Disorder and topology. The cases of Floquet and
of chiral systems

Gian Michele Graf, ETH Zurich

Topological Phases of Interacting Quantum Systems
Casa Matematica Oaxaca
2-7 June 2019



Disorder and topology. The cases of Floquet and
of chiral systems

Gian Michele Graf, ETH Zurich

Topological Phases of Interacting Quantum Systems
Casa Matematica Oaxaca
2-7 June 2019

based on joint work with J. Shapiro, C. Tauber



Outline

Topological insulators

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics



Topological insulators



Topological insulators: definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy u

— =

,uy E



Topological insulators: definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy u

— =

,uy E

» Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open



Topological insulators: definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy u

— =

uy E

» Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open
Ordinary insulator: Can be deformed to the limit of
well-separated atoms (or void)



Topological insulators: definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy u

u E
» Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open
Ordinary insulator: Can be deformed to the limit of
well-separated atoms (or void)

» Classification by suitable indices (e.g. homotopy equivalence)



Topological insulators: definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy u

u E

» Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open
Ordinary insulator: Can be deformed to the limit of
well-separated atoms (or void)

» Classification by suitable indices (e.g. homotopy equivalence)

» Termination of bulk of a topological insulator implies edge states: Bulk
index vs. edge index



Topological insulators: definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy u

u E

» Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open
Ordinary insulator: Can be deformed to the limit of
well-separated atoms (or void)

» Classification by suitable indices (e.g. homotopy equivalence)

» Termination of bulk of a topological insulator implies edge states: Bulk
index vs. edge index

» Refinement: The Hamiltonians enjoy a symmetry which is preserved
under deformations.



The role of disorder
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum: Anderson localization)

~
XK X XX X KK

Spectral Gap
Mobility Gap

;L: Fermi energy (Pauli principle)

» For a periodic (crystalline) medium:
» Method of choice: Bloch theory and vector bundles (Thouless et
al.)
» Gap is spectral
» For a disordered medium:
» Method of choice: Non-commutative geometry (Bellissard; Avron
etal.)
» Fermi energy may lie in a spectral gap or (better, and more
generally) in a mobility gap.
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Spectral vs. Mobility gap, technically speaking

» Mobility Gap: Localization holds at Fermi energy

o — =
n

sup e =¥l Z e’ XNP,(x,x')| < oo
x' €z x€zd

(some v > 0, all e > 0). The energy E = 1 is not an eigenvalue
(though in the spectrum).

» Proven in (virtually) all cases where localization is known.
» Trivially false for extended states at E = p.
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Hall effect (Kubo formula)
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Periodic vs. non-periodic case

Difference illustrated for the conductance oy of (integer) quantum
Hall effect (Kubo formula)

» Periodic case. (Thouless et al., Avron)

ox = Qw / Ak tr(P(K)[91 P(K), D P(K)])

where T: Brillouin zone (torus); P(k) Fermi projection on the
space of states of quasi-momentum k = (kq, kz2); 0; = 9/ 0k;
Remark.

2noy = ch(P)

is the Chern number (index) of the vector bundle over T and fiber
range P(k)



Periodic vs. non-periodic case

» Periodic case. (Thouless et al., Avron)

ktr(P(k)[01P(k), 92P(k)])

where T: Brillouin zone (torus); P(k) Fermi projection on the
space of states of quasi-momentum k = (k1, kz); 0; = 0/0k;

» Non-periodic case. (Bellissard et al., Avron et al.)
oy = 1tr Pll “P/“ /\1]7 [P'u,7 /\2]]

where A; = A(x;), (i = 1,2) are switch functions

AX)



Periodic vs. non-periodic case

» Periodic case. (Thouless et al., Avron)

ktr(P(k)[01P(k),02P(k)])

» Non-periodic case. (Bellissard et al., Avron et al.)
oy = 1tr PM “Pﬂ, /\1], [P/H /\2”
> Alternative treatment of disorder (Thouless): Large, but finite

system (square); (ky, k2) ~ (1, v2) phase slips in boundary
conditions
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An experiment: Amo et al.
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Figure: Zigzag chain of coupled micropillars and lasing modes (polaritons)

N



An experiment: Amo et al.
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

wn 1
n+1
Hilbert space: sites arranged in dimers

H=—P2,CN) 225 — ( Un )
nez

Un
0 S
#-(59)
with S, S* acting on ¢?(Z,CN) as
(Sy™)n = And’:,rq + By, (SY7)n = An1¥pg + Boton
(An random i.i.d. € GL(N) almost surely, B, too)

Hamiltonian



Chiral symmetry

1 0
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hence

Hp =Xy = H[p) = -A(MNy)
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Chiral symmetry

1 0
(o 5)
{H,N}=HN+NH=0
hence
Hy =Xy = H(y) = -A(My)

Energy A = 0 is special:

» Eigenspace of A = 0 invariant under 1

>

vi vy Vg
\/Rw%\w/\/

Eigenvalue equation Hy = Ay is Sy™ = \p—, S*y~ = M, i.e.

A+ Bt =Xy, Al + By = M

is one 2nd order difference equation, but two 1st order for A =0



Bulk index

Let
Y =sgnH

Definition. The Bulk index is
N = %tr(l‘IZ[A, X))

with A = A(n) a switch function (cf. Prodan et al.)

A) E 1



Edge Hamiltonian and index
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Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.
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Edge Hamiltonian and index

+ +
R a—1 a
\\\\ /\17D_/ /O\//,
a Var1 =

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.

Eigenspace of A = 0 still invariant under .
N =dim{y | Hyp = 0,Myp = 4}
Definition. The Edge index is
Na=Nj - N

and can be shown to be independent of a. Call it V%,
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Bulk-edge duality: Remarks
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then

N =N

Remarks.
» Spectral gap case (0 ¢ cess(H) D 0ess(Ha))

0 s; _
Ha=(2%)  n=(32%)
NE = dimker S; — dimker S =indS;  (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S, is
not Fredholm.
» Supersymmetry: Is realized as (Ha, [1) = (supercharge, grading).
Then A is Witten index.
» Periodic case o
S= S(k)
St
Toeplitz index theorem:

N* = —Wind(k — det S(k))
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Bulk-edge duality: Lyaponov exponents
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then

N =N

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents

M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
> at energy A # 0 (simple spectrum)
— 00— 000 —0 0=
0

» Spectrum is simple because measure on transfer matrices is
irreducible
» so v = 0is not in the spectrum; localization follows



Bulk-edge duality: Lyaponov exponents
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then

N =N

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents
M= 2N

The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)
Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)

> at energy A # 0 (simple spectrum)

——0—0 00— —0 00—
0
» At \ = 0 chains decouple: CVN @ 0 and 0 @ CN are invariant
subspaces



Bulk-edge duality: Lyaponov exponents
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then
N =N*

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents
M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)
Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
> at energy A # 0 (simple spectrum)
——0—0 00— —0 00—
0
» of the upper (+) and lower (—) chains, at energy A =0
——0—0—0 10— —0 00—

» at energy A = 0 (phase boundary)
— oo o * *—— o o=




Some numerics

Left/right column: two parameterized chiral models (N = 1)
upper/lower row: index and Lyapunov exponent (from Prodan et al.)
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Proof
Recall Nz = tr(MPy 5), where
1= PO,a+P+,a+P—,a

is decomposition into states of energies =0,> 0,< 0

Lemma. The common value of NV is

N = lim tr(NAP )
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Lemma. The common value of NV is

N¥ = lim tr(NAPy )

a—-+oo

Proof of Theorem. On the Hilbert space #, correspondingto n < a

tr(MA) = N(D_A(n)) tre =0

n<a
0 a

though ||NA||1 = ||A]j1 — oo, (@ = +0)
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Proof
Lemma. The common value of NV is

N = lim tr(NAP )

a—-+oo

Proof of Theorem. On the Hilbert space #, correspondingto n < a

tr(MA) =0
e
0 a

tr(MA) = tr(MAPg ) + tr(MAPL 5) + tr(NMAP_ 5)

tr(rl/\P_ha) = tr(P_ADaI_I/\P_ha) = tr(I_IP_7a/\P+7a)
= ‘tl’(l_lp_’a[/\7 P_i_,a])



Proof
Lemma. The common value of NV is

N = lim tr(NAP )

a—-+oo

Proof of Theorem. On the Hilbert space #, correspondingto n < a

tr(MA) =0
e
0 a

tr(MA) = tr(MAPg ) + tr(MAPL 5) + tr(NMAP_ 5)

tr(nAP+7a) = tr(P_han/\P_ha) = tr(rIP_7a/\P+7a)
= tr(MP_ 4[A, P4 a]) — tr(NP_[A, P4]) (a— +00)



Proof

Lemma. The common value of NV is

N = lim tr(NAP )

a—-+oo
Proof of Theorem. On the Hilbert space #, correspondingto n < a
tr(MA) =0

So,
tr(MA) = tr(MAPy z) +  tr(MAPy 5) + tr(MAP_ )

/

LN —tr(NMP_[A,Py])+tr(MPL[AP_])=—N

In fact by ¥ = P, — P_ the last expression is
—(1/2)tr(NZ[A, X]) = —N

g.e.d.
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Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T
H(t+T)=H()

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t)
U = U(T) fundamental propagator

Assumption: Spectrum of U has gaps:

spec Uc S
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Special case first: U(t) periodic, i.e.

U=1
Bulk index
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with U = U(t) and switches A; = A(X;), (i = 1,2)



Bulk index

Special case first: U(t) periodic, i.e.

U=
Bulk index
]
Ni = ;/ attr(U*0:U[U* [, U], U*[Ag, U]))
0

with U = U(t) and switches A; = A(Xx;), (I = 1,2)
Remark. Extends the formula for the periodic case (Rudner et al.)
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]
Ni = ;/ attr(U*0:U[U* [, U], U*[Ag, U]))
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with U = U(t) and switches A; = A(Xx;), (I = 1,2)
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U: 3-torus — unitary group U, (t, k) — U(t, k):
3(U) =Z



Bulk index

Special case first: U(t) periodic, i.e.

U=
Bulk index
]
Ni = ;/ attr(U*0:U[U* [, U], U*[Ag, U]))
0

with U = U(t) and switches A; = A(Xx;), (I = 1,2)
Remark. Extends the formula for the periodic case (Rudner et al.)

_ 1
- 8x2

with U = U(t, k) acting on the space of states of quasi-momentum
k = (ki, k2).
U: 3-torus — unitary group U, (t, k) — U(t, k):

m3(U) =7

Bulk index A is degree of map.

-,
N / dt / A2k tr(U*0:U[U* 04 U, U*:U])
0 T
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Edge index
Hg(t) restriction of H(t) to right half-space x; > 0

Us corresponding fundamental propagator
In general: UE #1
Edge index
Ng = tI’(UE[/\Z UE]) = tr(UE/\z Us — A2)

Remarks.
» The trace is well-defined
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Edge index
Hg(t) restriction of H(t) to right half-space x; > 0

Us corresponding fundamental propagator
In general: UE #1
Edge index
Ng = tI’(UE[/\Z UE]) = tr(UE/\z Us — A2)

Remarks.
» The trace is well-defined

X2

X1

edge

» Mg is charge that crossed the line x, = 0 during a period.
» A is independent of A, and an integer.
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Define Hamiltonian H(t) with period 2T by
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General case: Pair of Hamiltonians
U#1
Pair of periodic Hamiltonians H;(t), (i = 1,2) with
Ur = O

Define Hamiltonian H(t) with period 2T by

Ht) = Hi(t) O0<t<T)
| —H(2T — 1) (T <t<2T)

Th
o u(t) = Ui (1) (0<t<T)
| Ws(2T - 1) (T <t<2T)

has U = 1. Define N, N& (for the pair) as before.
Theorem (G., Tauber) V' = Ng



Duality in time and space
Let the interface Hamiltonian Hi(t) be a bulk Hamiltonian with

Hi(t) = (1) on states supported on large +x;
Ha(t)
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Duality in time and space
Let the interface Hamiltonian Hi(t) be a bulk Hamiltonian with
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(still assuming Uy = Up = U.)

Hi(t) = {H1 (1) on states supported on large +x;

Interface index R o
N = tr(U; Ui[A2, Ug Ur])




Duality in time and space
Let the interface Hamiltonian Hi(t) be a bulk Hamiltonian with

Ha(t)

(still assuming Uy = Up = U.)

Hi(t) = {H1 (1) on states supported on large +x;

Interface index R o
N = tr(U; Ui[A2, Ug Ur])

t t

Th o Y

® Hy g(t) Ho 5(t) « — Hy (1)

8 X1 Xq
—Ho g(—t)

Theorem (G., Tauber) The indices for the two diagrams agree:

(N =)V =M
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Back to single Hamiltonian

~

U#1

w
Let o € R and w = e'®. For z ¢ wR, (ray) define the branch
log, z = log|z| +iarg, Z
by a — 27 < arg, Z < a.

Comparison Hamiltonian H,: For w = e ¢ specU set
—iH, T :=log, U
So, R R
» U, = U; so define A, based on the pair (H, H,)
> Ua+27r(t) — Ua(t)GZWit/T



Back to single Hamiltonian

~

U#1

W

Comparison Hamiltonian H,: For w = e ¢ spch set

—iH, T :=log, U
So, R
» U, = U; so define N, based on the pair (H, H,)
> Ua+27r(t) = Ua(t)ezmt/T
> NB,a+27r = NB,a = Nw by

)
N :% / dt tr(U*0,U[U*[Ay, U], U*[Ag, U]))
0



Back to single Hamiltonian

~

U#1

w
Comparison Hamiltonian H,,: For w = e ¢ spch set
—iH, T = log,, U
Theorem (Rudner et al.; G., Tauber) For w,w’ in gaps
N = Ny = itr P[[P, M], [P, A2]]

where P = P, ./ is the spectral projection associated with spch
between w,w’ (counter-clockwise)
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Bulk and Edge spectrum

Bulk spectrum Edge spectrum
= 5.30, delta = 6.28, dr=7.85, N=M=40 J=5.30, delta = 6.28, dr=7.85, N=M=40
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Bulk (left) and Edge spectrum (right); color: participation ratio



Computing the edge index
Edge index Mg, based on the pair (H, H,) (with oo = )

NE,a =trA A= UE/\Q UE — U;’E/\QUQ,E



Computing the edge index
Edge index Mg, based on the pair (H, H,) (with oo = )

NE,a =trA A= UEAQ UE — U;E/\g Ua,E

The diagonal integral kernel A(x, x) as log |A(x, x)|
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Computing the edge index

Edge index Mg, based on the pair (H, H,) (with oo = )

A= UiNoUs — Ut phoUs g
The diagonal integral kernel A(x, x) as log |A(x, x)|

Boundary conditions:

> Vertical edges: Dirichlet

» Horizontal edges: Periodic



The transition

12 Invariant wrt J for d = 3.14, dr=3.14 Invariant wrt J for d = 3.14, dr=3.14
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Summary

» Chiral symmetry
» Floquet topological insulator
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» Chiral symmetry
» Floquet topological insulator

Thank you for your attention!
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