Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf, ETH Zurich

Topological Phases of Interacting Quantum Systems Casa Matemática Oaxaca

2-7 June 2019

Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf, ETH Zurich

Topological Phases of Interacting Quantum Systems Casa Matemática Oaxaca

2-7 June 2019

Outline

Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Classification by suitable indices (e.g. homotopy equivalence)

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Classification by suitable indices (e.g. homotopy equivalence)
- Termination of bulk of a topological insulator implies edge states: Bulk index vs. edge index

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Classification by suitable indices (e.g. homotopy equivalence)
- Termination of bulk of a topological insulator implies edge states: Bulk index vs. edge index
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.

The role of disorder

The spectrum of a single-particle Hamiltonian

μ : Fermi energy (Pauli principle)

- For a periodic (crystalline) medium:
- Method of choice: Bloch theory and vector bundles (Thouless et al.)
- Gap is spectral
- For a disordered medium:
- Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
- Fermi energy may lie in a spectral gap or (better, and more generally) in a mobility gap.

Spectral vs. Mobility gap, technically speaking

- Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
- Fermi energy μ in gap
- $P_{\mu}=I_{(-\infty, \mu)}(H)$: Fermi projection with matrix elements $P_{\mu}\left(x, x^{\prime}\right)$, $\left(x, x^{\prime} \in \mathbb{Z}^{d}\right)$

Spectral vs. Mobility gap, technically speaking

- Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
- Fermi energy μ in gap
- $P_{\mu}=I_{(-\infty, \mu)}(H)$: Fermi projection with matrix elements $P_{\mu}\left(x, x^{\prime}\right)$, $\left(x, x^{\prime} \in \mathbb{Z}^{d}\right)$
- Spectral gap

Strong off-diagonal decay:

$$
\left|P_{\mu}\left(x, x^{\prime}\right)\right| \lesssim \mathrm{e}^{-\nu\left|x-x^{\prime}\right|}
$$

Spectral vs. Mobility gap, technically speaking

- Spectral gap

Strong off-diagonal decay:

$$
\left|P_{\mu}\left(x, x^{\prime}\right)\right| \lesssim \mathrm{e}^{-\nu\left|x-x^{\prime}\right|}
$$

- Mobility Gap: Localization holds at Fermi energy

$$
\sup _{x^{\prime} \in \mathbb{Z}^{d}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$).

Spectral vs. Mobility gap, technically speaking

- Mobility Gap: Localization holds at Fermi energy

$$
\sup _{x^{\prime} \in \mathbb{Z}^{d}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$). The energy $E=\mu$ is not an eigenvalue (though in the spectrum).

Spectral vs. Mobility gap, technically speaking

- Mobility Gap: Localization holds at Fermi energy

$$
\sup _{x^{\prime} \in \mathbb{Z}^{d}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$). The energy $E=\mu$ is not an eigenvalue (though in the spectrum).

- Proven in (virtually) all cases where localization is known.
- Trivially false for extended states at $E=\mu$.

Periodic vs. non-periodic case

Difference illustrated for the conductance σ_{H} of (integer) quantum Hall effect (Kubo formula)

Periodic vs. non-periodic case

Difference illustrated for the conductance σ_{H} of (integer) quantum Hall effect (Kubo formula)

- Periodic case. (Thouless et al., Avron)

$$
\sigma_{\mathrm{H}}=-\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(P(k)\left[\partial_{1} P(k), \partial_{2} P(k)\right]\right)
$$

where \mathbb{T} : Brillouin zone (torus); $P(k)$ Fermi projection on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right) ; \partial_{i}=\partial / \partial k_{i}$

Periodic vs. non-periodic case

Difference illustrated for the conductance σ_{H} of (integer) quantum Hall effect (Kubo formula)

- Periodic case. (Thouless et al., Avron)

$$
\sigma_{\mathrm{H}}=-\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(P(k)\left[\partial_{1} P(k), \partial_{2} P(k)\right]\right)
$$

where \mathbb{T} : Brillouin zone (torus); $P(k)$ Fermi projection on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right) ; \partial_{i}=\partial / \partial k_{i}$ Remark.

$$
2 \pi \sigma_{\mathrm{H}}=\operatorname{ch}(P)
$$

is the Chern number (index) of the vector bundle over \mathbb{T} and fiber range $P(k)$

Periodic vs. non-periodic case

- Periodic case. (Thouless et al., Avron)

$$
\sigma_{\mathrm{H}}=-\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(P(k)\left[\partial_{1} P(k), \partial_{2} P(k)\right]\right)
$$

where \mathbb{T} : Brillouin zone (torus); $P(k)$ Fermi projection on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right) ; \partial_{i}=\partial / \partial k_{i}$

- Non-periodic case. (Bellissard et al., Avron et al.)

$$
\sigma_{\mathrm{H}}=\mathrm{itr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

where $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$ are switch functions

Periodic vs. non-periodic case

- Periodic case. (Thouless et al., Avron)

$$
\sigma_{\mathrm{H}}=-\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(P(k)\left[\partial_{1} P(k), \partial_{2} P(k)\right]\right)
$$

- Non-periodic case. (Bellissard et al., Avron et al.)

$$
\sigma_{\mathrm{H}}=\operatorname{itr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

- Alternative treatment of disorder (Thouless): Large, but finite system (square); $\left(k_{1}, k_{2}\right) \rightsquigarrow\left(\varphi_{1}, \varphi_{2}\right)$ phase slips in boundary conditions

Topological insulators

Chiral systems

An experiment
A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results
Some numerics

Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

An experiment: Amo et al.

Figure: Zigzag chain of coupled micropillars and lasing modes (polaritons)

An experiment: Amo et al.

Figure: Lasing modes: bulk and edge

Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping

The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

Hilbert space: sites arranged in dimers

$$
\mathcal{H}=\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right) \otimes \mathbb{C}^{2} \ni \psi=\binom{\psi_{n}^{+}}{\psi_{n}^{-}}_{n \in \mathbb{Z}}
$$

Hamiltonian

$$
H=\left(\begin{array}{ll}
0 & S^{*} \\
S & 0
\end{array}\right)
$$

with S, S^{*} acting on $\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right)$ as

$$
\left(S \psi^{+}\right)_{n}=A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}, \quad\left(S^{*} \psi^{-}\right)_{n}=A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}
$$

$\left(A_{n}\right.$ random i.i.d. $\in \mathrm{GL}(N)$ almost surely, B_{n} too $)$

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
\boldsymbol{H} \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
H \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Energy $\lambda=0$ is special:

- Eigenspace of $\lambda=0$ invariant under Π

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
H \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Energy $\lambda=0$ is special:

- Eigenspace of $\lambda=0$ invariant under Π

Eigenvalue equation $\boldsymbol{H} \psi=\lambda \psi$ is $\boldsymbol{S} \psi^{+}=\lambda \psi^{-}, \boldsymbol{S}^{*} \psi^{-}=\lambda \psi^{+}$, i.e.

$$
A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=\lambda \psi_{n}^{-}, \quad A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}=\lambda \psi_{n}^{+}
$$

is one 2nd order difference equation, but two 1 st order for $\lambda \equiv 0$

Bulk index

Let

$$
\Sigma=\operatorname{sgn} H
$$

Definition. The Bulk index is

$$
\mathcal{N}=\frac{1}{2} \operatorname{tr}(\Pi \Sigma[\Lambda, \Sigma])
$$

with $\Lambda=\Lambda(n)$ a switch function (cf. Prodan et al.)

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace of $\lambda=0$ still invariant under Π.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace of $\lambda=0$ still invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace of $\lambda=0$ still invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Definition. The Edge index is

$$
\mathcal{N}_{a}=\mathcal{N}_{a}^{+}-\mathcal{N}_{a}^{-}
$$

and can be shown to be independent of a. Call it \mathcal{N}^{\sharp}.

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remarks.

- Spectral gap case ($\left.0 \notin \sigma_{\text {ess }}(H) \supset \sigma_{\text {ess }}\left(H_{a}\right)\right)$

$$
H_{a}=\left(\begin{array}{cc}
0 & S_{a}^{*} \\
S_{a} & 0
\end{array}\right) \quad \Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\mathcal{N}_{a}^{\sharp}:=\operatorname{dim} \operatorname{ker} S_{a}-\operatorname{dim} \operatorname{ker} S_{a}^{*}=\operatorname{ind} S_{a} \quad \text { (Fredholm index) }
$$

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_{a} is not Fredholm.

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remarks.

- Spectral gap case $\left(0 \notin \sigma_{\text {ess }}(H) \supset \sigma_{\text {ess }}\left(H_{a}\right)\right)$

$$
H_{a}=\left(\begin{array}{cc}
0 & S_{a}^{*} \\
S_{a} & 0
\end{array}\right) \quad \Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\mathcal{N}_{a}^{\sharp}:=\operatorname{dim} \operatorname{ker} S_{a}-\operatorname{dim} \operatorname{ker} S_{a}^{*}=\operatorname{ind} S_{a} \quad \text { (Fredholm index) }
$$

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_{a} is not Fredholm.

- Supersymmetry: Is realized as $\left(H_{a}, \Pi\right)=$ (supercharge, grading). Then \mathcal{N}_{a}^{\sharp} is Witten index.

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remarks.

- Spectral gap case $\left(0 \notin \sigma_{\text {ess }}(H) \supset \sigma_{\text {ess }}\left(H_{a}\right)\right)$

$$
H_{a}=\left(\begin{array}{cc}
0 & S_{a}^{*} \\
S_{a} & 0
\end{array}\right) \quad \Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\mathcal{N}_{a}^{\sharp}:=\operatorname{dim} \operatorname{ker} S_{a}-\operatorname{dim} \operatorname{ker} S_{a}^{*}=\operatorname{ind} S_{a} \quad \text { (Fredholm index) }
$$

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_{a} is not Fredholm.

- Supersymmetry: Is realized as $\left(H_{a}, \Pi\right)=$ (supercharge, grading). Then \mathcal{N}_{a}^{\sharp} is Witten index.
- Periodic case

$$
S=\int_{S^{1}}^{\oplus} S(k)
$$

Toeplitz index theorem:

$$
\mathcal{N}^{\sharp}=-\operatorname{Wind}(k \mapsto \operatorname{det} S(k))
$$

Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$.

Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)

Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even (Example: $N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- Spectrum is simple because measure on transfer matrices is irreducible
- so $\gamma=0$ is not in the spectrum; localization follows

Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even (Example: $N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- At $\lambda=0$ chains decouple: $\mathbb{C}^{N} \oplus 0$ and $0 \oplus \mathbb{C}^{N}$ are invariant subspaces

Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even (Example: $N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

0

- of the upper (+) and lower (-) chains, at energy $\lambda=0$
- at energy $\lambda=0$ (phase boundary)

Some numerics

Left/right column: two parameterized chiral models ($N=1$) upper/lower row: index and Lyapunov exponent (from Prodan et al.)

Proof

Recall $\mathcal{N}_{a}=\operatorname{tr}\left(\Pi P_{0, a}\right)$, where

$$
1=P_{0, a}+P_{+, a}+P_{-, a}
$$

is decomposition into states of energies $=0,>0,<0$

Proof

Recall $\mathcal{N}_{a}=\operatorname{tr}\left(\Pi P_{0, a}\right)$, where

$$
1=P_{0, a}+P_{+, a}+P_{-, a}
$$

is decomposition into states of energies $=0,>0,<0$
Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=N\left(\sum_{n \leq a} \Lambda(n)\right) \operatorname{tr}_{\mathbb{C}^{2}} \Pi=0
$$

though $\|П \wedge\|_{1}=\|\wedge\|_{1} \rightarrow \infty,(a \rightarrow+\infty)$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\begin{gathered}
\frac{\operatorname{tr}(\Pi \wedge)=0}{0} \\
\operatorname{tr}(\Pi \Lambda)=\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)
\end{gathered}
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=0
$$

$$
\operatorname{tr}(\Pi \wedge)=\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)
$$

$$
\begin{aligned}
\operatorname{tr}\left(\Pi \wedge P_{+, a}\right) & =\operatorname{tr}\left(P_{+, a} \Pi \wedge P_{+, a}\right)=\operatorname{tr}\left(\Pi P_{-, a} \Lambda P_{+, a}\right) \\
& =\operatorname{tr}\left(\Pi P_{-, a}\left[\Lambda, P_{+, a}\right]\right)
\end{aligned}
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=0
$$

$$
\operatorname{tr}(\Pi \wedge)=\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)
$$

$$
\begin{aligned}
\operatorname{tr}\left(\Pi \wedge P_{+, a}\right) & =\operatorname{tr}\left(P_{+, a} \Pi \wedge P_{+, a}\right)=\operatorname{tr}\left(\Pi P_{-, a} \wedge P_{+, a}\right) \\
& =\operatorname{tr}\left(\Pi P_{-, a}\left[\Lambda, P_{+, a}\right]\right) \rightarrow \operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right)
\end{aligned}
$$

$$
(a \rightarrow+\infty)
$$

Proof

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge P_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=0
$$

So,

$$
\operatorname{tr}(\Pi \wedge)=\underbrace{\operatorname{tr}\left(\Pi \wedge P_{0, a}\right)}_{\rightarrow \mathcal{N}^{\sharp}}+\underbrace{\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)}_{\rightarrow \operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right)+\operatorname{tr}\left(\Pi P_{+}\left[\Lambda, P_{-}\right]\right)=-\mathcal{N}}
$$

In fact by $\Sigma=P_{+}-P_{-}$the last expression is

$$
-(1 / 2) \operatorname{tr}(\Pi \Sigma[\Lambda, \Sigma])=-\mathcal{N}
$$

q.e.d.

Topological insulators

Chiral systems
 An experiment
 A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Floquet topological insulators

$H=H(t)$ (bulk) Hamiltonian in the plane with period T

$$
H(t+T)=H(t)
$$

(disorder allowed, no adiabatic setting)

Floquet topological insulators

$H=H(t)$ (bulk) Hamiltonian in the plane with period T

$$
H(t+T)=H(t)
$$

(disorder allowed, no adiabatic setting)
$U(t)$ propagator for the interval $(0, t)$
$\widehat{U}=U(T)$ fundamental propagator

Floquet topological insulators

$H=H(t)$ (bulk) Hamiltonian in the plane with period T

$$
H(t+T)=H(t)
$$

(disorder allowed, no adiabatic setting) $U(t)$ propagator for the interval $(0, t)$
$\widehat{U}=U(T)$ fundamental propagator
Assumption: Spectrum of \widehat{U} has gaps:

$$
\operatorname{spec} \widehat{U} \subset S^{1}
$$

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{T} d t \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*}\left[\Lambda_{1}, U\right], U^{*}\left[\Lambda_{2}, U\right]\right]\right)
$$

with $U=U(t)$ and switches $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{T} d t \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*}\left[\Lambda_{1}, U\right], U^{*}\left[\Lambda_{2}, U\right]\right]\right)
$$

with $U=U(t)$ and switches $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$
Remark. Extends the formula for the periodic case (Rudner et al.)

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{8 \pi^{2}} \int_{0}^{T} d t \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*} \partial_{1} U, U^{*} \partial_{2} U\right]\right)
$$

with $U=U(t, k)$ acting on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right)$.

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{T} d t \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*}\left[\Lambda_{1}, U\right], U^{*}\left[\Lambda_{2}, U\right]\right]\right)
$$

with $U=U(t)$ and switches $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$
Remark. Extends the formula for the periodic case (Rudner et al.)

$$
\mathcal{N}_{\mathbf{B}}=\frac{1}{8 \pi^{2}} \int_{0}^{T} d t \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*} \partial_{1} U, U^{*} \partial_{2} U\right]\right)
$$

with $U=U(t, k)$ acting on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right)$.
U : 3-torus \rightarrow unitary group $\mathcal{U},(t, k) \mapsto U(t, k)$:

$$
\pi_{3}(\mathcal{U})=\mathbb{Z}
$$

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{T} d t \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*}\left[\Lambda_{1}, U\right], U^{*}\left[\Lambda_{2}, U\right]\right]\right)
$$

with $U=U(t)$ and switches $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$
Remark. Extends the formula for the periodic case (Rudner et al.)

$$
\mathcal{N}_{\mathbf{B}}=\frac{1}{8 \pi^{2}} \int_{0}^{T} d t \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*} \partial_{1} U, U^{*} \partial_{2} U\right]\right)
$$

with $U=U(t, k)$ acting on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right)$.
U : 3-torus \rightarrow unitary group $\mathcal{U},(t, k) \mapsto U(t, k)$:

$$
\pi_{3}(\mathcal{U})=\mathbb{Z}
$$

Bulk index \mathcal{N}_{B} is degree of map.

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator
In general: $\widehat{U}_{\mathrm{E}} \neq 1$

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator In general: $\widehat{U}_{\mathrm{E}} \neq 1$
Edge index

$$
\mathcal{N}_{\mathrm{E}}=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*}\left[\Lambda_{2}, \widehat{U}_{\mathrm{E}}\right]\right)=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\Lambda_{2}\right)
$$

Remarks.

- The trace is well-defined

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator In general: $\widehat{U}_{\mathrm{E}} \neq 1$
Edge index

$$
\mathcal{N}_{\mathrm{E}}=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*}\left[\Lambda_{2}, \widehat{U}_{\mathrm{E}}\right]\right)=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\Lambda_{2}\right)
$$

Remarks.

- The trace is well-defined

$-\mathcal{N}_{\mathrm{E}}$ is charge that crossed the line $x_{2}=0$ during a period.
- \mathcal{N}_{E} is independent of Λ_{2} and an integer.

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(-t) & (-T<t<0)\end{cases}
$$

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

Then

$$
U(t)= \begin{cases}U_{1}(t) & (0<t<T) \\ U_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

has $\widehat{U}=1$.

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

Then

$$
U(t)= \begin{cases}U_{1}(t) & (0<t<T) \\ U_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

has $\widehat{U}=1$. Define $\mathcal{N}, \mathcal{N}_{\mathrm{E}}$ (for the pair) as before.

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

Then

$$
U(t)= \begin{cases}U_{1}(t) & (0<t<T) \\ U_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

has $\widehat{U}=1$. Define $\mathcal{N}, \mathcal{N}_{\mathrm{E}}$ (for the pair) as before.
Theorem (G., Tauber) $\mathcal{N}=\mathcal{N}_{\mathrm{E}}$

Duality in time and space

Let the interface Hamiltonian $H_{\mathrm{I}}(t)$ be a bulk Hamiltonian with

$$
H_{\mathrm{I}}(t)=\left\{\begin{array}{l}
H_{1}(t) \\
H_{2}(t)
\end{array} \text { on states supported on large } \pm x_{1}\right.
$$

(still assuming $\widehat{U}_{1}=\widehat{U}_{2}=: \widehat{U}_{\mathbf{0}}$)

Duality in time and space

Let the interface Hamiltonian $H_{\mathrm{I}}(t)$ be a bulk Hamiltonian with

$$
H_{1}(t)=\left\{\begin{array}{l}
H_{1}(t) \\
H_{2}(t)
\end{array} \text { on states supported on large } \pm x_{1}\right.
$$

(still assuming $\widehat{U}_{1}=\widehat{U}_{2}=: \widehat{U}_{0}$)
Interface index

$$
\mathcal{N}_{\mathrm{I}}=\operatorname{tr}\left(\widehat{U}_{*}^{*} \widehat{U}_{\mathrm{I}}\left[\Lambda_{2}, \widehat{U}_{0}^{*} \widehat{U}_{\mathrm{I}}\right]\right)
$$

Duality in time and space

Let the interface Hamiltonian $H_{\mathrm{I}}(t)$ be a bulk Hamiltonian with

$$
H_{1}(t)=\left\{\begin{array}{l}
H_{1}(t) \\
H_{2}(t)
\end{array} \quad \text { on states supported on large } \pm x_{1}\right.
$$

(still assuming $\widehat{U}_{1}=\widehat{U}_{2}=: \widehat{U}_{0}$)
Interface index

$$
\mathcal{N}_{\mathrm{I}}=\operatorname{tr}\left(\widehat{U}_{*}^{*} \widehat{U}_{\mathrm{I}}\left[\Lambda_{2}, \widehat{U}_{0}^{*} \widehat{U}_{\mathrm{I}}\right]\right)
$$

Theorem (G., Tauber) The indices for the two diagrams agree:

$$
(\mathcal{N}=) \mathcal{N}_{\mathrm{E}}=\mathcal{N}_{\mathrm{I}}
$$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Let $\alpha \in \mathbb{R}$ and $\omega=\mathrm{e}^{\mathrm{i} \alpha}$. For $z \notin \omega \mathbb{R}_{+}$(ray) define the branch

$$
\log _{\alpha} z=\log |z|+\operatorname{iarg}_{\alpha} z
$$

by $\alpha-2 \pi<\arg _{\alpha} z<\alpha$.

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Let $\alpha \in \mathbb{R}$ and $\omega=\mathrm{e}^{\mathrm{i} \alpha}$. For $z \notin \omega \mathbb{R}_{+}$(ray) define the branch

$$
\log _{\alpha} z=\log |z|+\operatorname{iarg}_{\alpha} z
$$

by $\alpha-2 \pi<\arg _{\alpha} z<\alpha$.
Comparison Hamiltonian H_{α} : For $\omega=\mathrm{e}^{\mathrm{i} \alpha} \notin \operatorname{spec} \widehat{U}$ set

$$
-\mathrm{i} H_{\alpha} T:=\log _{\alpha} \widehat{U}
$$

So,

- $\widehat{U}_{\alpha}=\widehat{U}$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Let $\alpha \in \mathbb{R}$ and $\omega=\mathrm{e}^{\mathrm{i} \alpha}$. For $z \notin \omega \mathbb{R}_{+}$(ray) define the branch

$$
\log _{\alpha} z=\log |z|+\operatorname{iarg}_{\alpha} z
$$

by $\alpha-2 \pi<\arg _{\alpha} z<\alpha$.
Comparison Hamiltonian H_{α} : For $\omega=\mathrm{e}^{\mathrm{i} \alpha} \notin \operatorname{spec} \widehat{U}$ set

$$
-\mathrm{i} H_{\alpha} T:=\log _{\alpha} \widehat{U}
$$

So,
$\widehat{U}_{\alpha}=\widehat{U}$; so define $\mathcal{N}_{\mathrm{B}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Let $\alpha \in \mathbb{R}$ and $\omega=\mathrm{e}^{\mathrm{i} \alpha}$. For $z \notin \omega \mathbb{R}_{+}$(ray) define the branch

$$
\log _{\alpha} z=\log |z|+\operatorname{iarg}_{\alpha} z
$$

by $\alpha-2 \pi<\arg _{\alpha} z<\alpha$.
Comparison Hamiltonian H_{α} : For $\omega=\mathrm{e}^{\mathrm{i} \alpha} \notin \operatorname{spec} \widehat{U}$ set

$$
-\mathrm{i} H_{\alpha} T:=\log _{\alpha} \widehat{U}
$$

So,

- $\widehat{U}_{\alpha}=\widehat{U}$; so define $\mathcal{N}_{\mathrm{B}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$
- $U_{\alpha+2 \pi}(t)=U_{\alpha}(t) \mathrm{e}^{2 \pi \mathrm{it} / T}$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Comparison Hamiltonian H_{α} : For $\omega=\mathrm{e}^{\mathrm{i} \alpha} \notin \operatorname{spec} \widehat{U}$ set

$$
-\mathrm{i} H_{\alpha} T:=\log _{\alpha} \widehat{U}
$$

So,

- $\widehat{U}_{\alpha}=\widehat{U}$; so define $\mathcal{N}_{\mathrm{B}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$
- $U_{\alpha+2 \pi}(t)=U_{\alpha}(t) \mathrm{e}^{2 \pi i t / T}$
- $\mathcal{N}_{\mathrm{B}, \alpha+2 \pi}=\mathcal{N}_{\mathrm{B}, \alpha}=: \mathcal{N}_{\omega}$ by

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{T} d t \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*}\left[\Lambda_{1}, U\right], U^{*}\left[\Lambda_{2}, U\right]\right]\right)
$$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Comparison Hamiltonian H_{α} : For $\omega=\mathrm{e}^{\mathrm{i} \alpha} \notin \operatorname{spec} \widehat{U}$ set

$$
-\mathrm{i} H_{\alpha} T:=\log _{\alpha} \widehat{U}
$$

Theorem (Rudner et al.; G., Tauber) For ω, ω^{\prime} in gaps

$$
\mathcal{N}_{\omega^{\prime}}-\mathcal{N}_{\omega}=\operatorname{itr} P\left[\left[P, \Lambda_{1}\right],\left[P, \Lambda_{2}\right]\right]
$$

where $P=P_{\omega, \omega^{\prime}}$ is the spectral projection associated with spec \widehat{U} between ω, ω^{\prime} (counter-clockwise)

Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Bulk and Edge spectrum

Bulk spectrum

Edge spectrum
$\mathrm{J}=5.30$, delta $=6.28, \mathrm{dr}=7.85, \mathrm{~N}=\mathrm{M}=40$

Bulk (left) and Edge spectrum (right); color: participation ratio

Computing the edge index

Edge index $\mathcal{N}_{\mathrm{E}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$ (with $\alpha=\pi$)

$$
\mathcal{N}_{\mathrm{E}, \alpha}=\operatorname{tr} A \quad A=\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\widehat{U}_{\alpha, \mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\alpha, \mathrm{E}}
$$

Computing the edge index

Edge index $\mathcal{N}_{\mathrm{E}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$ (with $\alpha=\pi$)

$$
\mathcal{N}_{\mathrm{E}, \alpha}=\operatorname{tr} A \quad A=\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\widehat{U}_{\alpha, \mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\alpha, \mathrm{E}}
$$

The diagonal integral kernel $A(x, x)$ as $\log |A(x, x)|$

Computing the edge index

Edge index $\mathcal{N}_{\mathrm{E}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$ (with $\alpha=\pi$)

$$
\mathcal{N}_{\mathrm{E}, \alpha}=\operatorname{tr} A \quad A=\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\widehat{U}_{\alpha, \mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\alpha, \mathrm{E}}
$$

The diagonal integral kernel $A(x, x)$ as $\log |A(x, x)|$

Boundary conditions:

- Vertical edges: Dirichlet
- Horizontal edges: Periodic

The transition

Edge index (left) and zoom (right)
Integer detected with 1 part in 10^{12}

Summary

- Chiral symmetry
- Floquet topological insulator

Summary

- Chiral symmetry
- Floquet topological insulator

Thank you for your attention!

