr(ΠΛ) = 0

0 a

tr(ΠΛ) = tr(ΠΛP0,a) + tr(ΠΛP+,a) + tr(ΠΛP−,a)

tr(ΠΛP+,a) = tr(P+,aΠΛP+,a) = tr(ΠP−,aΛP+,a)

= tr(ΠP−,a[Λ,P+,a])→ tr(ΠP−[Λ,P+]) (a→ +∞)



Proof

Lemma. The common value of Na is

N ] = lim
a→+∞

tr(ΠΛP0,a)

Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a

tr(ΠΛ) = 0

So,
tr(ΠΛ) = tr(ΠΛP0,a)︸ ︷︷ ︸

→N ]

+ tr(ΠΛP+,a) + tr(ΠΛP−,a)︸ ︷︷ ︸
→tr(ΠP−[Λ,P+])+tr(ΠP+[Λ,P−])=−N

In fact by Σ = P+ − P− the last expression is

−(1/2) tr(ΠΣ[Λ,Σ]) = −N

q.e.d.



Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics



Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics



Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t + T ) = H(t)

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t)
Û = U(T ) fundamental propagator

Assumption: Spectrum of Û has gaps:

spec Û ⊂ S1
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Bulk index

Special case first: U(t) periodic, i.e.

Û = 1

Bulk index

NB =
1
2

∫ T

0
dt tr(U∗∂tU

[
U∗[Λ1,U],U∗[Λ2,U]

]
)

with U = U(t) and switches Λi = Λ(xi), (i = 1,2)

Remark. K-theoretic approach by Sadel and Schulz-Baldes.
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∫ T
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∫
T

d2k tr(U∗∂tU[U∗∂1U,U∗∂2U])

with U = U(t , k) acting on the space of states of quasi-momentum
k = (k1, k2).

U: 3-torus→ unitary group U , (t , k) 7→ U(t , k):

π3(U) = Z

Bulk index NB is degree of map.
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Û = 1

Bulk index

NB =
1
2

∫ T

0
dt tr(U∗∂tU

[
U∗[Λ1,U],U∗[Λ2,U]

]
)

with U = U(t) and switches Λi = Λ(xi), (i = 1,2)

Remark. Extends the formula for the periodic case (Rudner et al.)

NB =
1

8π2

∫ T

0
dt
∫
T

d2k tr(U∗∂tU[U∗∂1U,U∗∂2U])

with U = U(t , k) acting on the space of states of quasi-momentum
k = (k1, k2).
U: 3-torus→ unitary group U , (t , k) 7→ U(t , k):

π3(U) = Z

Bulk index NB is degree of map.



Bulk index
Special case first: U(t) periodic, i.e.
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Edge index
HE(t) restriction of H(t) to right half-space x1 > 0

ÛE corresponding fundamental propagator

In general: ÛE 6= 1

Edge index

NE = tr(Û∗E[Λ2, ÛE]) = tr(Û∗EΛ2ÛE − Λ2)

Remarks.
I The trace is well-defined

�������
�������
�������
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x1

ed
ge

x2

I NE is charge that crossed the line x2 = 0 during a period.
I NE is independent of Λ2 and an integer.
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Remarks.
I The trace is well-defined

�������
�������
�������
�������

x1

ed
ge

x2

I NE is charge that crossed the line x2 = 0 during a period.
I NE is independent of Λ2 and an integer.



General case: Pair of Hamiltonians

Û 6= 1

Pair of periodic Hamiltonians Hi(t), (i = 1,2) with

Û1 = Û2

Define Hamiltonian H(t) with period 2T by

H(t) =

{
H1(t) (0 < t < T )

−H2(2T − t) (T < t < 2T )

Then

U(t) =

{
U1(t) (0 < t < T )

U2(2T − t) (T < t < 2T )

has Û = 1. Define N ,NE (for the pair) as before.

Theorem (G., Tauber) N = NE
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Û1 = Û2
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has Û = 1. Define N ,NE (for the pair) as before.

Theorem (G., Tauber) N = NE



General case: Pair of Hamiltonians
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Duality in time and space
Let the interface Hamiltonian HI(t) be a bulk Hamiltonian with

HI(t) =

{
H1(t)
H2(t)

on states supported on large ±x1

(still assuming Û1 = Û2 =: Û•)

Interface index
NI = tr(Û∗• ÛI[Λ2, Û∗• ÛI])

x1

t

H2,B(t)←

x1

t

−H2,E(−t)

H1,E(t)

ed
ge

→ H1,B(t)
T

−T

T

Theorem (G., Tauber) The indices for the two diagrams agree:

(N =)NE = NI
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Back to single Hamiltonian

Û 6= 1 spec Û ⊂ S1

Let α ∈ R and ω = eiα. For z /∈ ωR+ (ray) define the branch

logα z = log |z|+ i argα z

by α− 2π < argα z < α.

Comparison Hamiltonian Hα: For ω = eiα /∈ specÛ set

−iHαT := logα Û

Theorem (Rudner et al.; G., Tauber) For ω, ω′ in gaps

Nω′ −Nω = i tr P
[
[P,Λ1], [P,Λ2]

]
where P = Pω,ω′ is the spectral projection associated with specÛ
between ω, ω′ (counter-clockwise)
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Bulk and Edge spectrum
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Computing the edge index
Edge index NE,α based on the pair (H,Hα) (with α = π)

NE,α = tr A A = Û∗EΛ2ÛE − Û∗α,EΛ2Ûα,E

The diagonal integral kernel A(x , x) as log |A(x , x)|
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Boundary conditions:
I Vertical edges: Dirichlet
I Horizontal edges: Periodic
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The transition
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Summary

I Chiral symmetry
I Floquet topological insulator

Thank you for your attention!
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